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OpenStack
Troubleshooting

Troubleshooting
= Using logs, traces, metrics,

- CLl clients(nova, cinder, neutron and so on)
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Troubleshooting
Monitoring Data Sources

System’s Components (e.g., OBS, EVS, VPC, ECS) are monitored and generate various types of data:
Logs, Metrics, Traces, Events, Topologies

Logs. Service, microservices, and applications
generate logs, composed of timestamped 2017-01-18 15:54:00.467 32552 ERROR oslo_messaging.rpc.server [req-cOb38ace -

records with a structure and free-form text, default default] Exception during message handling
which are stored in system files.

Metrics. Examples of metrics include CPU
load, memory available, and the response
time of a HTTP request.

{“tags": [‘mem”, “192.196.0.2", “AZ01”], “data”™ [2483, 2669, 2576, 2560, 2549, 2506,
2480, 2565, 3140, ..., 2542, 2636, 2638, 2538, 2521, 2614, 2514, 2574, 2519]}

{"traceld": "72c53", "name": "get", "timestamp": 1529029301238, "id": "df332",
"duration": 124957, “annotations": [{"key": "http.status_code", "value": "200"}, {"key":
"http.url", "value": "https://v2/e5/servers/detail ?limit=200"}, {"key": "protocol", "value":

Traces. Traces records the workflow and tasks
executed in response to, e.g., an HTTP

request. "HTTP"}, "endpoint™; {"serviceName"; "hss", "ipv4"; "126.75.191.253"}]
Events. Major milestones which occur within a {"id": "dns_address_match®, "timestamp": 1529029301238, ...}
data center can be exposed as events. {"id": "ping_packet_loss*, "timestamp": 152902933452, ...}

{"id": "tcp_connection_time*, "timestamp": 15290294516578, ...}

Examples include alarms, service upgrades, o o .,
{"id": "cpu_usage_average “, "timestamp": 1529023098976, ...}

and software releases.

Topology. --
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Troubleshooting
Monitoring Data Sources
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OpenStack

Troubleshooting using Distributed Tracing

Tracing Infrastructure

Distributed Tracing
= Distributed context propagation
is still new to many people

Applications
= Distributed transaction
monitoring
= Anomaly detection
= Performance analysis
— Latency optimization
= Dependency analysis
— Who are my upstream and
downstream dependencies?
— How many different workflows
depend on my service?
— Is my service a critical (tier 1)
service for core business flows?
— How do my SLlIs affect other
services?
— Will my service survive
Halloween?
= Root cause analysis

ULTRA-SCALE AIOPS LAB
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{u'base_id": u'58d1ba56-4f6c-4ald-8dd1-88f4857307ea’,
u'children’: ],
u'elapsed_time": 929,
u'info’: {u'host": u'allinone2.butterfly.org’,
u'project’: None,
u'request”: {u'cpu’: u'69’,
u'ip”: u'10.0.2.15',
u'mem_total": u'1l’,
u'mem_used": u'10',
u'method": U'GET",

T,
u'scheme': u'http’},
u'service': None},
u'name’: u'wsgi-start’,

u'timestamp': u'2017-03-31T06:21:14.351330',
u'trace_id": u'40bc26d6-da6f-4f5f-93ba-2d959867¢7b1'}

T et e TR

) H

0. B start SELECT inagen. created ok A3 Smages srmsted st Fragms

st (3511 w51 .

. s e

service_tracing(ctx) 1.
process_tracing(ctx)
progress_task_tracing
horizontal_process
end_tracing(ctx)
hold_tracing(ctx)
start_tracing(ctx)

"scheme": "http",

Trace Requests

Record Traces

Visualize Traces

Performance analysis, Root-cause
analysis, anomaly detection




Troubleshooting using Distributed Tracing
Feature Selection

Trace content Trace

= Context
— Response time e
— Parent-child relationship
~ Timestamp
— Host, IP, port

= Application payload
— MEM, CPU, SQL query Raw data

Span feature selection {u'base_id": u'58d1ba56-4f6c-4ald-8dd1....",

: . u'children': [],
= Which features to select? Irrelevant features adversely impact model u'elapsed_time'; 929,
performance u'info": {u'host": u'allinone2.butterfly.org’,
. . L . u'project’: None,
" Use domain knowledge from the field of distributed systems to build a set of Urequest {U'cpu’: U'69",
ad hoc features uip’ u'10.0.2.15/,
= Filter based (univariate selection) Eﬂi?‘fiﬁﬁi-“ff& Features
— Statistical tests find with a strongest relationship with the output variable umethod”: UGET',
— Nominal variables, e.g., chi-squared (chi?) and mutual information u'path’: u'’/v3/auth/tokens’, ¢
— Ordinal variables, e.g., Kendall's Tau u.sewice‘f_SNcgﬁge : uhtp?, .
— Numerical, e.g., Pearson Correlation u'name'’; u'wsgi-start, Algorithm
[ Wrapper-based u'parent_id": u'7631b6e6-9f77-4c5b-9f6...,
. — u'project’: u'keystone’,
— Selection is viewed as a search problem u'service® wadmin',
= Embedded u'timestamp': u'2017-03-31T06:21:14....",
— Use algorithms with built-in feature selection methods u'trace_id': u'40bc26d6-da6r-4f5f-93ba-2...}
— e.g., Random Forests Figure. (above) Trace structure. (bellow) Content of a

span. The field info contains the application payload.
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Distributed Traces
Trace Abstraction

= Markov Chain

2200us

— A stochastic process is a Markov chain if: Markov Beal Breply
n Chain
p(X X - X H p i Xi | Xi*1 = Xifl): p(Xl) .HaXHXi g 400ps soow 7 (58 Eﬂﬂﬂ‘nm ’ 400ps
i=2 Acall Ceall Creply Areply
— The probability distribution of a state X; depends on the previous state . SO vy 5000 o
X;.; and does not depend on the previous states - —
— K-th order Markov Chain: 15004
p(xl"'xn): p(xl = Xppeny Xy = Xk H p(X; =X | Xig =X Xig =X g0y Xiy = Xi—k) l
" Tree Structure e T
— Finite set of one or more nodes A, B, C, ... Tree / \
— Special nodes: the root node has no parent. Leaf hodes have children. B
.. e . . e . i) g} E
— Remaining nodes are partitioned into n >= 0 disjoint sets T1, ..., Tn, Y N\
where each set is also a tree c 0
= Sequence of Events
— Given a set E = {el,...,en} of event types, an event is a pair (A, t), where
A € E andt € N is the occurrence time of the event Sequence
A B c o E

— An event sequence s on E is an ordered sequence of events:

S= (Al’tl)!(AZ’tZ)""!(Aﬂtn)
— Tree representation: (A (B (C, D), E)
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Distributed Traces
Trace Abstraction

=  Graph Structure

— Graph is a set of vertices V, with edges connecting some of the vertices
(edge set E). Graph
— An edge can connect two vertices.
— Use maximum common sub-graph isomorphism (MCS) and the graph
edit distance (GED) to compare graphs
— e.g., GED defines the minimal number of operations (node/edge
substitution, insertion, removal) needed to transform one graph into
another
— MCS and GED problems are NP-hard

ULTRA-SCALE AIOPS LAB



Troubleshooting using Distributed Tracing
Techniques and Methods

Distributed Trace Analysis
® Time series analysis
— Spans and traces seen as time series of response time
— Statistical methods
— Parametric and non-parametric
= Sequence analysis
— Traces seen as sequences of spans
— Methods: Clustering, classification, knowledge-based
— Neural networks, Bayesian, SVM, decision trees,
DBSCAN, K-mean, k-NN
= Graph analysis
— Traces seen as graphs or trees
— Methods: Markov chains, graph distance metrics, sub-
graph isomorphism

ULTRA-SCALE AIOPS LAB



Distributed Trace Analysis
Time Series Analysis

= Time Series {xt,t :0,1,2,---} = Anomaly detection using exponential smoothing
— Sequence of observations, measured at successive — Exponential smoothing weighs recent observations
equally spaced time intervals collected from a process more than older ones
. . . .
Time series analysis S, —ax +(1-a)-S, ,

— Targets to understand the context of observations or
to make predictions. a is the smoothing constant
= Time series forecasting — S, is the smoothed value of observations
— Relies on models to forecast future observations — ForecastF,, =S,
based on previous ones.

Distributed Trace - Normal or abnormal? Distributed Trace Forecasted  Trace in 12 hours
spans Trace ID: 189X34 spans
. . - ?

c WS\/\ c D4 |--> Normal or abnormal:
(14,17, 17) d4 /\ (14,17, 17) d4 ‘

A A Ak A MU A A Wi Normal

\ 4 d4 £ 12 n D4 d4 | y ! V VN URUAH(RY

- L -
time

A ! T
(18, 17, 17) A i N/ b

A daT A NN Abnormal

_é v d3 ,\ P, AANANS N : D3 §

B time
(23,18, 17)

7 W] PR A

v d2 WAL pn Y ' D2 Normal
(23, 1Ba 17) time g (23, 18, 17)

i d1=A(ts(B), ts(A)) i d1=A(ts(B), ts(A)) D1

d1 d1
d1 D1 d1 [ Y N o |

v . - v LAY .‘""-'d.J\J‘“\ WS Normal

A - — > A — >
(18, 17, 17) time (18, 17, 17) time
spans spans

Forecasted behavior

Representation: Discrete Fourier transformation, singular value decomposition, piecewise aggregate
ULTRA-SCALE AIOPS LAB approximation, symbolic aggregate approximation, spline representation, etc.



Distributed Trace Analysis
Sequence Analysis

Distributed Trace

Span Span
A B B A C D E E D C
(18, 17, 17) (23, 18, 17) (23, 18, 17) (18, 17, 17) (14, 17, 17) (26, 14, 17) (34, 26, 17) (34, 26, 17) (26, 14, 17) (18, 17, 17)
time >
CIUSte,rmg D, C Outlier Detection
. F.E » Unsupervised learning from traces:
Outlierss * estimator.fit(X_train)
v « covariance.EllipticEnvelope
05 More accurate + new traces can then be sorted as outliers:
00 performance estimation « estimator.predict(X_test)
o5 Extreme Value Ana|ysis © |n|ierS are Iabeled 1, Wh'le Ou'[|IeI’S are Iabeled -1.
. ¢ Assume a distribution (Gaussian) for — - MLE dist
e s duration of traces |- - robust dist
-15 ® Look for values more than 2 or 3 e T T s
il . standard deviations from the mean or \:\ o end i s -
. . 1.5 times from the first or third quartile - ':Outlier Beicaiian
-253 - - 5 - 3 3 ® Filter out outliers candidates .
* ensemble.lsolation
—  Forest‘isolates’ |
= Proximity Methods = Distance Measure traces by randomly
— Use clustering to identify the natural — Eucledian distance selecting a feature
clusters of similar traces — Dynamic time warping * Then randomly
— Identify and mark the cluster centroids — Longest common subsequence Zilt(\el\fet‘zr?tiz’llt value
— ldentify traces that are a fixed distance — Etc. T ]
or percentage distance from cluster minimum values
centroids

— Filter out outliers candidates
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Distributed Trace Analysis
Sequence Analysis

Distributed Trace Trace ID: 189X34
event

Trace change analysis

®= Trace invariants. A program
invariant is a predicate that always
holds the same value under
different workloads or inputs.

= By checking whether a trace
seqguence violates the invariants,
we can detect system problems.

= A timeout anomaly occurs when
an expected event in a trace is not
seen within an expected time
interval.

(14, 17, 17)

d4

server 54,2

(8,

[y
~
~

&

Trace ID: 237874

time

(23,

N

>le—> 5T > B0 —> 5> [—>
=
N

(23, 18, 17)
di
_ trace (top level span) Missing event from trace:
< — Missing event from error in customer facing *
(18, 17, 17) m transition: error in service
communication
event

L
A B A c D E E D
winim i AN wFn win @i i oz witin .8

_ Operation (span)

|-

N N »
Missing event from
span: service failure
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Distributed Trace Analysis
Sequence Analysis

1. User commands: image delete, 2. A distributed trace is generated 3. The distributed trace is encoded
create server, image list, flavor set... into a sequence

l:j keystone -> nova -> glance
-3 networl

Warning A

Warning B o
I\ — e e a))
T warning ©
Wa?ning
1 e '
% % % > o) oErrorZ & Sequence of spans
C L1 ] N L, S f,
% ‘9‘(&6@% //'(')0@,)2@. %t > %, racetl al || 627” e2 |
i N F—
Servi Ne | | ,
ce!

Trace of Openstack create server: scheduler, authentication, image-api, rpc-broker, image-registry, compute-api, compute, .... [a1, 62, €2, ...., 28]

{"traceld": "72c53", "name": "get", "timestamp™: 1529029301238, "id": "df332", "duration": 124957, “annotations": [{"key": "http.status_code", "value": "200"}, {"key": "http.url", "value":
"https://v2/e5/servers/detail?limit=200"}, {"key": "protocol", "value": "HTTP"}, "endpoint": {"serviceName": "hss", "ipv4": "126.75.191.253"}]

4. Sequence Classification: identify invalid sequences )
Function call sequences

Similar call sequence
Encoding matching | auth tokens_v3 1314421019193£1313162£253233191e341a3c3b402£2624192£214521162£163e2746282c192F2e2e24161d2c2c161628241635287a
53.47% images_v2 4342421119131616161ja311316192216162£23213e1d2127272728241621191d5e5c471d132c4a16241616213c63
_var__detail_flavors_v2.1 5d13421314151|316161jp193b21242113364024192f162£131d21161621212¢c27282c2c2d162£5e5c132¢c16164d
image_schemas_v2 141319133113162f1644161b331e351a213b1613133b13192£5116132113131616252121282c2c162d21582e2e161d13643b132c4a78134d213c21
gather_result 1912141613252128211alf402£221921162£2713282b2d2416131d13211a5a21
security-groups v2.0 4c1319131d19131316132f
_var__images_v2 121313251b2f192£35211£241916223b1613231616242713462c53241654192c285a21
_var___var__action_servers_v2.1 61135d106c12131325191b1c193d281a4022136d13162£3b292116231d1627272741283b2416131d5c2£4a5121352£13| Service call encoding
neutronclient.v2 O.client.retry request ILlGZfl319132f165124191316 13: {'v3', 'tokens', 'auth‘}

Function call sequences
Service call encoding [{'v3}=200, {'v3, 'tokens', 'auth’}=200, {\v...
16: {'v2.0', 'ports'}

51:{v2.0',"_var_', 'ports'}=200

24 : {nova.compute.api.APl.get'’}=0 Tracing has applicability in many fields besides microservices, e.g., end-to-end enterprise applications orchestrating mobile apps, edges,

websites, storage, and centralized systems.
ULTRA-SCALE AIOPS LAB



Distributed Trace Analysis
Introduction to Sequence Analysis

®=  Sequence Prediction
— Predict elements of a sequence on the basis of the preceding elements
— Given si, si+1,..., sj, predict sj+1, si,si+1, i.e., 5] —sj+1
— Input: 1, 2, 3, 4, 5; output: 6
— Applications: weather forecast

1,2,3,4,5» 6

= Sequence Classification
— Predict a class label for a given input sequence.
— Given si,si+1,...,sj, determine if it is legitimate, i.e., si,si+1,...,sj —yes or no 1,2,3,4,5» NORMAL
— Input: 1, 2, 3, 4, 5; output: “normal” or “anomalous”
— Applications: trace anomaly detection, DNA sequence classification

= Sequence Generation
— Generate new output sequence with same general characteristics as the input
— Input: [1, 3, 5], [7, 9, 11]; output: [3, 5 ,7] 1,3,5and 7,9,11 » 3,5,7
— Applications: text generation

= Sequence to Sequence Prediction
— Predict an output sequence given an input sequence.
— Input: 1, 2, 3, 4, 5; output: 6, 7, 8, 9, 10
— Applications: text summarization

1,2,3,4,5» 6,7,8,9,10

Sequence learning: from recognition and prediction to sequential decision making, IEEE Intelligent Systems, 2001,

ULTRASCALE AIOPS LAB http://www.sts.rpi.edu/~rsun/sun.expert01.pdf



Related Work
Facebook Mystery Machine

Measure end-to-end performance of requests

= Infer causal relationships from logs The Mystery Machine: End-to-end Performance

— Adding instrumentation retroactively is an Analysis of Large-scale Internet Services
expensive task Michael Chow, University of Michigan; David Meisner, Facebook, Inc.;

— Hypothesize and confirm relationships in Jason Flinn, University of Michigan; Daniel Peek, Facebook, Inc.;
messages Thomas F. Wenisch, University of Michigan

u Lo g Data https:/fwww.usenix.org/conference/osdil4/technical-sessions/presentation/chow facebook

— Request & host id, timestamp, unique event label
®  Finding Relationships

— Samples requests, store logs in Hive and run Step 1: Refine dapandency graph with counter sxampies
Hadoop jobs to infer causal relationships Mo Traces A Trace arter Trace 2
— 2h Hadoop to analyze 1.3M requests sampled 30
Timing # L] = III-J-EI
days 8 u_Ja [e]

— Assumes a hypothesized relationship between
two segments until finding a counterexample

— 3 types of relationship inferred: happens-before, Modsi
mutual exclusion, pipeline

= Applications

— Find critical path and slack segments for
performance optimization

— Anomaly detection: 1) select top 5% of end-to-end
latency, 2) identify segments with proportionally As the num_be_r Qf traces analyzed‘increases, the ob_serva_tion of new counter
greater representation in the outlier set of examples diminishes, leaving behind only true relationships
requests than in the non-outlier set.

~ —
[

@5\_@ @ O—0—®

| . N
® ‘® @ ) @

https://blog.acolyer.org/2015/10/07/the-mystery-machine-end-to-end-performance-analysis-of-large-scale-internet-services/
ULTRA-SCALE AIOPS LAB https://www.usenix.org/system/files/conference/osdil4/osdil4-paper-chow.pdf
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Related Work
Sequence Analysis of Log Records

Sequence Prediction using Logs

Parsing

— Spell tool (ICDM’16) parses logs into patterns that
represent the fixed part of printf-like statements

— Log messages » Log key

— https:/iwww.cs.utah.edu/~lifeifei/papers/spell.pdf

Processing

— Workflow models are built to help anomaly
diagnosis

— Log Key » Workflow

— Log Key + Parameters » Behavior Model

— LSTM is used to model system execution paths
and log parameter values

Precision

— F1-score: 96%

How many scenarios need to be labeled? 10 or

10,0007

Dataset distribution

— HDFS: 2.9% labeled anomalies

— Openstack: 7% anomalies

Do precision numbers hold in more realistically

distributed logs?

Min Du, Feifei Li, Guineng Zheng, and Vivek Srikumar. 2017. DeepLog: Anomaly Detection and Diagnosis from System Logs through Deep Learning. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security (CCS '17). ACM, New York, NY, USA, 1285-1298.

Training Stage

Structured Data

Message type
Log key

LOG
PARSING

printf(“Started service
%S on port %d", X, ¥);

Anomaly
Detection

LOG AhALYSIS

log message (log key underlined) log key | parameter value vector
t; Deletion of file1l complete ki [t1 — to, file1ld]

t; Took 0.61 seconds to deallocate network ... | ks [tz — 1, 0.61]

t3 VM Stopped (Lifecycle Event) ks [t5 - 2]

Table 1: Log entries from OpenStack VM deletion task.

each log entry = log key + parameter value vector

A new log entry

Train model Log Key
Construct workflow \ mod el !
normal execution [’d’l .
log file g2 Vot . Workflows E
1t log entryl D‘E@] ; |-> _’:
12 log eniy2 Haovits - mengl
14 : log entry4 i

15 : log entry5

Vi
: log entry6 Srd T

Parameter Value\ |
Anomaly Detection

s Vi I
kz model

A vips -

__-: _ LIogkeyk

Dlagnosls
[Update —

model if

false positive

arse

[ heck
vector parameter

value vector
[tais virs. .1

Figure 1: DeepLog architecture.

PCA | IM TFIDF | N-gram | DeepLog
false positive (FP) 277 2122 | 95833 1360 833
false negative (FN) | 5400 | 1217 | 1256 739 619

Table 4: Number of FPs and FNs on HDFS log.

2VIS UONINIT



Distributed Trace Analysis o
Using LSTMs % .

oGenerate Synthetics Traces . . . .
Transform traces with service names into sequences of integers

OPENSTACK_SEQUENCE =[ Train dataset
('keystone', 1.0, 'authenticate user with credentials and generate auth-token’), 0 span_list
(‘nova-api', 1.0, 'get user request and sends token to Keystone for validation’), [‘keystone', trace_id
('keystone', 0.2, 'validate the token if not in cache’), "nova-api’, 0 [3, 5,5,8,9,8,6, 7,6, 2,6, 6,1, 6]
(‘'nova-api', 1.0, 'starts VM creation process'), ‘nova-api’, 1 [3, 5,5,8,9,8,6, 7,6, 2,6, 6,1, 6]
('nova-database’, 1.0, 'create initial database entry for new VM'), ‘nova-database' 2 [3, 5,5,8,9,8,6,7,6,2,6,4,6,1, 6]
('nova-scheduler’, 1.0, 'locate an appropriate host using filters and weights'), ‘nova-scheduler' 3 [3, 5,5,8,9,8,6,7,6, 2,6, 4, 6, 6]
('nova-database', 1.0, 'execute query’), 'nova—database',y 4 [3, 5,3,5,8,9,8,6,7,6,2,6,6,1, 6]
(‘nova-compute', 1.0, 'dispatches request’), . - . ce -
('nova-conductor', 1.0, 'gets instance information'), vzgz:fzgnmdpuuct:eo,rlv 95 [3, 5,5,8,9,8,6,7,6,2,6,6,1, 6]
('nova-compute', 1.0, 'get image URI from image service'), ‘nova-compute’, 96 [3, 5,3,5,8,9,8,6,7,6,2,6,4,6, 6]
('glance-api', 1.0, 'get image metadata’), ‘glance-api', 97 [3, 5,5,8,9,8,6,7,6,2,6, 6,1, 6]
('nova-compute', 1.0, 'setup network’), ‘nova-compute, 98 [3, 5,5, 8,9,8,6,7,6,2,6,4,6,1, 6]
('neutron-server', .5, 'allocate and configure network IP address'), ‘nova-compute’, 99 [3, 5,5,8,9,8,6,7,6,2,6,4,6,1, 6]
('nova-compute', 1.0, 'setup volume'), ‘cinder-api', [100 rows x 1 columns]
(‘cinder-api', .75, ‘attach volume to the instance or VM), ‘nova-compute]]
(‘nova-compu#, 1.0, 'generates data for the hypervisor driver') Test dataset
1
Cache Simulation: Probability of execution = 75% Trace #0 span_list
trace id
0 [3, 5,5,1, 9, 8,6, 7,6,2,6, 6,1, 6]
1 [3, 5,5, 8,9,8,6,7,6,2,6, 4,6, 6]

# Padding is done using using keras.preprocessing.sequence.pad sequences(sequences, ...)
# maxlen: Int, maximum length of all sequences.

eEncodmg traces sequences

The enCOdlng scheme pads each sequence of mputs with zeros, up to a pre- # fr‘unclating: 'pre' remove values at the begiinr.n'ng j.’r'om SEQUEYIICE'S .iar‘ger than maxlen
defined | h # padding="pre' pads each trace at the beginning with a special integer (e.g., 8)
efined maximum ength. X = pad_sequences(X, maxlen=self.trace_size, dtype=np.intlé,

e This allows to pre-allocate a chain of LSTM units of a specific length truncating='pre’, padding='pre', value=PADDING_SYMBOL_INT)|
e Wealso pass information about the sequence lengths. This is important for not Padding with symbol 0

treating the zero padding as actual inputs, and from injecting the error signal at

the right unit in the sequence during back propagation. [[003...61 6]
Hot encoding [00 3. 6 1 6]
e Aone hot encoding enables to represent categorical variables as binary vectors. [035. 6 1 6]
e Categorical values are mapped to integer values.
e  Each integer value is represented as a binary vector that is all zero values except {g g : . 2 i 2 Hot encoding not shown

the index of the integer, which is marked with a 1. 035 . 61 6]]

Tensorflow tutorial: Code available at: https://github.com/jorge-cardoso/aiops_practice

Keras tutorial:
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https://github.com/campdav/text-rnn-tensorflow
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Distributed Trace Analysis 4
Using LSTMs %:% Jﬁfi’f.:‘,imﬁ

e Shift traces left

X [[003 ... 61 6] # X.shape and y.shape are (n_traces, self.trace size) y [[005 ... 16 0]
[0O03 ... 61 6] y = np.roll(X, -1, axis=1) [00O5 ... 16 0]
[035 ... 61 6] [055 ...1 6 0]

# Pad j array where X array has zeros
X == = DEFAULTS[ ' paddi bol®
003 ... 61 6] ype== el [ pedding symbol] [005...16 0]
[035 ... 61 6] # Write the DEFAULTS[ 'padding symbol'] at the last position of the shifted array [055 ... 16 0]
[035 ... 61 6]] y[:, -1] = DEFAULTS['padding symbol’] [055 ...16 0]]

e Create the DL model

def build model(self, input dim=@):

""" Creates an LSTM model (for sequence to sequence mapping)

wun

Keras and Tensorflow
e LSTM network

model = Sequential() o dropout layer of 0.2 (high, but necessary to

model.add(LSTM({186, dropout=8.2, recurrent_dropout=6.2, return_sequences=True, avoid QUiCk divergence)
input_shape=(self.trace size, input_dim))) e Softmax activation to generate probabilities

model.add(LSTM(18@, dropout=0.2, recurrent_dropout=0.2, return_sequences=Tru over the different Categories

model.add(LSTM(188, dropout=8.2, recurrent_dropout=0.2, return_sequences=True)) e Becauseitis a classification problem loss

# A Dense layer is used as the output for the network. calculation via categorlcal cross-entropy

model.add(TimeDistributed(Dense(input dim, activationz'softmax'))) compares the output pl’ObabI'ItIES against one-
if self.gpus > 1: one encoding

model = keras.utils.multi_gpu_model(model, gpus=self.gpus) o ADAM optimizer (instead of the classical
model.compile(loss='categorical crossentropy', optimizer='adam', metrics=['accuracy']) stochastic gradient descent) to update WEightS

return model
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Distributed Trace Analysis
Using LSTMs

e Train the model

50/85
85/85
Epoch
# The X _troin.shape is (n_traces, self.trace size, self.max n_span_types) 50/85
# e.g. (21251, 28, 33) 85/85
self.model = self._build_model(input_dim=X.shape[2]) Epoch
50/85

self.model.fit(X, y, epochs=self.epochs, batch_size=self.batch_size, shuffle=True, 85/85 [

validation_split=self.validation_split)

- 1s 9ms/step - loss:

- 1s 6ms/step - loss:

Epoch 5/10@

56/85
85/85 [

1s ems/step - loss:

Epoch &6/100

e Test traces

X_test = self._pad_traces(X_test)
self. traces_to_binary(X_test)

X_test_bin =

# e.g., X test binf@][{8] = array([1., 6., 0.,

8., 6., 8., 0., 8., 6., 6., 8., 8....], dtype=int32)

yhat = self.model.predict(X_test_bin)

#e.g.,
# yhat.shape
# yhat[a][a]

(n_traces, self.trace_size, self.max_n_span_types)
[9.9969806e-81, 2.2644450e-05, 3.9419938e-86, 2.8681773e-89, ... ]

self._identify_anomalies(X_test, yhat, prob=self.thresheld) # idx -» True/False

ULTRA-SCALE AIOPS LAB

] - 1s 8ms/step - loss:

Test Traces
X [[0035510986

[003558986
X[0]: [00 355198

[[0, 0.2625601], [1,
[0, 0.8912414], [9,
[0, 0.9656691], [0,
[0, 0.95213455], [0,
[0, 0.60129535], [0,
[0, 0.82936114]]

X[1]: [0 035580938

[[0, 0.2625601], [1, O
[0, 0.8912414], [0, O
[0, 0.9638574], [0, O
[0, 0.9435249], [0, O
[1, 0.3207201], [1, O
[0, 0.8390282]]

trace_id 0 indices [4]
trace _id 1 indices []

- ETA: 8s - loss: 2.2797 - acc:

- ETA: @s - loss: 2.2468 - acc:

- ETA: ©s - loss: 2.191@ - acc:

ETA: ©s - loss: 2.180@ - acc:

8.31568

2.2738 - acc: ©.3140 - val_loss: 2.2466 -
8.3125

2.2379 - acc: ©.3125 - val_loss: 2.1988 -
09.3125

2.1747 - acc: ©.3125 - val_loss: 2.8961 -
@9.3125

2.8711 - acc: ©.3125 - val_loss: 1.9812 -

762661 6]
762646 6]]

6762661 6]

0.38167596], [0,
2.394792e-05], [0,
0.9686248], [o,
0.94981205], [0,
0.5417027], (o,

6762646 6]
.38167596], [0, O

.9665326], [0,

.46595544], [0,

.758435671,
946942031,
96669717,
.93016535],
68760417,

ooooo

.75843567],

.9302344], [0, O.
0.9627945],

.9405963], [0, O.
0.64980185],

94507533] ,

92075515] ,

val_acc:

val_acc:

val_acc:

val_acc:

9.3125

8.3125

8.3125

9.3125



Distributed Trace Analysis
Using LSTMs

e Identifying Anomalous Traces Sequences

def _identify_anomalies(self, X, yhat, prob):

mark anomalies based on the difference between X, y, and yhat

Test Trace

i.e.,
Input X =[0035519867626%616]
top k = 5
top_k_yhat = np.argsort(yhat, axis=2)[:, :, -top_k:] Shifted X = [0 0 5519867626616 0]
top_yhat = np.argmax(yhat, axis=2)
Prediction
y = _shift_traces_left(X) yhat = [0055129867626616 0]
X[i]: Input: [ @ 8 8 8 6 @ @ B 8@ 8181817 5 5 7 7 6 6]
y[i]: Output: [e @ e 6 @6 8 6 6 @ ©1817 5 5 7 7 6 6 @] X[0]: [003551986762661F6] =
yhat[i]: Predicted: [@ @ © © @ © 6 @ 6 6 01017 5 5 7 7 6 6 @] [10, 0.26256011, [1, 0.38167596], [0, 0.758435671,
[0, 0.8912414], [9, 2.394792e-05], [0, 0.94694203],
[0, 0.9656691], [0, 0.96862481, [0, 0.9666971],
[0, 0.95213455], [0, 0.94981205], [0, 0.93016535],
[0, 0.60129535], [0, 0.5417027], [0, 0.6876041],
y = DTA_LSTM._ shift_traces_left(X) [0, 0.82936114]]
for i in range(len(X)): Error at index [4]

rp = self._compare_traces(y[i]. yhat[i])
self.rank_prob.append(rp)

if self.explain:
print("X[{}]: {} = {}".format(i, X[i], rp))

return self.rank_prob
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Distributed Trace Analysis
Why is trace analysis challenging?

Many “Hidden” Software “Patterns” which affect running systems...Circuit breaker, concurrency and parallelism,
priority queues, publisher-subscriber, bulkhead, etc.

n_tries = 3
while True:

1. Retry pattern

Application Hosted service try:
Pl o S d gxeczteOPeration() # Success T1: A1 B’ C, D, E’
rea
except TimeoutException: T2: A; B! Ca C7 D7 E:
Q if n_tries == 0: # give up T3:A,B,C,C,C,D,E,
—w00—— raise Failure
else: T4 A1 B! Ca Ca C! Z
sleep(1000) # Wait until retrying the call
2. Cache-Aside pattern
v = cache.get (k)
if v == None: # Check if the item is in the cache T1: A, B, C, D, E,
v = store.get(k) # If not in cache, read from data store .
cache.put(k, v) # Put a copy of the item into the cache Tl A’ C’ D’ E’
3. One-to-many subcalls
@app.route('/servers/<int:user_id>/<int:number>') .
def create(user_id, number): TL A’ B’ C’ D’ E’
for i in range (number) : TZZA, B, C, C, D, E,
authentication (user_id) T3 A B C C C D E
# Call remote microservice to create a server R
rpc.create_server () T4: A, B, C, C, C, C, D, E,

ULTRA-SCALE AIOPS LAB



Distributed Trace Analysis

Why is trace analysis challenging?

More design patterns
Design Principles: Fan-In vs Fan-Out
Lazy loading (also called on-demand loading) is an optimization

technique for the online content, be it a website or a web app

= Chunking is a specific feature of the HTTP 1.1 protocol. Here, the
meaning is the opposite of that used in memory management. It

refers to a facility that allows inconveniently large messages to be

broken into conveniently-sized smaller "chunks"

Example of a Solution to Excessively High Fan-Out

Inthis example, Module Zhas | 0.7
too many subordinate modules. |

[Module J[Module {Module |[Module |[Module |[Module | Module [Module ] Module
{ | c 4 D § E § F G H § |

Module Z

I

The prohlemis solved by
introducing module X to factor out |
some of the subordinate modules. |

{Module] [Module § Module]
x [_H I

‘Module [Module | Module | Module |
| D e gt E |6

IModule | Module | Module
i A 1 B §
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Distributed Trace Analysis
Why is trace analysis challenging?

Inspired by Facebook Canopy design
( )

Span Model
Canopy: An End-to-End Performance * Introduced in Google Dapper in 2010, base model in Zipkin
Tracing And Analysis System » Suitable to describe synchronous REST operations
+ Every span consists of 4 events: “client send”, “server receive”, “server
Jonathan Kaldor'  Jonathan Mace*  Michal Bejda’  Edison Gao'  Wiktor Kuropatwa Y oy .y
Joe O'Neill'  Kian Win Ong'  Bill Schaller'  Pingjia Shan'  Brendan Viscomi send”, “client receive
Vinod Venkataraman Kaushik Veeraraghavan Yee Jiun Song'
Facebook *Brown University . . .
- - Limitations of span model

tinuous d
user-sg

» Non-synchronous execution models such as queues and asynchronous

This paper |mn'u|\4 anopy, Facebooks end-ta-end perfor.

S i A s ooy executions can not be described as span trees
_ * Fine-grained metrics are hard to express, e.g. RPC response handler can
v N T Y read the data from network then enqueue it and then process — queue time

is not taken into account
g Trace g * Multithreaded processing, like spawning of a group of threads, then joining
‘ "“3'"‘“‘ Modd > them requires additional tags to differ from sequential processing.

Performance  Feature
Fngineers  Lamhbdas

Evolution of trace model in Facebook*

a) Started with Dapper span model

b) Idle (blocked) time is taken into account

c) Internal queue is taken into account

d) Client-queue metrics for AJAX processing are added

e) Request and response are completely decoupled, trace is represented
as set of events with causal relations

Any Facebook  Dataset
Engmeer Queries

CQuiery Resuits, Visualizations, Graphs, elc.

(b) Canopys tailer aggregates events (5}, constructs model-based
traces {(3)), evaluates user-supplied feature extraction functions (@),
and pipes output to user-defined datasets ({0)). Users subsequently run
queries, view dashboards and explore datasets ((0,02).

Blo(k A

. . ) { e
Facebook uses end-to-end tracing for all services, from data-center to Figure 1I: Evolation ofC:mop)smerumematmnnndmndel for RPCs and network communication (cf. $5.3)
mobile applications. As of 2017 the system processes 1.3 billion traces per
day, each trace contains up to several thousands of events.

ULTRA-SCALE AIOPS LAB


http://cs.brown.edu/~jcmace/papers/kaldor2017canopy.pdf
http://cs.brown.edu/~jcmace/papers/kaldor2017canopy.pdf

Distributed Trace Analysis
Using Multimodal Deep Learning

» Monitoring and Incident Detection

Anomaly detection in large-scale system is widely

studied

IT monitoring systems typically use application logs

and resource metrics to detect failures

— Distributed tracing is becoming the third pillar of
microservices observability

— Logs and metrics were previously investigated
(see [1-4])

» Single and Bi-Models

Use of single and bi-models to capture traces as
sequences of events and their response time

Use sequential model representation by utilizing long-
short-term memory (LSTM) networks

» Results

ULTRA-SCALE AIOPS LAB

Detect anomalies in Huawei Cloud infrastructure
The novel approach outperforms other deep learning
methods based on traditional architectures

QD

-
HuAwel

Idea: represent distributed traces as sequences of
events and their response time

Long Short Term Memory (LSTM)

LSTMs [1] are models which capture sequential data by using an
internal memory. They are very good for analyzing sequences of
values and predicting the next point of a given time series. This
makes LSTMs adequate for Machine Learning problems that involve
sequential data (see [3]) such speech recognition, machine
translation, visual recognition and description, and distributed
traces analysis.

[1] Hochreiter, Sepp, and Jirgen Schmidhuber. "Long short-term memory." Neural computation 9.8
(1997): 1735-1780.

[2] Sequential processing in LSTM (from:

[3] LSTM model description (from Andrej Karpathy.

S. Nedelkoski, J. Cardoso, O. Kao, Anomaly Detection from System Tracing Data using Multimodal Deep Learning, IEEE Cloud 2019, July 3-8, 2019, Milan, Italy.
S. Nedelkoski, J. Cardoso, O. Kao, Anomaly Detection and Classification using Distributed Tracing and Deep Learning, CCGrid 2019, 14-17.05, Cyprus.
J. Cardoso, Mastering AlOps with Deep Learning, Presentation at SRECon18, 29-31 August 2018, Dusseldorf, Germany.


http://colah.github.io/posts/2015-08-Understanding-LSTMs/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Distributed Trace Analysis
Bi-modal Approach

= Aspan (event) is a vector of key-value pairs (k;, v;)
describing a characteristic of a microservice at time
ti

= Atrace T is an enumerated collection of events (i.e.,
spans) sorted by timestamps {ey, ey, ..., e;} [16]

= An event contains
— traceid, eventid, parent id
—  protocol, host ip, status code, url
— response time, timestamp
— and much more

»= Trace can have different lengths
- T,= {eg,ef,ef, ...,eip} and T, = {eg,eg,ef, ...,el.q} are
different (e; and e, are swapped) but originate from
the same activity
— Possibly caused by concurrent systems
= Label each span as
— Label = concat(url, status code, host ip)
— We have N, labels

= Pad trace vector up to T; or truncate traces

ULTRA-SCALE AIOPS LAB

Trace Structure (sequence of events) and
Response time (duration)
e.g., Service 11 — Service 21; duration = 12ms

1
Service 11 J Service 27 J Service 31 l

Eay En

- oo

B Tracing I_]E 1

Example for a Trace Example for an Event

[ Eia [ Eo1 [Evz | Esi B ronsetime

| Anomaly Detection |

Fig. 1. Overall system architecture showing communication between services
and the three system observability components. We combine two modalities of
tracing data in a single model for anomaly detection in cloud infrastructures.

= Trace structure
— Trace one-hot categorical encoding [17]
Dy = (N, Ty, Np)
N, = # traces, T; = max length, N; = # labels

Response time
— Min-max scaling [0, 1]
DZ = (Nt'Tlll)
— Last dimension is the response time (duration)



Distributed Trace Analysis
Single-Modality LSTM (1)

=  We model anomaly detection in traces as a sequence-to-

sequence, multi-class, single-label problem RTAD ™00 | [ o6 | [_ow |-[_ o |
— Use multiple possible labels for one trace that are not output = R e — 2 e T
. e = & = me = £ ime = i
) mutually_excluswe. _ SAD 5o o] [0 0 1] [00,.1,.0]~[10.0.0]
The partial trace can have multiple subsequent events output o
= |LSTM network architecture [ LSTM J—b{ 15T ]—b[ LSTM ] [ LSTM ]
—  SAD = Structural Anomaly Detection (D,) o o Y 1
= Model input 'r_.T_-_____§ta_'£k_HE_|§!E£f§ ______ T":
- T, =1{ey €q,..,€
2 { L Tl} LSTM [——b] LSTM J =[ LSTM ] [ LSTM ]
= Model output % % ¥
- {30, €1, -ry ei_l} Hy H, H, Hy
— Probability distribution over the N; unique labels from L, [ 5T J_,[ et J_,[ LT ] [ LSTM ]
representing the probability for the next label (event) e; in Hp Co ¥ Hy G f G
the sequence
_SADt 100,.1.0| [01.0.0] [00.0.1||00.1.0]
npu § = me = ime = e =
= Compare the predicted output against the observed label T — — — — ——
= input {eo, €1, €1} > oUtpUL {ey, o, er, 10} MO on ] [om ] [ow ][ on |
— The output is shifted by one event and padded
= Update network weights using categorical cross-entropy Fig. 2. Single-modality LSTM network architecture
loss minimization via gradient descent SAD = Structural Anomaly Detection (D)
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Distributed Trace Analysis
Single-Modality LSTM (2)

= Evaluate if trace T;.g: IS anomalous

Teest = {e0.€1, ... e} ¥ o5 | [ow | [_ow ][5 ]
output
= The network calculates time = 0 time = 1 time = 2 time = T,
—  Probability distribution P S?Dt | 0.1,.0,..0 | | 0,0,.0,.1 | | 0,0,..1,..0 || 1,0,..0,..0 |
— outpu
P = {lo:po, ll:pll ...,th_:pNt} P 4
— Probability of a label of L to appear as the next label value
in atracey PP [ LETM J—b{ LSTM ]—b[ LSTH ] [ LSTM ]
= The output layer has a softmax function r—I ——————————————— | — t——,
N e . “ " [ Stack up layers |
— A generalization of the logistic function that “squashes” a R T T 3
K-dimensional vector z of arbitrary real values to a K- (o f— 5w J—s{ 5 ) =3
dimensional vector o(z); of real values in the range [0, 1] ¥ ¥ ¥
that add up to 1 Ho Hy Ha B,
= Distribute the probability over labels B e e
_ ezi HL'IJ Co » Hl' Cl HCJ Ct
0(2)i =sx—7
Zj=1 e SAD
= Such that ot 100,.1.0| [01.0.0] [00.0.1||00.1.0]
_ N _ time =0 time = 1 fime =2 timte = Ty
Zi. l.pi . 1 RTAD [ o | [ o2 | [ o0 |+ 02 ]
= Classification input
— Accepttop-k predicted labels as behaviorally correct
— Otherwise, report an anomaly along with the events which Fig. 2. Single-modality LSTM network architecture
contributed to the decision SAD = Structural Anomaly Detection (D,)
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Distributed Trace Analysis
Single-Modality LSTM (3)

= We model response time anomaly detection in traces as a

regression task RTAD ™ o2s | [ oas | [ ow |-[ o ]
- E.g., predict the duration of a span e time = 1 rime = 2 time = T,

= LSTM network architecture SAD 93, 0,0 [0.00,.1] [00..1,.0]~[10.0.0]
— RTAD = Response Time Anomaly Detection (D,) output ¥

— Linear (i.e. identity) activation function
u ApproaCh [ LSTM J—b{ LS{'-’I ]—b[ I.SITM ] [ LSTM ]

— Aeach timestep time = i with {rty, rty,...,rt;_1}

. . I
—  Predict the response time rt; of the next event L-T------_§ta.'2|‘_':'l?.|§1?r§ ...... 3
. Updz?lte network weights using mean squared loss via vy BN vy BRI vy IR grevy
gradient descent Y % ¥
= Detection Ho H; H, h,
— Compute the squared error distance B e e
2 . . [y He, C
— error; = (rt; —rt?)", where r¢? is the predicted value at ’—T Ho. Co H Gy T_‘ T—“ ‘
timestepi_ _ , _SADt 1,.0| [o01.0.0| [00.0.1][[00.1.0]|
— errors are fitted by a GaUSS{an N(0,0°) inpu — — e 2 p—
— report trace as anomalous, if squared error between RTAD | on | | 3 | | o1 |[ o7 |
prediction and input at time i is out of 95% confidence input : : ' '
interval

Fig. 2. Single-modality LSTM network architecture
RTAD = Response Time Anomaly Detection (D,)
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Distributed Trace Analysis
Multimodal LSTM (1)

= Explore the correlation between trace structure and = Detection
response time — Performed by comparing the output element-
— Improve accuracy/recall wise with the input for both modalities using
= LSTM network architecture the strategy developed in the single-modality
— Concatenation of both single-modality architectures
architectures in the second hidden layer — Anomaly source: 1) response time, 2)
= Approach structural, or 3) both

- |nput [{80, €1, .y eTl}, {rto, T'tl, ey T'tTl}] i
- Output [{31, ey eTl, ’! O’},{Ttl, rtz, ey TtTl, 0}]

n Update network We|ghts using time =1 time = 2 time =T, end of sequence
~ Sum mean squared error [ov.o.0] [ oas ] [oo.o.1] [ os |[oo.r.0][ 03 ] [10..0.0] | 0 |

— Categorical cross-entropy =

LSTM LSTM™ LSTM e LSTM
5 s i s
H |

SAD (D;)and RTAD (D,) _t '+ f )
LSTM ]—>[ LSTM ]—>[ LST™M ] [ LST™M ]

H, t ]
H, | H, !

| I 1 1 1
[ LSTM H LSTM H LSTM ] [ LST™M ]Ht concatenation [ LST™M H LSTM H LSTM ] [ LSTM ]
,_T Ho, Co T Hy, €y L| HyC b _|H“ Ce ,—T T L\ L|

[o0.0, 1.0 | [o1, 0.0 | [oo 0.1 | [o.0, 1.0 | | 03 | | 0.24 | | 05 | | 03 |

time = 0 time = 1 time = 2 time = T, time = 0 time = 1 time = 2 time = Ty

Fig. 3. Multimodal LSTM neural network architecture for anomaly detection from complete tracing data
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Distributed Trace Analysis
Evaluation

» Datasets

= System under study has 1000+ services running production Openstack-based cloud [19]
= Traces collected using Zipkin [16] over 50 days: >4.5M events; 1M traces

» Evaluation Platform
= Python using Keras, model with batch size = 512, learning rate of 0.001, and 400 epochs
= PC using GPU-NVIDIA GTX 1060

» Preprocessing
= To avoid outliers, select labels that appear more than 1000 times (105 unique labels)
= Distribution of trace lengths is imbalanced
—  >90% have lengths <10 events
= Select only 1000 samples of each trace length
— Requires <1% of all the recorded data
— Efficient and fast for training
= For robustness, we also select the traces with lengths between 4 and 20

» Performance

= Time to train multimodal LSTM on 1% traces (1M): approx. 30 min
= Prediction time per trace: <50 ms
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Distributed Trace Analysis
Evaluation

Best results in terms of accuracy of structural anomaly

detection are achieved using the multimodal LSTM predictions

Accuracy when the anomaly is injected in traces with
different sizes
1.0 = ['multimodal’, ‘dense'] 97% 95% 96% 95% [ 1.0 PP .
= [‘multimadal’, ‘stm’] Multimodal Single-model N “\iﬂ':‘—'L&*ﬂ’ f«:;:_‘_’j:-:—:':l—' et ke [3,5]
['singletask’, 'dense'] LSTM LSTM 0.9 \‘\\ﬁel:', :,\‘ . N N
0.8 { WM ['singletask’, 'Istm'] \\\\l’;/ \\\\\ ’:,/f_—-—f\\\\\ N - /’ \
oa% 0.8 A \\)“,/ \\\‘\‘{:—/:"\“‘, k=1 /‘/ ‘\\‘ /A
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Fig. 6. Comparison of the accuracies of two best models, evaluated for each
Single-and multimodal modality LSTM achieves a comparable trace length 4 — 20 and k € {1, 3,5}
accuracy, while single- and multimodal dense architectures . . .
y ng Multimodal slightly outperforms the single-modality
have low accuracies .
approach in 9 out of 15 trace lengths fork =3 and k =5
Multimodal LSTM achieves a better accuracy than the single-
modality LSTM for k=1, otherwise it is similar

Significantly better results are achieved for k = 1 for
almost all of the trace lengths
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Evaluation

For SAD, significantly better performance of the multimodal For RTAD, single-task models have low performance
approachfork =1 than those of both multimodal models
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Fig. 7. Comparison of the accuracy of the two best models, evaluated for ) ) ) )
different positions 0, 20 of the injected anomaly and k € {1,3,5}. Fig. 8. Response time anomaly detection accuracy comparison of the
multimodal LSTM and the baseline deep learning architecture evaluate for

different trace lengths.
Slngle-modallty !_STM achieves a gomparable accuracy, while Multimodal approach achieves a higher accuracy for
single- and multimodal dense architectures have low RTAD
accuracies
Models have high accuracy even when the length of the
Multimodal LSTM achieves a better accuracy than the single- trace increases. This is because the LSTMs are able to
modality LSTM for k=1, otherwise it is similar learn long-term dependencies in sequential tasks
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