
Intelligent Cloud Operations

Part 5. Distributed Trace Analysis

Definition (Gartner) [AIOps]

AIOps platforms utilize big data, modern machine learning and other advanced analytics technologies to directly
and indirectly enhance IT operations (monitoring, automation and service desk) functions with proactive, personal
and dynamic insight.

Prof. Jorge Cardoso

E-mail: jorge.cardoso@huawei.com

Intelligent Cloud Operations/SRE Dept.

Ireland and Munich Research Centers

2020

ULTRA-SCALE AIOPS LAB 1

OpenStack

Troubleshooting

https://docs.openstack.org/install-guide/get-started-logical-architecture.html

Troubleshooting

▪ Using logs, traces, metrics,

events, alarms, etc.

ULTRA-SCALE AIOPS LAB 2

Troubleshooting

Monitoring Data Sources

Logs. Service, microservices, and applications

generate logs, composed of timestamped

records with a structure and free-form text,

which are stored in system files.

Metrics. Examples of metrics include CPU

load, memory available, and the response

time of a HTTP request.

Traces. Traces records the workflow and tasks

executed in response to, e.g., an HTTP

request.

Events. Major milestones which occur within a

data center can be exposed as events.

Examples include alarms, service upgrades,

and software releases.

Topology. --

{"traceId": "72c53", "name": "get", "timestamp": 1529029301238, "id": "df332",

"duration": 124957, “annotations": [{"key": "http.status_code", "value": "200"}, {"key":

"http.url", "value": "https://v2/e5/servers/detail?limit=200"}, {"key": "protocol", "value":

"HTTP"}, "endpoint": {"serviceName": "hss", "ipv4": "126.75.191.253"}]

{“tags": [“mem”, “192.196.0.2”, “AZ01”], “data”: [2483, 2669, 2576, 2560, 2549, 2506,

2480, 2565, 3140, …, 2542, 2636, 2638, 2538, 2521, 2614, 2514, 2574, 2519]}

{"id": "dns_address_match“, "timestamp": 1529029301238, …}

{"id": "ping_packet_loss“, "timestamp": 152902933452, …}

{"id": "tcp_connection_time“, "timestamp": 15290294516578, …}

{"id": "cpu_usage_average “, "timestamp": 1529023098976, …}

2017-01-18 15:54:00.467 32552 ERROR oslo_messaging.rpc.server [req-c0b38ace -

default default] Exception during message handling

System’s Components (e.g., OBS, EVS, VPC, ECS) are monitored and generate various types of data:

Logs, Metrics, Traces, Events, Topologies

ULTRA-SCALE AIOPS LAB 3

Troubleshooting

Monitoring Data Sources

Log analysisMetric analysis

Topology analysisTrace analysis

ULTRA-SCALE AIOPS LAB 4

OpenStack

Troubleshooting using Distributed Tracing

OpenStack

Tracing Infrastructure

Openstack

Client

REST HTTP

Keystone

main

Glance-API

REST HTTP

Keystone

admin

Database

MySql

Trace Requests Visualize TracesRecord Traces

Performance analysis, Root-cause

analysis, anomaly detection

{

"info": {

"host": "request": {

"ip": "10.0.2.15",

"mem_used": "8",

"mem_total": "11",

"query": "",

"path": "/v2.

0",

"scheme": "http",

service_tracing(ctx)

process_tracing(ctx)

progress_task_tracing

horizontal_process

end_tracing(ctx)

hold_tracing(ctx)

start_tracing(ctx)

B
(23, 18, 17)

B
(25, 18, 17)

A
(18, 17, 17)

C
(14, 17, 17)

A
(18, 17, 17)

{u'base_id': u'58d1ba56-4f6c-4a1d-8dd1-88f4857307ea',

u'children': [],

u'elapsed_time': 929,

u'info': {u'host': u'allinone2.butterfly.org',

u'project': None,

u'request': {u'cpu': u'69',

u'ip': u'10.0.2.15',

u'mem_total': u'11',

u'mem_used': u'10',

u'method': u'GET',

u'path': u'/v3/auth/tokens',

u'query': u'',

u'scheme': u'http'},

u'service': None},

u'name': u'wsgi-start',

u'parent_id': u'7631b6e6-9f77-4c5b-9f62-979fe7dc946a',

u'project': u'keystone',

u'service': u'admin',

u'timestamp': u'2017-03-31T06:21:14.351330',

u'trace_id': u'40bc26d6-da6f-4f5f-93ba-2d959867c7b1'}

1. 2. 3. 4.

Process

1. Trace user requests

2. Record traces

3. Visualize traces

4. Analyze traces

Distributed Tracing

▪ Distributed context propagation

is still new to many people

Applications

▪ Distributed transaction

monitoring

▪ Anomaly detection

▪ Performance analysis
‒ Latency optimization

▪ Dependency analysis
‒ Who are my upstream and

downstream dependencies?

‒ How many different workflows

depend on my service?

‒ Is my service a critical (tier 1)

service for core business flows?

‒ How do my SLIs affect other

services?

‒ Will my service survive

Halloween?

▪ Root cause analysis

ULTRA-SCALE AIOPS LAB 5

{u'base_id': u'58d1ba56-4f6c-4a1d-8dd1….',

u'children': [],

u'elapsed_time': 929,

u'info': {u'host': u'allinone2.butterfly.org',

u'project': None,

u'request': {u'cpu': u'69',

u'ip': u'10.0.2.15',

u'mem_total': u'11',

u'mem_used': u'10',

u'method': u'GET',

u'path': u'/v3/auth/tokens',

u'scheme': u'http'},

u'service': None},

u'name': u'wsgi-start',

u'parent_id': u'7631b6e6-9f77-4c5b-9f6…,

u'project': u'keystone',

u'service': u'admin',

u'timestamp': u'2017-03-31T06:21:14….',

u'trace_id': u'40bc26d6-da6f-4f5f-93ba-2...'}

Troubleshooting using Distributed Tracing

Feature Selection

Trace content

▪ Context

‒ Response time

‒ Parent-child relationship

‒ Timestamp

‒ Host, IP, port

▪ Application payload

‒ MEM, CPU, SQL query

Span feature selection
▪ Which features to select? Irrelevant features adversely impact model

performance

▪ Use domain knowledge from the field of distributed systems to build a set of

ad hoc features

▪ Filter based (univariate selection)

‒ Statistical tests find with a strongest relationship with the output variable

‒ Nominal variables, e.g., chi-squared (chi²) and mutual information

‒ Ordinal variables, e.g., Kendall’s Tau

‒ Numerical, e.g., Pearson Correlation

▪ Wrapper-based

‒ Selection is viewed as a search problem

▪ Embedded

‒ Use algorithms with built-in feature selection methods

‒ e.g., Random Forests Figure. (above) Trace structure. (bellow) Content of a

span. The field info contains the application payload.

Trace

Service A

Service C

Service C

time

Service B

Service D

Raw data

Features

Algorithm

ULTRA-SCALE AIOPS LAB 6

Distributed Traces

Trace Abstraction

() () ()
=

−−−−−− =======
n

ki

kikiiiiiiikkn xXxXxXxXpxXxXpxxp ,...,,|,...,... 2211111

▪ Markov Chain

‒ A stochastic process is a Markov chain if:

‒ The probability distribution of a state Xi depends on the previous state

Xi-1 and does not depend on the previous states

‒ K-th order Markov Chain:

▪ Tree Structure

‒ Finite set of one or more nodes A, B, C, …

‒ Special nodes: the root node has no parent. Leaf nodes have children.

‒ Remaining nodes are partitioned into n >= 0 disjoint sets T1, ..., Tn,

where each set is also a tree

▪ Sequence of Events

‒ Given a set E = {e1,...,en} of event types, an event is a pair (A, t), where

A ∈ E and t ∈ N is the occurrence time of the event

‒ An event sequence s on E is an ordered sequence of events:

‒ Tree representation: (A (B (C, D), E)

() () () 
==

−− −
=====

n

i

xx

n

i

iiiin ii
axpxXxXpxXpxxp

2

1

2

11111 1
)(|...

Markov

Chain

Tree

Sequence

),(),...,,(),,(2211 nn tAtAtAs =

ULTRA-SCALE AIOPS LAB 7

Distributed Traces

Trace Abstraction

▪ Graph Structure

‒ Graph is a set of vertices V, with edges connecting some of the vertices

(edge set E).

‒ An edge can connect two vertices.

‒ Use maximum common sub-graph isomorphism (MCS) and the graph

edit distance (GED) to compare graphs

‒ e.g., GED defines the minimal number of operations (node/edge

substitution, insertion, removal) needed to transform one graph into

another

‒ MCS and GED problems are NP-hard

Graph

Service A

Service C

Service CService B

Service D

ULTRA-SCALE AIOPS LAB 8

Troubleshooting using Distributed Tracing

Techniques and Methods

Distributed Trace Analysis

▪ Time series analysis

‒ Spans and traces seen as time series of response time

‒ Statistical methods

‒ Parametric and non-parametric

▪ Sequence analysis

‒ Traces seen as sequences of spans

‒ Methods: Clustering, classification, knowledge-based

‒ Neural networks, Bayesian, SVM, decision trees,

DBSCAN, K-mean, k-NN

▪ Graph analysis

‒ Traces seen as graphs or trees

‒ Methods: Markov chains, graph distance metrics, sub-

graph isomorphism

ULTRA-SCALE AIOPS LAB 9

Distributed Trace Analysis

Time Series Analysis

B
(23, 18, 17)

B
(23, 18, 17)

A
(18, 17, 17)

C
(14, 17, 17)

A
(18, 17, 17)

Distributed Trace

ti
m

e

spans

spans

d4

d3

d2

d1

t1 t2
time

time

time

time

D4

D3

D2

D1

Trace ID: 189X34

-- Normal or abnormal?

d4

d3

d2

d1
d1 = Δ(ts(B), ts(A))

Time Series

B
(23, 18, 17)

B
(23, 18, 17)

A
(18, 17, 17)

C
(14, 17, 17)

A
(18, 17, 17)

Distributed Trace

ti
m

e

spans

spans

d4

d3

d2

d1

time

time

time

time

D4

D3

D2

D1

Forecasted Trace in 12 hours
|
|--> Normal or abnormal?

Forecasted behavior

Normal

Normal

Normal

Abnormal

d4

d3

d2

d1
d1 = Δ(ts(B), ts(A))

 ,2,1,0, =txt▪ Time Series

‒ Sequence of observations, measured at successive

equally spaced time intervals collected from a process

▪ Time series analysis

‒ Targets to understand the context of observations or

to make predictions.

▪ Time series forecasting

‒ Relies on models to forecast future observations

based on previous ones.

1)1(−−+= ttt SaxS 

▪ Anomaly detection using exponential smoothing

‒ Exponential smoothing weighs recent observations

more than older ones

‒ α is the smoothing constant

‒ St is the smoothed value of observations

‒ Forecast Ft+1 = St

Representation: Discrete Fourier transformation, singular value decomposition, piecewise aggregate

approximation, symbolic aggregate approximation, spline representation, etc.

ULTRA-SCALE AIOPS LAB 11

Distributed Trace Analysis

Sequence Analysis

B
(23, 18, 17)

B
(23, 18, 17)

A
(18, 17, 17)

C
(14, 17, 17)

D
(26, 14, 17)

A
(18, 17, 17)

C
(18, 17, 17)

D
(26, 14, 17)

E
(34, 26, 17)

E
(34, 26, 17)

Clustering A, B, B, A, C, D, E, E, D, C
A, B, G, G, B, A, C, D, E, E, D, C
A, B, B, A, C, D, E, E, D, C, F, F

More accurate
performance estimation

Extreme Value Analysis

• Assume a distribution (Gaussian) for

duration of traces

• Look for values more than 2 or 3

standard deviations from the mean or

1.5 times from the first or third quartile

• Filter out outliers candidates

Outliers

Outlier Detection
• Unsupervised learning from traces:

• estimator.fit(X_train)

• covariance.EllipticEnvelope

• new traces can then be sorted as outliers:

• estimator.predict(X_test)

• Inliers are labeled 1, while outliers are labeled -1.

Outlier Detection
• ensemble.Isolation

Forest ‘isolates’

traces by randomly

selecting a feature

• Then randomly

selects a split value

between the

maximum and

minimum values

Distributed Trace

time

Span Span

▪ Distance Measure

‒ Eucledian distance

‒ Dynamic time warping

‒ Longest common subsequence

‒ Etc.

▪ Proximity Methods

‒ Use clustering to identify the natural

clusters of similar traces

‒ Identify and mark the cluster centroids

‒ Identify traces that are a fixed distance

or percentage distance from cluster

centroids

‒ Filter out outliers candidates

ULTRA-SCALE AIOPS LAB 12

Distributed Trace Analysis

Sequence Analysis

B
(23, 18, 17)

B
(23, 18, 17)

A
(18, 17, 17)

C
(14, 17, 17)

A
(18, 17, 17)

Distributed Trace

ti
m

e

event

event

d4

d3

d2

d1

Trace ID: 189X34

Trace ID: 23T874

server S4,2

B
(25, 18, 17)

B
(25, 18, 17)

A
(18, 17, 17)

C
(14, 17, 17)

D
(26, 14, 17)

A
(18, 17, 17)

C
(14, 17, 17)

D
(26, 14, 17)

E
(34, 26, 17)

E
(34, 26, 17)

trace (top level span)

transition

Operation (span)

Missing event from

transition: error in

communication

Missing event from trace:

error in customer facing

service

Missing event from

span: service failure

Trace change analysis

▪ Trace invariants. A program

invariant is a predicate that always

holds the same value under

different workloads or inputs.

▪ By checking whether a trace

sequence violates the invariants,

we can detect system problems.

▪ A timeout anomaly occurs when

an expected event in a trace is not

seen within an expected time

interval.

ULTRA-SCALE AIOPS LAB 13

Distributed Trace Analysis

Sequence Analysis

1. User commands: image delete,

create server, image list, flavor set…

N1 N2

N

3

N

4

keystone -> nova -> glance

-> network

Servi

ces

3

0

%

7

0

%

Warning

Y

Warning A

Warning B

Warning C

Error Z

a1 62 e2 28Trace t1

Sequence of spans

auth_tokens_v3 1314421019193f1313162f253233191e341a3c3b402f2624192f214521162f163e2746282c192f2e2e24161d2c2c161628241635287a

images_v2 4342421119131616161a311316192216162f23213e1d2127272728241621191d5e5c471d132c4a16241616213c63

_var__detail_flavors_v2.1 5d13421314151316161b193b21242113364024192f162f131d21161621212c27282c2c2d162f5e5c132c16164d

image_schemas_v2 141319133113162f1644161b331e351a213b1613133b13192f5116132113131616252121282c2c162d21582e2e161d13643b132c4a78134d213c21

gather_result 1912141613252128211a1f402f221921162f2713282b2d2416131d13211a5a21

security-groups_v2.0 4c1319131d19131316132f

_var__images_v2 121313251b2f192f35211f241916223b1613231616242713462c53241654192c285a21

_var___var__action_servers_v2.1 61135d106c12131325191b1c193d281a4022136d13162f3b292116231d1627272741283b2416131d5c2f4a5121352f13

neutronclient.v2_0.client.retry_request 162f1319132f165124191316

4. Sequence Classification: identify invalid sequences

Service call encoding
16: {'v2.0', 'ports'}

51 : {'v2.0', '_var_', 'ports'}=200

24 : {'nova.compute.api.API.get'}=0

…

Service call encoding
13: {'v3', 'tokens', 'auth‘}

Encoding matching
53.47%

2. A distributed trace is generated 3. The distributed trace is encoded

into a sequence

Tracing has applicability in many fields besides microservices, e.g., end-to-end enterprise applications orchestrating mobile apps, edges,

websites, storage, and centralized systems.

Function call sequences
[{'v3'}=200, {'v3', 'tokens', 'auth'}=200, {'v...

Function call sequences
Similar call sequence

{"traceId": "72c53", "name": "get", "timestamp": 1529029301238, "id": "df332", "duration": 124957, “annotations": [{"key": "http.status_code", "value": "200"}, {"key": "http.url", "value":

"https://v2/e5/servers/detail?limit=200"}, {"key": "protocol", "value": "HTTP"}, "endpoint": {"serviceName": "hss", "ipv4": "126.75.191.253"}]

ULTRA-SCALE AIOPS LAB 14

Distributed Trace Analysis

Introduction to Sequence Analysis

▪ Sequence Prediction

‒ Predict elements of a sequence on the basis of the preceding elements

‒ Given si, si+1,…, sj, predict sj+1, si,si+1, i.e., sj →sj+1

‒ Input: 1, 2, 3, 4, 5; output: 6

‒ Applications: weather forecast

▪ Sequence Classification

‒ Predict a class label for a given input sequence.

‒ Given si,si+1,…,sj, determine if it is legitimate, i.e., si,si+1,…,sj →yes or no

‒ Input: 1, 2, 3, 4, 5; output: “normal” or “anomalous”

‒ Applications: trace anomaly detection, DNA sequence classification

▪ Sequence Generation

‒ Generate new output sequence with same general characteristics as the input

‒ Input: [1, 3, 5], [7, 9, 11]; output: [3, 5 ,7]

‒ Applications: text generation

▪ Sequence to Sequence Prediction

‒ Predict an output sequence given an input sequence.

‒ Input: 1, 2, 3, 4, 5; output: 6, 7, 8, 9, 10

‒ Applications: text summarization

1, 2, 3, 4, 5 ► 6

1, 2, 3, 4, 5 ► NORMAL

1, 3, 5 and 7, 9, 11 ► 3, 5 ,7

1, 2, 3, 4, 5 ► 6, 7, 8, 9, 10

Sequence learning: from recognition and prediction to sequential decision making, IEEE Intelligent Systems, 2001,

http://www.sts.rpi.edu/~rsun/sun.expert01.pdf

ULTRA-SCALE AIOPS LAB 15

Related Work

Facebook Mystery Machine

https://blog.acolyer.org/2015/10/07/the-mystery-machine-end-to-end-performance-analysis-of-large-scale-internet-services/
https://www.usenix.org/system/files/conference/osdi14/osdi14-paper-chow.pdf

Measure end-to-end performance of requests
▪ Infer causal relationships from logs

‒ Adding instrumentation retroactively is an

expensive task

‒ Hypothesize and confirm relationships in

messages

▪ Log Data

‒ Request & host id, timestamp, unique event label

▪ Finding Relationships

‒ Samples requests, store logs in Hive and run

Hadoop jobs to infer causal relationships

‒ 2h Hadoop to analyze 1.3M requests sampled 30

days

‒ Assumes a hypothesized relationship between

two segments until finding a counterexample

‒ 3 types of relationship inferred: happens-before,

mutual exclusion, pipeline

▪ Applications

‒ Find critical path and slack segments for

performance optimization

‒ Anomaly detection: 1) select top 5% of end-to-end

latency, 2) identify segments with proportionally

greater representation in the outlier set of

requests than in the non-outlier set.

As the number of traces analyzed increases, the observation of new counter

examples diminishes, leaving behind only true relationships

ULTRA-SCALE AIOPS LAB 16

Related Work

Sequence Analysis of Log Records

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning. In

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS '17). ACM, New York, NY, USA, 1285-1298.

Sequence Prediction using Logs

▪ Parsing

‒ Spell tool (ICDM’16) parses logs into patterns that

represent the fixed part of printf-like statements

‒ Log messages ► Log key

‒ https://www.cs.utah.edu/~lifeifei/papers/spell.pdf

▪ Processing

‒ Workflow models are built to help anomaly

diagnosis

‒ Log Key ► Workflow

‒ Log Key + Parameters ► Behavior Model

‒ LSTM is used to model system execution paths

and log parameter values

▪ Precision

‒ F1-score: 96%

▪ How many scenarios need to be labeled? 10 or

10,000?

▪ Dataset distribution

‒ HDFS: 2.9% labeled anomalies

‒ Openstack: 7% anomalies

▪ Do precision numbers hold in more realistically

distributed logs?

ULTRA-SCALE AIOPS LAB 18

Distributed Trace Analysis

Using LSTMs

1. Generate Synthetics Traces

OPENSTACK_SEQUENCE = [

('keystone', 1.0, 'authenticate user with credentials and generate auth-token'),

('nova-api', 1.0, 'get user request and sends token to Keystone for validation'),

('keystone', 0.2, 'validate the token if not in cache'),

('nova-api', 1.0, 'starts VM creation process'),

('nova-database', 1.0, 'create initial database entry for new VM'),

('nova-scheduler', 1.0, 'locate an appropriate host using filters and weights'),

('nova-database', 1.0, 'execute query'),

('nova-compute', 1.0, 'dispatches request'),

('nova-conductor', 1.0, 'gets instance information'),

('nova-compute', 1.0, 'get image URI from image service'),

('glance-api', 1.0, 'get image metadata'),

('nova-compute', 1.0, 'setup network'),

('neutron-server', .5, 'allocate and configure network IP address'),

('nova-compute', 1.0, 'setup volume'),

('cinder-api', .75, 'attach volume to the instance or VM'),

('nova-compute', 1.0, 'generates data for the hypervisor driver')

]

2. Transform traces with service names into sequences of integers
Train dataset

span_list

trace_id

0 [3, 5, 5, 8, 9, 8, 6, 7, 6, 2, 6, 6, 1, 6]

1 [3, 5, 5, 8, 9, 8, 6, 7, 6, 2, 6, 6, 1, 6]

2 [3, 5, 5, 8, 9, 8, 6, 7, 6, 2, 6, 4, 6, 1, 6]

3 [3, 5, 5, 8, 9, 8, 6, 7, 6, 2, 6, 4, 6, 6]

4 [3, 5, 3, 5, 8, 9, 8, 6, 7, 6, 2, 6, 6, 1, 6]

... ...

95 [3, 5, 5, 8, 9, 8, 6, 7, 6, 2, 6, 6, 1, 6]

96 [3, 5, 3, 5, 8, 9, 8, 6, 7, 6, 2, 6, 4, 6, 6]

97 [3, 5, 5, 8, 9, 8, 6, 7, 6, 2, 6, 6, 1, 6]

98 [3, 5, 5, 8, 9, 8, 6, 7, 6, 2, 6, 4, 6, 1, 6]

99 [3, 5, 5, 8, 9, 8, 6, 7, 6, 2, 6, 4, 6, 1, 6]

[100 rows x 1 columns]

Test dataset

span_list

trace_id

0 [3, 5, 5, 1, 9, 8, 6, 7, 6, 2, 6, 6, 1, 6]

1 [3, 5, 5, 8, 9, 8, 6, 7, 6, 2, 6, 4, 6, 6]

4. Encoding traces sequences
● The encoding scheme pads each sequence of inputs with zeros, up to a pre-

defined maximum length.
● This allows to pre-allocate a chain of LSTM units of a specific length
● We also pass information about the sequence lengths. This is important for not

treating the zero padding as actual inputs, and from injecting the error signal at
the right unit in the sequence during back propagation.

Hot encoding
● A one hot encoding enables to represent categorical variables as binary vectors.
● Categorical values are mapped to integer values.
● Each integer value is represented as a binary vector that is all zero values except

the index of the integer, which is marked with a 1.

[[0 0 3 ... 6 1 6]

[0 0 3 ... 6 1 6]

[0 3 5 ... 6 1 6]

...

[0 0 3 ... 6 1 6]

[0 3 5 ... 6 1 6]

[0 3 5 ... 6 1 6]]

Padding with symbol 0

1 3

2 4

[0,

['keystone',

'nova-api',

'nova-api',

'nova-database',

'nova-scheduler',

'nova-database',

'nova-compute',

'nova-conductor',

'nova-compute',

'glance-api',

'nova-compute',

'nova-compute',

'cinder-api',

'nova-compute']]

Cache Simulation: Probability of execution = 75% Trace #0

Hot encoding not shown

Tensorflow tutorial: https://github.com/campdav/text-rnn-tensorflow
Keras tutorial: https://github.com/campdav/text-rnn-keras

Code available at: https://github.com/jorge-cardoso/aiops_practice
Subdirectory: dta_lstm

https://github.com/campdav/text-rnn-tensorflow
https://github.com/campdav/text-rnn-keras

ULTRA-SCALE AIOPS LAB 19

Distributed Trace Analysis

Using LSTMs

6 Create the DL model

Keras and Tensorflow

● LSTM network

● dropout layer of 0.2 (high, but necessary to

avoid quick divergence)

● Softmax activation to generate probabilities

over the different categories

● Because it is a classification problem, loss

calculation via categorical cross-entropy

compares the output probabilities against one-

one encoding

● ADAM optimizer (instead of the classical

stochastic gradient descent) to update weights

5 Shift traces left

X [[0 0 3 ... 6 1 6]

[0 0 3 ... 6 1 6]

[0 3 5 ... 6 1 6]

...

[0 0 3 ... 6 1 6]

[0 3 5 ... 6 1 6]

[0 3 5 ... 6 1 6]]

y [[0 0 5 ... 1 6 0]

[0 0 5 ... 1 6 0]

[0 5 5 ... 1 6 0]

...

[0 0 5 ... 1 6 0]

[0 5 5 ... 1 6 0]

[0 5 5 ... 1 6 0]]

ULTRA-SCALE AIOPS LAB 20

Distributed Trace Analysis

Using LSTMs

8 Test traces

7 Train the model

Test Traces

X [[0 0 3 5 5 1 9 8 6 7 6 2 6 6 1 6]

[0 0 3 5 5 8 9 8 6 7 6 2 6 4 6 6]]

X[0]: [0 0 3 5 5 1 9 8 6 7 6 2 6 6 1 6] =

[[0, 0.2625601], [1, 0.38167596], [0, 0.75843567],

[0, 0.8912414], [9, 2.394792e-05], [0, 0.94694203],

[0, 0.9656691], [0, 0.9686248], [0, 0.9666971],

[0, 0.95213455], [0, 0.94981205], [0, 0.93016535],

[0, 0.60129535], [0, 0.5417027], [0, 0.6876041],

[0, 0.82936114]]

X[1]: [0 0 3 5 5 8 9 8 6 7 6 2 6 4 6 6] =

[[0, 0.2625601], [1, 0.38167596], [0, 0.75843567],

[0, 0.8912414], [0, 0.9302344], [0, 0.94507533],

[0, 0.9638574], [0, 0.9665326], [0, 0.9627945],

[0, 0.9435249], [0, 0.9405963], [0, 0.92075515],

[1, 0.3207201], [1, 0.46595544], [0, 0.64980185],

[0, 0.8390282]]

trace_id 0 indices [4]

trace_id 1 indices []

ULTRA-SCALE AIOPS LAB 21

Distributed Trace Analysis

Using LSTMs

9 Identifying Anomalous Traces Sequences

Test Trace

Input X = [0 0 3 5 5 1 9 8 6 7 6 2 6 6 1 6]

Shifted_X = [0 0 5 5 1 9 8 6 7 6 2 6 6 1 6 0]

Prediction

yhat = [0 0 5 5 12 9 8 6 7 6 2 6 6 1 6 0]

X[0]: [0 0 3 5 5 1 9 8 6 7 6 2 6 6 1 6] =

[[0, 0.2625601], [1, 0.38167596], [0, 0.75843567],

[0, 0.8912414], [9, 2.394792e-05], [0, 0.94694203],

[0, 0.9656691], [0, 0.9686248], [0, 0.9666971],

[0, 0.95213455], [0, 0.94981205], [0, 0.93016535],

[0, 0.60129535], [0, 0.5417027], [0, 0.6876041],

[0, 0.82936114]]

Error at index [4]

ULTRA-SCALE AIOPS LAB 22

Distributed Trace Analysis

Why is trace analysis challenging?

2. Cache-Aside pattern

1. Retry pattern n_tries = 3

while True:

try:

ExecuteOperation() # Success

break

except TimeoutException:

if n_tries == 0: # give up

raise Failure

else:

sleep(1000) # Wait until retrying the call

v = cache.get(k)

if v == None: # Check if the item is in the cache

v = store.get(k) # If not in cache, read from data store

cache.put(k, v) # Put a copy of the item into the cache

3. One-to-many subcalls
@app.route('/servers/<int:user_id>/<int:number>')

def create(user_id, number):

for i in range(number):

authentication(user_id)

Call remote microservice to create a server

rpc.create_server()

T1: A, B, C, D, E, …

T2: A, B, C, C, D, E, ….

T3: A, B, C, C, C, D, E, …

T4: A, B, C, C, C, Z

T1: A, B, C, D, E, …

T1: A, C, D, E, …

T1: A, B, C, D, E, …

T2: A, B, C, C, D, E, ….

T3: A, B, C, C, C, D, E, …

T4: A, B, C, C, C, C, D, E, …

Many “Hidden” Software “Patterns” which affect running systems…Circuit breaker, concurrency and parallelism,

priority queues, publisher-subscriber, bulkhead, etc.

ULTRA-SCALE AIOPS LAB 23

Distributed Trace Analysis

Why is trace analysis challenging?

More design patterns
▪ Design Principles: Fan-In vs Fan-Out

▪ Lazy loading (also called on-demand loading) is an optimization

technique for the online content, be it a website or a web app

▪ Chunking is a specific feature of the HTTP 1.1 protocol. Here, the

meaning is the opposite of that used in memory management. It

refers to a facility that allows inconveniently large messages to be

broken into conveniently-sized smaller "chunks"

ULTRA-SCALE AIOPS LAB 24

Distributed Trace Analysis

Why is trace analysis challenging?

Span Model
• Introduced in Google Dapper in 2010, base model in Zipkin

• Suitable to describe synchronous REST operations

• Every span consists of 4 events: “client send”, “server receive”, “server

send”, “client receive”

Limitations of span model
• Non-synchronous execution models such as queues and asynchronous

executions can not be described as span trees

• Fine-grained metrics are hard to express, e.g. RPC response handler can

read the data from network then enqueue it and then process – queue time

is not taken into account

• Multithreaded processing, like spawning of a group of threads, then joining

them requires additional tags to differ from sequential processing.

Evolution of trace model in Facebook*
a) Started with Dapper span model

b) Idle (blocked) time is taken into account

c) Internal queue is taken into account

d) Client-queue metrics for AJAX processing are added

e) Request and response are completely decoupled, trace is represented

as set of events with causal relations

* http://cs.brown.edu/~jcmace/papers/kaldor2017canopy.pdf

Inspired by Facebook Canopy design
(http://cs.brown.edu/~jcmace/papers/kaldor2017canopy.pdf)

Facebook uses end-to-end tracing for all services, from data-center to

mobile applications. As of 2017 the system processes 1.3 billion traces per

day, each trace contains up to several thousands of events.

http://cs.brown.edu/~jcmace/papers/kaldor2017canopy.pdf
http://cs.brown.edu/~jcmace/papers/kaldor2017canopy.pdf

ULTRA-SCALE AIOPS LAB 26

► Monitoring and Incident Detection

▪ Anomaly detection in large-scale system is widely

studied

▪ IT monitoring systems typically use application logs

and resource metrics to detect failures

⎻ Distributed tracing is becoming the third pillar of

microservices observability

⎻ Logs and metrics were previously investigated

(see [1-4])

► Single and Bi-Models

▪ Use of single and bi-models to capture traces as

sequences of events and their response time

▪ Use sequential model representation by utilizing long-

short-term memory (LSTM) networks

► Results

▪ Detect anomalies in Huawei Cloud infrastructure

▪ The novel approach outperforms other deep learning

methods based on traditional architectures

Distributed Trace Analysis

Using Multimodal Deep Learning

S. Nedelkoski, J. Cardoso, O. Kao, Anomaly Detection from System Tracing Data using Multimodal Deep Learning, IEEE Cloud 2019, July 3-8, 2019, Milan, Italy.
S. Nedelkoski, J. Cardoso, O. Kao, Anomaly Detection and Classification using Distributed Tracing and Deep Learning, CCGrid 2019, 14-17.05, Cyprus.
J. Cardoso, Mastering AIOps with Deep Learning, Presentation at SRECon18, 29–31 August 2018, Dusseldorf, Germany.

Long Short Term Memory (LSTM)
LSTMs [1] are models which capture sequential data by using an
internal memory. They are very good for analyzing sequences of
values and predicting the next point of a given time series. This
makes LSTMs adequate for Machine Learning problems that involve
sequential data (see [3]) such speech recognition, machine
translation, visual recognition and description, and distributed
traces analysis.

[1] Hochreiter, Sepp, and Jürgen Schmidhuber. "Long short-term memory." Neural computation 9.8
(1997): 1735-1780.
[2] Sequential processing in LSTM (from: http://colah.github.io/posts/2015-08-Understanding-LSTMs/
[3] LSTM model description (from Andrej Karpathy. http://karpathy.github.io/2015/05/21/rnn-
effectiveness/

Idea: represent distributed traces as sequences of

events and their response time

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

ULTRA-SCALE AIOPS LAB 27

▪ A span (event) is a vector of key-value pairs 𝑘𝑖 , 𝑣𝑖
describing a characteristic of a microservice at time

𝑡𝑖
▪ A trace 𝑇 is an enumerated collection of events (i.e.,

spans) sorted by timestamps 𝑒0, 𝑒1, … , 𝑒𝑖 [16]

▪ An event contains
⎻ trace id, event id, parent id

⎻ protocol, host ip, status code, url

⎻ response time, timestamp

⎻ and much more

▪ Trace can have different lengths

⎻ 𝑇𝑝 = 𝑒0
𝑝
, 𝑒1

𝑝
, 𝑒2

𝑝
, … , 𝑒𝑖

𝑝
and 𝑇𝑞 = 𝑒0

𝑞
, 𝑒2

𝑞
, 𝑒1

𝑞
, … , 𝑒𝑖

𝑞
are

different (𝑒1 and 𝑒2 are swapped) but originate from

the same activity

⎻ Possibly caused by concurrent systems

▪ Label each span as
⎻ Label = concat(url, status code, host ip)

⎻ We have 𝑁𝑙 labels

▪ Pad trace vector up to 𝑇𝑙 or truncate traces

Distributed Trace Analysis

Bi-modal Approach

▪ Trace structure
⎻ Trace one-hot categorical encoding [17]

⎻ 𝐷1 = 𝑁𝑡 , 𝑇𝑙 , 𝑁𝑙

⎻ 𝑁𝑡 = # traces, 𝑇𝑙 = max length, 𝑁𝑙 = # labels

▪ Response time
⎻ Min-max scaling [0, 1]

⎻ 𝐷2 = 𝑁𝑡 , 𝑇𝑙 , 1
⎻ Last dimension is the response time (duration)

Trace Structure (sequence of events) and

Response time (duration)
e.g., Service 11 → Service 21; duration = 12ms

ULTRA-SCALE AIOPS LAB 28

▪ We model anomaly detection in traces as a sequence-to-

sequence, multi-class, single-label problem
⎻ Use multiple possible labels for one trace that are not

mutually exclusive.

⎻ The partial trace can have multiple subsequent events

▪ LSTM network architecture
⎻ SAD = Structural Anomaly Detection (𝐷1)

▪ Model input

⎻ 𝑇𝑘 = 𝑒0, 𝑒1, … , 𝑒𝑇𝑙
▪ Model output

⎻ 𝑒0, 𝑒1, … , 𝑒𝑖−1
⎻ Probability distribution over the 𝑁𝑙 unique labels from 𝐿,

representing the probability for the next label (event) 𝑒𝑖 in

the sequence

▪ Compare the predicted output against the observed label

⎻ input 𝑒0, 𝑒1, … , 𝑒𝑇𝑙 → output 𝑒1, … , 𝑒𝑇𝑙 , ′! 0′

⎻ The output is shifted by one event and padded

▪ Update network weights using categorical cross-entropy

loss minimization via gradient descent

Distributed Trace Analysis

Single-Modality LSTM (1)

SAD = Structural Anomaly Detection (𝐷1)

ULTRA-SCALE AIOPS LAB 29

▪ Evaluate if trace 𝑇𝑡𝑒𝑠𝑡 is anomalous

⎻ 𝑇𝑡𝑒𝑠𝑡 = 𝑒0, 𝑒1, … , 𝑒𝑇𝑙
▪ The network calculates

⎻ Probability distribution 𝑃

⎻ 𝑃 = 𝑙0: 𝑝0, 𝑙1: 𝑝1, … , 𝑙𝑁𝑡
: 𝑝𝑁𝑡

⎻ Probability of a label of 𝐿 to appear as the next label value

in a trace

▪ The output layer has a softmax function
⎻ A generalization of the logistic function that “squashes” a

K-dimensional vector z of arbitrary real values to a K-

dimensional vector 𝜎(𝑧)𝑖 of real values in the range [0, 1]

that add up to 1

▪ Distribute the probability over labels

⎻ 𝜎(𝑧)𝑖 =
𝑒𝑧𝑖

σ𝑗=1
𝐾 𝑒

𝑧𝑗

▪ Such that

⎻ σ𝑖
𝑁𝑙 𝑝𝑖 = 1

▪ Classification
⎻ Accept top-𝒌 predicted labels as behaviorally correct

⎻ Otherwise, report an anomaly along with the events which

contributed to the decision

Distributed Trace Analysis

Single-Modality LSTM (2)

SAD = Structural Anomaly Detection (𝐷1)

ULTRA-SCALE AIOPS LAB 30

▪ We model response time anomaly detection in traces as a

regression task
⎻ E.g., predict the duration of a span

▪ LSTM network architecture
⎻ RTAD = Response Time Anomaly Detection (𝐷2)

⎻ Linear (i.e. identity) activation function

▪ Approach
⎻ A each timestep 𝑡𝑖𝑚𝑒 = 𝑖 with 𝑟𝑡0, 𝑟𝑡1, … , 𝑟𝑡𝑖−1
⎻ Predict the response time 𝑟𝑡𝑖 of the next event

▪ Update network weights using mean squared loss via

gradient descent

▪ Detection
⎻ Compute the squared error distance

⎻ 𝑒𝑟𝑟𝑜𝑟𝑖 = 𝑟𝑡𝑖 − 𝑟𝑡𝑖
𝑝 2

, where 𝑟𝑡𝑖
𝑝

is the predicted value at

timestep 𝑖
⎻ errors are fitted by a Gaussian 𝑁(0, 𝜎2)
⎻ report trace as anomalous, if squared error between

prediction and input at time 𝑖 is out of 95% confidence

interval

Distributed Trace Analysis

Single-Modality LSTM (3)

RTAD = Response Time Anomaly Detection (𝐷2)

ULTRA-SCALE AIOPS LAB 31

▪ Explore the correlation between trace structure and

response time

⎻ Improve accuracy/recall

▪ LSTM network architecture

⎻ Concatenation of both single-modality

architectures in the second hidden layer

▪ Approach

⎻ input 𝑒0, 𝑒1, … , 𝑒𝑇𝑙 , 𝑟𝑡0, 𝑟𝑡1, … , 𝑟𝑡𝑇𝑙 →

⎻ output 𝑒1, … , 𝑒𝑇𝑙 , ′! 0′ , 𝑟𝑡1, 𝑟𝑡2, … , 𝑟𝑡𝑇𝑙 , 0

▪ Update network weights using

⎻ Sum mean squared error

⎻ Categorical cross-entropy

Distributed Trace Analysis

Multimodal LSTM (1)

▪ Detection

⎻ Performed by comparing the output element-

wise with the input for both modalities using

the strategy developed in the single-modality

architectures

⎻ Anomaly source: 1) response time, 2)

structural, or 3) both

SAD (𝐷1) and RTAD (𝐷2)

ULTRA-SCALE AIOPS LAB 32

► Datasets

▪ System under study has 1000+ services running production Openstack-based cloud [19]

▪ Traces collected using Zipkin [16] over 50 days: >4.5M events; 1M traces

► Evaluation Platform

▪ Python using Keras, model with batch size = 512, learning rate of 0.001, and 400 epochs

▪ PC using GPU-NVIDIA GTX 1060

► Preprocessing

▪ To avoid outliers, select labels that appear more than 1000 times (105 unique labels)

▪ Distribution of trace lengths is imbalanced

⎻ >90% have lengths <10 events

▪ Select only 1000 samples of each trace length

⎻ Requires <1% of all the recorded data

⎻ Efficient and fast for training

▪ For robustness, we also select the traces with lengths between 4 and 20

► Performance

▪ Time to train multimodal LSTM on 1% traces (1M): approx. 30 min

▪ Prediction time per trace: <50 ms

Distributed Trace Analysis

Evaluation

ULTRA-SCALE AIOPS LAB 33

Distributed Trace Analysis

Evaluation

Best results in terms of accuracy of structural anomaly

detection are achieved using the multimodal LSTM predictions

Multimodal
LSTM

Single-model
LSTM

Multimodal
Dense

Single-model
Dense

Single-and multimodal modality LSTM achieves a comparable

accuracy, while single- and multimodal dense architectures

have low accuracies

Multimodal LSTM achieves a better accuracy than the single-

modality LSTM for k=1, otherwise it is similar

Accuracy when the anomaly is injected in traces with

different sizes

Multimodal slightly outperforms the single-modality

approach in 9 out of 15 trace lengths for k = 3 and k = 5

Significantly better results are achieved for k = 1 for

almost all of the trace lengths

𝑘 ∈ [3, 5]

𝑘 = 1

𝑘 = 1

ULTRA-SCALE AIOPS LAB 34

Distributed Trace Analysis

Evaluation

For SAD, significantly better performance of the multimodal

approach for k = 1

Single-modality LSTM achieves a comparable accuracy, while

single- and multimodal dense architectures have low

accuracies

Multimodal LSTM achieves a better accuracy than the single-

modality LSTM for k=1, otherwise it is similar

For RTAD, single-task models have low performance

than those of both multimodal models

Multimodal approach achieves a higher accuracy for

RTAD

Models have high accuracy even when the length of the

trace increases. This is because the LSTMs are able to

learn long-term dependencies in sequential tasks

ULTRA-SCALE AIOPS LAB 35

▪ [1] F. Schmidt, A. Gulenko, M. Wallschlger, A. Acker, V. Hennig, F. Liu, and O. Kao, “Iftm - unsupervised anomaly detection for

virtualized network function services,” in 2018 IEEE International Conference on Web Services (ICWS), July 2018, pp. 187–194.

▪ [2] A. Gulenko, F. Schmidt, A. Acker, M. Wallschlager, O. Kao, and F. Liu, “Detecting anomalous behavior of black-box services

modeled with distance-based online clustering,” in 2018 IEEE 11th International Conference on Cloud Computing (CLOUD), Jul 2018,

pp. 912–915.

▪ [3] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection and diagnosis from system logs through deep learning,” in

Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communica- tions Security. ACM, 2017, pp. 1285–1298.

▪ [4] F. Schmidt, F. Suri-Payer, A. Gulenko, M. Wallschlger, A. Acker, and O. Kao, “Unsupervised anomaly event detection for cloud

monitoring using online arima,” in 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC

Companion), Dec 2018, pp. 71–76.

▪ [16] OpenZipkin, “openzipkin/zipkin,” 2018. [Online]. Available: https://github.com/openzipkin/zipkin

▪ [19] A. Shrivastwa, S. Sarat, K. Jackson, C. Bunch, E. Sigler, and T. Campbell, OpenStack: Building a Cloud Environment. Packt

Publishing, 2016.

Further reading

▪ S. Nedelkoski, J. Cardoso, O. Kao, Anomaly Detection from System Tracing Data using Multimodal Deep Learning, IEEE Cloud

2019, July 3-8, 2019, Milan, Italy.

▪ S. Nedelkoski, J. Cardoso, O. Kao, Anomaly Detection and Classification using Distributed Tracing and Deep Learning, CCGrid 2019,

14-17.05, Cyprus.

▪ J. Cardoso, Mastering AIOps with Deep Learning, Presentation at SRECon18, 29–31 August 2018, Dusseldorf, Germany.

Distributed Trace Analysis

References

Copyright©2019 Huawei Technologies Co., Ltd.

All Rights Reserved.

The information in this document may contain predictive

statements including, without limitation, statements regarding

the future financial and operating results, future product

portfolio, new technology, etc. There are a number of factors that

could cause actual results and developments to differ materially

from those expressed or implied in the predictive statements.

Therefore, such information is provided for reference purpose

only and constitutes neither an offer nor an acceptance. Huawei

may change the information at any time without notice.

Bring digital to every person, home and
organization for a fully connected,
intelligent world.

Thank you.

