
Intelligent Cloud Operations

Part 4. Distributed Tracing Technologies

Definition (Gartner) [AIOps]

AIOps platforms utilize big data, modern machine learning and other advanced analytics technologies to directly
and indirectly enhance IT operations (monitoring, automation and service desk) functions with proactive, personal
and dynamic insight.

Prof. Jorge Cardoso

E-mail: jorge.cardoso@huawei.com

Intelligent Cloud Operations/SRE Dept.

Ireland and Munich Research Centers

2020

ULTRA-SCALE AIOPS LAB 1

OpenStack

Troubleshooting

https://access.redhat.com/documentation/en/red-hat-openstack-platform/8/paged/architecture-guide/chapter-1-components

Troubleshooting

1. Find root cause issues in requests across several services / hosts

2. Benchmark different systems and identify performance bottlenecks

3. Reconstruct the workflow of service-to-service communications

ULTRA-SCALE AIOPS LAB 2

Troubleshooting

Workflow for VM Creation

https://docs.openstack.org/install-guide/get-started-logical-architecture.html

Nova client-> Keystone: Get token (1)

Keystone-> Token Store: Save token (2)

Token Store--> Keystone: (3)

Keystone-->-Nova client: Auth token (4)

Nova client-> Nova-api: launch instance (5)

Nova-api-> Keystone: Auth token (6)

Keystone->Nova-api: Authentication (7)

Nova-api->MQ: req. instance

Nova-scheduler->MQ: Subcribe inst. req.

Nova-scheduler->MQ: to launch instance

Nova-compute->MQ: New instance request

Nova-compute->MQ: Nova-conductor to fetch instance info

Nova-conductor->MQ: Subcribe new instance request

Nova-compute->MQ: Subcribe new instance request

Nova-compute-> Glance-api: get Image URI

Glance-api->-Nova-compute: Return image URI

Nova-compute->Neutron-server: allocate network

Neutron-server->MQ: Request IP and L2 config

Neutron-DHCP-agent->MQ: read IP

Neutron-DHCP-agent->dnsmasq: allocate IP

dnsmasq->Neutron-DHCP-agent: reply

Neutron-DHCP-agent->MQ: reply IP

Neutron-server->MQ:read IP

Neutron-L2-agent->MQ: Request L2 config

Neutron-L2-agent->libvirt: config L2

Neutron-L2-agent->MQ: reply L2 config

Neutron-server->-Nova-compute: net info

Nova-compute->Cinder-api: get volume data

Cinder-api->Keystone: validate token

Keystone-->-Cinder-api: updated auth headers with roles and acl

Cinder-api->Nova-compute: return volume info

Nova-compute->libvirt: Start VM

Nova-compute->libvirt: Port update

Nova-compute->MQ: get instance info nova-conductor

Nova-conductor->MQ: subcribe new instance request

Nova-conductor->MQ: publish new instance state

Nova-compute->libvirt: pass volume info

VM->neutron_metadata_proxy: 169.254.169.254

neutron_metadata_proxy->nova-api-metadata: add uuid into X-headers

nova-api-metadata->neutron_metadata_proxy:

neutron_metadata_proxy->-VM-instance: return metadata

Nova client->Nova-api: Poll instance state

Nova-api-> Nova client: Return instance state

https://sequencediagram.org/

ULTRA-SCALE AIOPS LAB 3

Troubleshooting

Workflow for VM Creation

Distributed Tracing

1. Provides developers a detailed view of requests as they flow across a

distributed system

2. Identifies which microservices are involved in processing a request

3. Trace the path of a request to generate a transaction

4. Localize which microservice in a path (trace) is anomalous

ULTRA-SCALE AIOPS LAB 4

Tracing Services/Systems

Concepts

Figure. A trace is composed of spans. The root span is A. Spans

B and C are children of span A.

Trace

▪ A transaction which captures the path that a

request follows across a distributed system. It is

tree or a directed acyclic graph (DAG) of spans

Span

▪ Spans represents an individual unit of work done

in a distributed system. Spans are related to one

another through a parent-child causal

relationship.

Root Span

▪ The first span in a trace. The root span duration

often represents the duration of the entire trace

Context propagation

▪ Span can be correlated together by propagating a

context across microservices. The context

contains a request id which identifies the trace to

which it belongs.

Span Content

▪ Operation name. API call that created the span

▪ Start/finish timestamp: Start and finish time of the

operation

▪ Tags: Information injected into the span

▪ SpanContext: Span metadata transported across

span boundaries

ULTRA-SCALE AIOPS LAB 5

Tracing Services/Systems

Concepts

Figure. The causal and temporal relationships between five

spans in a Dapper trace tree (from Dapper, a Large-Scale

Distributed Systems Tracing Infrastructure)

Context Propagation

1. Create a new request_id when a user request is

received by a service at the boundary of the distributed

system

2. Store the request_id in a local context object and other

metadata

3. Propagate the context across the distributed as the user

request is processed

4. Service create spans and place key-value pairs

describing the service/operation processing inside, along

with the request_id

Service A / Span 1

Service B / Span 2 Service C / Span 3

1. CS (Client send)

2. SR (Server receive)

4. CR (Client receive)

3. SS (Server send)

time

▪ Client Send (CS): timestamp when client initiated the request

▪ Server Receive (SR): timestamp when server receives the request

▪ Server Send (SS): timestamp when server sends back the response

▪ Client Receive (CR): timestamp when client receives back the response

ULTRA-SCALE AIOPS LAB 6

Commercial/Open Source Solutions

Tracing Services Systems, and Standards

Fig. Amazon AWS X-Ray

Fig. Google Cloud Trace

Fig. OpenTracing

▪ Tracing Services

‒ Google Stackdriver (cloud.google.com/trace)

‒ Amazon AWS X-Ray (aws.amazon.com/xray)

‒ Lightstep (lightstep.com)

▪ Tracing Systems

‒ Twitter Zipkin (zipkin.io)

‒ Uber Jaeger

‒ OSProfiler

‒ Pivot Tracing (pivottracing.io)

▪ Tracing Standards

‒ opentelemetry.io

‒ OpenTracing

‒ OpenCensus

[1] http://opentracing.io/documentation/

[2] https://github.com/opentracing/specification/blob/master/specification.md

OpenTracing provides a consistent, expressive, vendor-neutral

APIs for popular platforms [1]

2019: The open source

distributed tracing projects

OpenCensus and OpenTracing

were merged into anew project

called OpenTelemetry

ULTRA-SCALE AIOPS LAB 7

Tracing Services/Systems

Stackdriver, X-Ray, Jaeger

Stackdriver (Google) Characteristics

▪ Support for Python and gRPC

▪ Support Zipkin traces with forwarding to Stackdriver

▪ Easy to install: start Docker image on Compute Engine and

view traces of a sample app within a few of minutes

X-Ray (AWS) Characteristics

▪ Support for OpenCensus but not OpenTracing

▪ Support for Python, Node, Java, and .NET apps (X-Ray

SDK pushes metrics to a local collector).

▪ Sampling rates configuration based on different objects

(e.g. service types like EC2 or Beanstock)

Jaeger (Uber) Characteristics

▪ Supports OpenTracing

▪ Send traces to a local agent via UDP, who sends traces to a

collector

▪ Supports Cassandra for trace storage

ULTRA-SCALE AIOPS LAB 8

Tracing Services/Systems

Zipkin

Zipkin Characteristics

▪ Supports Cassandra, ElasticSearch, and MySQL

▪ Implementations in Java, Go, JavaScript, Ruby,

and Scala.

▪ Instrumented apps send data to a remote

collector via HTTP, Kafka, and Scribe

▪ Python libraries: py_zipkin, pyramid_zipkin,

swagger_zipkin, and flask-zipkin

Figure. Gantt view of individual

traces (tree of dependencies)

Figure. Example of how to add instrumentation when using

https://github.com/Yelp/py_zipkin

ULTRA-SCALE AIOPS LAB 9

Tracing Services/Systems

Jaeger/OpenTracing Key Constructs

1. Configure Tracer

import logging

from jaeger_client import Config

def init_tracer(service):

logging.getLogger('').handlers = []

logging.basicConfig(format='%(message)s',

level=logging.DEBUG)

config = Config(

config={

'sampler': {

'type': 'const',

'param': 1,

},

'logging': True,

},

service_name=service,

)

this call also sets opentracing.tracer

return config.initialize_tracer()

2. Initialize Tracer

tracer = init_tracer('service-name')

3. Create Spans

with tracer.start_span('span-1') as span1:

span1.set_tag(‘tag-1', ‘001')

with tracer.start_span('span-2', child_of=span1) as span2:

span2.set_tag('tag-2', ‘002')

4. Tracing HTTP requests

with tracer.start_span('get-python-jobs') as span:

homepages = []

res = requests.get('https://jobs.github.com/’

’positions.json?description=python')

span.set_tag('jobs-count', len(res.json()))

for result in res.json():

with tracer.start_span(result['company'],

child_of=span) as site_span:

print('Getting website for %s' % result['company'])

try:

homepages.append(

requests.get(result['company_url']))

site_span.set_tag('request-type', 'Success')

except:

print('Unable to get site for %s' %

result['company'])

site_span.set_tag('request-type', 'Failure')

Example extracted from https://opentracing.io/guides/python/quickstart/

Install Jaeger

$ docker run -d -p5775:5775/udp -p6831:6831/udp -p6832:6832/udp -p5778:5778 -p16686:16686 -p14268:14268 -p9411:9411 jaegertracing/all-in-one:0.8.0

$ pip install jaeger-client

ULTRA-SCALE AIOPS LAB 10

Tracing Services/Systems

Jaeger/OpenTracing Simple Application

https://github.com/jorge-cardoso/aiops_practice.git

$ python enrich_jobs_app.py

Getting website for moovel Group GmbH (REACH NOW)….

Unable to get site for moovel Group GmbH (REACH NOW)

Getting website for Form3: https://form3.tech/

Getting website for European Molecular Biology …..

Getting website for PollyEx: https://www.pollyex.com/

Getting website for Simmons Foods: ……

Input to process: [('Form3', 'Remote'), ('European Molecular…

Getting link: https://en.wikipedia.org/wiki/Remote_control

Getting link: https://en.wikipedia.org/wiki/Remote_Desktop_Protocol

Getting link: https://en.wikipedia.org/wiki/Remote_sensing

Getting link: https://en.wikipedia.org/wiki/Remote_viewing

Getting link: https://en.wikipedia.org/wiki/Remotely.....

Getting link: https://en.wikipedia.org/wiki/Remote_Desktop_Services

Getting link: https://en.wikipedia.org/wiki/Remote_control_animal

Getting link: https://en.wikipedia.org/wiki/Remote_procedure_call

Getting link: https://en.wikipedia.org/wiki/Remote_keyless_system

1. GitHub example of using tracing

3. Traces generated by the application

2. Output of the application

Code available at: https://github.com/jorge-cardoso/aiops_practice
Subdirectory: opentracing

ULTRA-SCALE AIOPS LAB 11

Tracing Services/Systems

Tracing for OpenStack

OSprofiler

▪ Generate a trace for API requests

▪ Categories: WSGI, RPC, DB calls

▪ Call hierarchy

▪ Time spent in each services/methods

▪ Projects/services

▪ Logging/debugging information

▪ Reports in HTML, JSON, DOT

▪ Data store: MongoDB, Redis, Loginsight,

Ceilometer, Monasca, OpenTracing

Uber

ULTRA-SCALE AIOPS LAB 12

Tracing for OpenStack

JSON example

https://docs.openstack.org/install-guide/get-started-logical-architecture.html

{
"data": [

{
"traceID": "9f2b949d93df62ba",
"spans": [

{
"traceID": "9f2b949d93df62ba",
"spanID": "ab6d567ee059e105",
"flags": 1,
"operationName": "db",
"references": [

{
"refType": "CHILD_OF",
"traceID": "9f2b949d93df62ba",
"spanID": "b3e1a556d2b93a7b"

}
],
"startTime": 1543274757701637,
"duration": 11414,
"tags": [

{
"key": "db.params",
"type": "string",
"value": "{}"

},

"logs": [],
"processID": "p1",
"warnings": null

},
{

"traceID": "9f2b949d93df62ba",
"spanID": "890dab5d58860e56",
"flags": 1,
"operationName": "db",
"references": [

{
"refType": "CHILD_OF",
"traceID": "9f2b949d93df62ba",
"spanID": "b3e1a556d2b93a7b"

}
],
"startTime": 1543274757715987,
"duration": 2501,

ULTRA-SCALE AIOPS LAB 13

Tracing for OpenStack

Enabling OSProfiler

▪ 1. Edit devstack/local.conf

▪ For Redis add

‒ enable_plugin osprofiler

https://git.openstack.org/openstack/osprofiler master

OSPROFILER_COLLECTOR=redis

▪ For Jaeger add

‒ enable_plugin osprofiler

https://git.openstack.org/openstack/osprofiler

refs/changes/67/611067/4

‒ OSPROFILER_BRANCH=refs/changes/67/611067/4

‒ OSPROFILER_COLLECTOR=jaeger

▪ 2. Run devstack/stack.sh

▪ 3. Prepare the CLI

‒ $ cd /opt/stack/devstack

‒ $ source openrc admin admin

▪ 4. Run the openstack commands by appending --os-

profile SECRET_KEY in the end of command for

example:

‒ $ openstack volume list --os-profile SECRET_KEY

‒ $ openstack image list --os-profile SECRET_KEY

More details

▪ https://github.com/openstack/osprofiler

▪ https://docs.openstack.org/osprofiler/latest/

▪ 5. To view the trace

▪ For Redis

‒ $ osprofiler trace show --connection-string

redis://localhost:6379 --html <trace-id> --out

<some_name>.html

‒ Copy that file to your local laptop and open in browser

‒ You can use JSON format as well

▪ For Jaeger

‒ Check Jaeger UI at http://VM_IP:16686

‒ Use the shortened traceid printed in the search box of

Jaeger UI and search for the trace

The OSProfiler library is an official project which enables to trace calls made to
OpenStack. This enables to understand the workflow supporting calls and
identify which types of calls are made inside OpenStack

Instead of having to go through the whole code and adding instrumentation
points near HTTP/RPC/DB calls, osprofiler is already integrated in all of the
main projects of OpenStack (Nova, Neutron, Keystone, Glance etc..).

https://github.com/openstack/osprofiler

ULTRA-SCALE AIOPS LAB 14

Distributed Tracing

References

Systems

► OpenZipkin: A distributed tracing system: https://zipkin.io

► AWS X-Ray Distributed Tracing System: https://aws.amazon.com/xray/

► Jaeger: open source, end-to-end distributed tracing: https://www.jaegertracing.io

Papers

► Dapper, a Large-Scale Distributed Systems Tracing Infrastructure: https://ai.google/research/pubs/pub36356

► Facebook Canopy: https://cs.brown.edu/~jcmace/papers/kaldor2017canopy.pdf

► So, you want to trace your distributed system? Key design insights from years of practical experience:

http://www.pdl.cmu.edu/PDL-FTP/SelfStar/CMU-PDL-14-102.pdf

Copyright©2019 Huawei Technologies Co., Ltd.

All Rights Reserved.

The information in this document may contain predictive

statements including, without limitation, statements regarding

the future financial and operating results, future product

portfolio, new technology, etc. There are a number of factors that

could cause actual results and developments to differ materially

from those expressed or implied in the predictive statements.

Therefore, such information is provided for reference purpose

only and constitutes neither an offer nor an acceptance. Huawei

may change the information at any time without notice.

Bring digital to every person, home and
organization for a fully connected,
intelligent world.

Thank you.

