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Indirect Hypervisor Anomaly Detection

Description

Background. Hypervisors create and manage virtual machines (VMs). As public clouds become critical infrastructures, the reliability of 

hypervisors and VMs becomes increasingly important. 

Problem. However, the reliability of the virtualization layer has not been properly addressed and mechanisms to evaluate its health are limited. 

For example, if a hypervisor faces a fail-stop or gray failure, the failure is propagated to all hosted virtual machines. This makes production VMs 

dependent on a single point of failure. 

Objective. The objective of this research is to detect anomalous hypervisors based on the behavior of the VMs they manage. 

Approach. Thus, to identify hypervisors that are experiencing failures, we developed the HAD (Hypervisor Anomaly Detection) algorithm. The 

objective is to preemptively migrate VMs to another hypervisor when the underlying hypervisor is faulty. HAD design was inspired on Attribution 

Theory. HAD observes and learns the behavior of metrics of individual virtual machine running on a hypervisor. When a VM exhibits a different 

behavior, HAD determines if the behavior is intrinsic to the VM or it is observed across several VMs. Finally, the algorithm attributes the observed 

behavior to either internal causes (e.g., a VM is stressed because it is running a CPU intensive application) or external causes (e.g., a hypervisor 

failure). 

Results. HAD is an online algorithm which achieves up to 14x speed improvement when compared to its offline implementation. It implements a 

new online algorithm for root-cause attribution. It was evaluated with metrics collected from VMs running on Azure cloud and an F1 score of >90% 

was achieved.
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Indirect Hypervisor Anomaly Detection

Detecting Faulty Hypervisors using VMs Metrics

Problem

▪ Hypervisors do not have effective methods to 

determine their health 

Virtualization failures affect VMs but 

cannot be observed directly

Indirect approach to detect hypervisor 
failures by monitoring VMs

▪ Insight. Resource saturation of VMs suddenly 
changes, within a window w, when an hypervisor 
is malfunctioning

TRL 5. Basic technological components are integrated with realistic 

supporting elements so it can be evaluated in test environment 

MAIN ACHIEVEMENT

HAD algorithm – quorum change-point detection

▪ Analyzes individual time-series, and uses change points and 
voting to decide whether there is an hypervisor malfunction

▪ Key results: F1 score 72% (data from 2 VMs); 80+% (3+ VMs)

ASSUMPTIONS & LIMITATIONS

▪ Datasets used for evaluation were collected from simulation 
environment, synthetic data generator and public sources

IAD: Indirect Anomalous VMMs Detection in the Cloud-based 
Environment. Jindal, A.; et al.. AIOPS 2020 International Workshop on 
Artificial Intelligence for IT Operations, Springer, 2021

Predictive Maintenance for Hypervisors

Migrate customers’ VMs before hypervisors 
completely fail

HOW IT WORKS

Benefits 

▪ Reduce the number of VMs crashes due to 
hypervisor failures in 80%

Method 1 (Change Points)

1. Treat time-series as univariate

2. Detect change points 

3. Vote to decide global changes

Method 2 (Isolation Forest)

1. Treat time-series as features

2. Detect significant changes

Method 3 (ECP E.Divisive)

1. Treat time-series as 

multivariate

2. Detect multiple change points

Fig. VM exhibit 

abnormal 

behavior when 

the hypervisor 

has technical 

issues

Fig. Several time-

series generated 

by several VMs 

running in the 

same hypervisor
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Problem Definition

Limited Health Monitoring

Background 

▪ Hypervisors manage virtual machines (VMs)

▪ As public clouds become critical infrastructures, the 

reliability of hypervisors becomes increasingly 

important

Problem

▪ For example, if a hypervisor faces a fail-stop or gray 

failure, the failure is propagated to all hosted virtual 

machines

▪ This makes production VMs dependent on a single 

point of failure. 

Approach

▪ Existing mechanisms to evaluate the health of 

hypervisors is limited

▪ Observes and learns the behavior of metrics of 

individual VM running on a hypervisor

• (next slide discuss the type of behavior monitored)

▪ When VMs exhibit different behaviors, determine if the 

behavior is intrinsic to VMs or it is observed across 

several VMs 

CloudAgent / Kafka

Hypervisor

(e.g., KVM)

Host
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Hypervisor

Host
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Hypervisor

Host
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IaaS Layer IaaS Layer IaaS Layer

failure 

propagation

CAD / HAD

Possible 

root
causes

Get metrics from 

SQL: I give the IP: 

192.168.5.11

1. All VMs running in 

the IP hypervisors 

(MEM, CPU, IO) OK

2. IaaS layer 

processes (CPU user, 

system, i/o)

3. Host IP: MEM, 

CPU, IO

I don’t know the SQL 

query, the db, the 

fields.
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Problem overview

VM1 VMN

virtualization platform

Platform monitoring

• BM host metrics: 

• CPU, network IO, disk IO

• per-VM metrics:

• total CPU utilization

• total memory allocation (virtual memory assigned to VM)

• network IO (packet transmitted and received, error count) 

per network card

• storage IO (bytes read and written, timings) per volume 

attached to VM

VM monitoring is not available

• VMs belong to customers and do not have 

monitoring agents inside

Compute service Monitoring

Hypervisor

Tenant networking

Storage

Proposed solution

By knowing the model of VMs’ behavior, check if it persists over the time. Simultaneous change 

for all VMs may indicate problems in the virtualization platform.

Challenges

• Type of VM workload is not known, it may even change during VM lifetime

• Many VMs could be in almost idle state

• VMs change over the time (some come, some go)

Problem statement

Failures of virtualization platform affect VMs but could not be observed 

directly.

Example 1: network storage throughput is affected by failure, causing 

latency in all disk operations in all VMs

Example 2: tenant networking is affected by packet loss in underlying 

vxlan tunnel, it cannot be measured directly on tunnel level, but affects 

TCP traffic between VMs.

m
e
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Hypervisor Health

Behavior Evaluation

Load generated on hypervisor affected the

VMs CPU utilization

Our experiments indicate that the best way to 

detect the failure of hypervisors is to monitor the 

CPU usage of VMs

Observation

▪ We analyzed the effect of overloading the host 

running the hypervisor 

▪ 4 metrics were monitored: CPU, MEM, Disk 

Rate and IO

▪ CPU metric is the most affected and visualized 

parameters in the VMs

▪ CPU in the Virtual machines decreases if there 

is certain workload going on them

▪ CPU in the virtual machines increases if there 

is no workload going on them

▪ All or most of the virtual machines are affected 

when a load is introduced on hypervisor

Further research

▪ How generic and representative is the fault 

(i.e., hypervisor load)? Disk IO

MEM

Disk rate

CPU

Linux Kernel

KVM Kernel Module

QEMU-KVM

VM2

Application 

Containers

Ubuntu 18.04

vCPU0 vCPU4…
Other 

Userspace

Processes

Stress-ng

Monitoring 

Agents

libvirtd

Ubuntu 18.04 VM

Store 

VM metrics

QEMU-KVM

VM1

Application 

Containers

Ubuntu 18.04

vCPU0 vCPU4…

Monitoring 

Agents

Monitoring 

Agents

InfluxDB

Prometheus

Grafana

Observe 

metric behavior
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KVM

KVM (Kernel-based Virtual Machine) hypervisor is a kernel module (kvm.ko). The 

process that runs KVM is typically the QEMU (Quick Emulator) process.

KVM/QEMU combination works as follows:

• KVM Module: Loaded into the Linux kernel. It provides the necessary 

infrastructure for hardware-assisted virtualization.

• QEMU Process: User-space emulator that interfaces with the KVM kernel 

module for creating and managing virtual machines. 

When starting a virtual machine using qemu-system-x86_64, it launches a QEMU 

process that calls KVM module:

qemu-system-x86_64 -enable-kvm -cpu host -m 2048 -hda your_disk_image.qcow2

• -enable-kvm: Enables KVM for hardware virtualization.

• -cpu host: Uses the host CPU features.

• -m 2048: Allocates 2 GB of RAM for the virtual machine.

• -hda your_disk_image.qcow2: Specifies the disk image for the virtual machine

Tools such as libvirt or virt-manager abstract the details of starting KVM/QEMU 

virtual machines.

$ ps -ef | grep qemu-system-x86_64 
libvirt+  756677       1  0 Dez14 ?        00:14:21 
/usr/bin/qemu-system-x86_64 -name guest=ubuntu-
1,debug-threads=on -S -object {"qom-
type":"secret","id":"masterKey0","format":"raw","fi
le":"/var/lib/libvirt/qemu/domain-50-ubuntu-
1/master-key.aes"} -machine pc-q35-
6.2,usb=off,vmport=off,dump-guest-core=off,memory-
backend=pc.ram -accel kvm -cpu host,migratable=on -
m 2048 -object {"qom-type":"memory-backend-
ram","id":"pc.ram","size":2147483648} -overcommit 
mem-lock=off -smp 2,sockets=2,cores=1,threads=1 -
uuid 283f1e7c-c249-44b7-bcd5-b48e406c32e4 -no-user-
config -nodefaults -chardev
socket,id=charmonitor,fd=43,server=on,wait=off -mon
chardev=charmonitor,id=monitor,mode=control -rtc
base=utc,driftfix=slew -global kvm-
pit.lost_tick_policy=delay -no-hpet -no-shutdown -
global ICH9-LPC.disable_s3=1 -global ICH9- …

https://virt-manager.org/

ps -ef | grep qemu-system-x86_64 
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Theory 

Anomaly detection for multivariate time series

A review on outlier/anomaly detection in time series data, Ane Blázquez-García, et 

al.

Model Paper reference

PCA

[2003] Shyu M L, Chen S C, Sarinnapakorn K, et al. A novel 

anomaly detection scheme based on principal component 

classifier

iForest
[ICDM'2008] Fei Tony Liu, Kai Ming Ting, Zhi-Hua Zhou: 

Isolation Forest

LODA
[Machine Learning'2016] Tomás Pevný. Loda: Lightweight 

online detector of anomalies

LSTM

[KDD'2018] Kyle Hundman, Valentino Constantinou, 

Christopher Laporte, Ian Colwell, Tom Söderström. Detecting 

Spacecraft Anomalies Using LSTMs and Nonparametric 

Dynamic Thresholding

Comprehensive list of techniques: https://github.com/durgeshsamariya/awesome-outlier-detection-resources

Lightweight Online Detector of Anomalies (LODA)

Given a set of data points, the algorithm randomly creates numerous 

sparse random projections, and then fits a 1-dimensional density 

model. Then, “surprise” is measured based on the density estimator 

(i.e., adaptive histogram estimator).
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Theory 

Anomaly detection for multivariate time series

Comprehensive list of techniques: https://github.com/durgeshsamariya/awesome-outlier-detection-resources

As the problem above clearly has zero Anomaly data, this unsupervised 

Anomaly detection problem will be treated as an outlier detection problem. 

There are several approaches to deal with this problem, which are as follows:

Density Based

• RKDE: Robust Kernel Density Estimation

• DBSCAN: Density-Based Spatial Clustering of Applications with Noise

• EGMM: Ensemble Gaussian Mixture Model

Neighbour or Distance Based

• LOF: Local Outlier Factor

• ABOD: kNN Angle-Based Outlier Detector

• ORCA: Outlier detection and Robust Clustering

Quantile Based

• OCSVM: One-class SVM

• SVDD: Support Vector Data Description

Projection Based

• IFOR: Isolation Forest

• LODA: Lightweight Online Detector of Anomalies
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Metrics 

Overview

Available metrics
• Metrics are collected from hypervisor via libvirt API

• List of available metrics: 
https://libvirt.org/html/libvirt-libvirt-domain.html#virConnectGetAllDomainStats

• Some metrics require guest agent to be installed. In this presentation only agent-less metrics 

are covered.

Metrics collection
• From the shell metrics can be viewed by command 

virsh domstats <domain>
• Collectd virt plugin.

• Direct Prometheus writer https://github.com/kumina/libvirt_exporter/

Nova metadata
• VMs created by OpenStack contain metadata with name, flavor and user information. 

• Metadata can be retrieved by command:

virsh metadata <domain> --uri http://openstack.org/xmlns/libvirt/nova/1.0
• Metadata retrieval is supported in collectd version 5.9 (possible to extend name with attributes 

extracted by XPath)

Hypervisor (KVM)

VM1 VM2
VMN

Host OS

Metrics

Collectd configuration:

LoadPlugin libvirt

<Plugin virt>
Connection "qemu:///system"
HostnameFormat name
ExtraStats cpu_util disk operations disk_err

domain_state job_stats_background
job_stats_completed pcpu perf vcpupin
</Plugin>

Metric retrieval 

https://libvirt.org/html/libvirt-libvirt-domain.html#virConnectGetAllDomainStats
https://github.com/kumina/libvirt_exporter/
http://openstack.org/xmlns/libvirt/nova/1.0
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Metrics

Perf events statistics

What is perf?

• Perf is a performance analyzing tool in Linux, and it can instrument CPU performance counters, tracepoints, kprobes, and uprobes (dynamic tracing). Perf 

supports a list of measurable events, and can measure events coming from different sources. For instance, some event are pure kernel counters, in this case 

they are called software events, including context-switches, minor-faults, etc.. 

• Full list of performance events: https://libvirt.org/html/libvirt-libvirt-domain.html#virConnectGetAllDomainStats

How to:

• Get all perf events:

virsh perf <domain>

• Enable perf event:

virsh perf <domain> --enable <event>

• Get counter of the event:

virsh domstats <domain>

• Disable event:
virsh perf <domain> --disable <event>

Collectd configuration

• Collectd is a daemon which collects system and application performance metrics periodically and provides mechanisms to store the values in a variety of ways.

• Collecting perf metrics need to be enabled explicitly (https://collectd.org/documentation/manpages/collectd.conf.5.shtml#extrastats_string)
• All metrics are exported as collectd_virt_perf_total with event name specified as metric tag, e.g. collectd_virt_perf_total{virt="perf_cpu_clock“}

https://libvirt.org/html/libvirt-libvirt-domain.html#virConnectGetAllDomainStats
https://collectd.org/documentation/manpages/collectd.conf.5.shtml#extrastats_string
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Metrics

CPU

It is expected that cpu.time = cpu.user + cpu.system + guest_time, where guest_time is sum of vcpu.N.time metrics

Libvirt metric name Unit Collectd metric name Description

cpu.time nanosecond Total CPU time spent for this domain

cpu.user nanosecond collectd_virt_ps_cputime_user_total User CPU time spent

cpu.system nanosecond collectd_virt_ps_cputime_syst_total System CPU time spent 

vcpu.current count Current number of online virtual CPUs

vcpu.maximum count Maximum number of online virtual CPUs

vcpu.N.state enum State of the virtual CPU: 0 – offline, 1 – running, 2 –

blocked (https://libvirt.org/html/libvirt-libvirt-
domain.html#virVcpuState)

vcpu.N.time nanosecond collectd_virt_virt_vcpu_total{virt=“N”} Virtual CPU time spent by virtual CPU
(https://libvirt.org/html/libvirt-libvirt-
domain.html#virVcpuInfo)

vcpu.N.wait nanosecond Virtual CPU time spent by virtual CPU <num> 

waiting on I/O 
(https://www.redhat.com/archives/libvir-list/2015-
December/msg00408.html)

nanosecond collectd_virt_virt_cpu_total_total Total utilization of all guest virtual CPUs

https://libvirt.org/html/libvirt-libvirt-domain.html#virVcpuState
https://libvirt.org/html/libvirt-libvirt-domain.html#virVcpuInfo
https://www.redhat.com/archives/libvir-list/2015-December/msg00408.html
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Metrics

Memory

Libvirt metric name Unit Collectd metric name Description

balloon.current kiB (1024 bytes) collectd_virt_memory{virt="actual_balloon“} The memory in kiB currently used 
(https://libvirt.org/html/libvirt-libvirt-
domain.html#virDomainInfo)

balloon.maximum kiB collectd_virt_memory{virt="total“} The maximum memory in kiB allowed 
(https://libvirt.org/html/libvirt-libvirt-
domain.html#virDomainInfo)

balloon.last-update second collectd_virt_memory{virt="last_update“} The time in seconds sine the UNIX epoch (1970-

01-01) at which the statistics where last updated. 

0 means that polling is not enabled.

balloon.rss kiB collectd_virt_memory{virt="rss“} Resident Set Size of the running domain's 

process 

VirtIO Memory Ballooning
VirtIO provides Memory Ballooning: the host system can reclaim memory from virtual machines (VM) by telling them to give back part of their memory to the host 

system. This is achieved by inflating the memory balloon inside the VM, which reduced the memory available to other tasks inside the VM. Which memory pages 

are given back is the decision of the guest operating system (OS): It just tells the host OS which pages it does no longer need and will no longer access. The host 

OS then un-maps those pages from the guests and marks them as unavailable for the guest VM. The host system can then use them for other tasks like starting 

even more VMs or other processes. (https://pmhahn.github.io/virtio-balloon/)

Agent-based metrics
• swap_in, swap_out -The number of swapped-in and swapped-out pages as reported by the guest OS since the start of the VM.

• major_fault, minor_fault - The number of page faults as reported by the guest OS since the start of the VM.

• unused - Inside the Linux kernel this actually is named MemFree. 

usable - Inside the Linux kernel this is named MemAvailable

• available - Inside the Linux kernel this is named MemTotal.

https://libvirt.org/html/libvirt-libvirt-domain.html#virDomainInfo
https://libvirt.org/html/libvirt-libvirt-domain.html#virDomainInfo
https://pmhahn.github.io/virtio-balloon/
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Metrics

Network

Libvirt metric name Unit Collectd metric name Description

net.count count Number of network interfaces on this domain

net.N.name string tag in metric Interface name

net.N.rx.bytes bytes collectd_virt_if_octets_rx_total{virt=“name”} Bytes received

https://libvirt.org/html/libvirt-libvirt-
domain.html#virDomainInterfaceStatsStruct

net.N.rx.pkts packets collectd_virt_if_packets_rx_total{virt=“name”} Packets received

net.N.rx.errs packets collectd_virt_if_errors_rx_total{virt=“name”} Receive errors

net.N.rx.drop packets collectd_virt_if_dropped_rx_total{virt=“name”} Receive packets dropped

net.N.tx.bytes bytes collectd_virt_if_octets_tx_total{virt=“name”} Bytes transmitted

net.N.tx.pkts packets collectd_virt_if_packets_tx_total{virt=“name”} Packets transmitted

net.N.tx.errs packets collectd_virt_if_errors_tx_total{virt=“name”} Transmission errors

net.N.tx.drop packets collectd_virt_if_dropped_tx_total{virt=“name”} Transmit packets dropped

• Network metrics are available per network interface. 

• Name of network interface is the same as on host system. Metrics also can be retrieved from ifconfig <interface> with swap of rx and tx fields.
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Metrics

Disk

Libvirt metric name Unit Collectd metric name Description

block.count count Number of block devices

block.N.name string tag in metric Name of the block device <num> as string. Matches 
the target name (vda/sda/hda) of the block device.

block.N.path string String describing the source of block device <num>, if 
it is a file or block device 

block.N.rd.reqs count collectd_virt_disk_ops_read_total{virt=“name”} Number of read requests 

block.N.rd.bytes byte collectd_virt_disk_octets_read_total{virt=“name“} Number of read bytes

block.N.rd.times nanosecond collectd_virt_disk_time_read_total{virt=“name”} Total time (ns) spent on reads

block.N.wr.reqs count collectd_virt_disk_ops_write_total{virt=“name”} Number of write requests 

block.N.wr.bytes byte collectd_virt_disk_octets_write_total{virt=“name”} Number of written bytes 

block.N.wr.times nanosecond collectd_virt_disk_time_write_total{virt=“name”} Total time (ns) spent on writes

block.N.fl.reqs count Total flush requests

block.N.fl.times nanosecond Total time (ns) spent on cache flushing

block.N.allocation Offset of the highest written sector

block.N.capacity byte Logical size in bytes of the block device backing image 

block.N.physical byte Physical size in bytes of the container of the backing 
image 
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Datasets

Hosts

Server Machine Dataset (SMD) Download raw datasets⬇️
• Collected from a large Internet company containing a 5-week-long monitoring KPIs of 28 

machines. The meaning for each KPI could be found here.

https://github.com/NetManAIOps/OmniAnomaly.git
https://github.com/NetManAIOps/OmniAnomaly/issues/22
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Algorithm Design

Attribution Theory

Reasoning

▪ Use historical data to learn historical behavior of metrics

• Determine distinctiveness and consistency

• E.g., Historical behavior = [A, A, B, C, Z, A, B]

▪ At time t, compare current behavior of VMs

• Hypervisor is faulty if: 

‒ high consensus and 

‒ (low consistency and/or high distinctiveness)

Observation Interpretation Attribution Root Cause

Does the metric 

behaves this way 

when executing other 

workloads?

Yes. Low distinctiveness Internal Workload

No. High distinctiveness External Hypervisor

Do other metrics

behave the same way 

when a hypervisor 

fails?

Yes. High consensus External Hypervisor

No. Low consensus Internal Workload

Does metrics behave 

this way historically?

Yes. High consistency Internal Workload

No. Low consistency External Hypervisor

Behavior A Behavior B Behavior C Behavior Z

now (t)

Current 

behavior

Is the current behavior of the metric 

different from past behaviors 

(distinctiveness and consistency)?

Past

Is there a consensus of 

metrics behavior across 

VMs (consensus)?

VM1

VM2

VM3

VM4

VM5

VM6

VM7

HAD algorithm 

answers to 2 

questions

1 2 3

now (t)

Current 

behavior

Note: Ideally, historical behavior should not include previous hypervisor failures. Once an hypervisor fails, its history needs to be deleted



ULTRA-SCALE AIOPS LAB     17

Algorithm Design

Procedure

Procedure

▪ 1. For each time series, find its change points

▪ 2. Using past behavior, dynamically filter change points 

▪ 3. Find an area with a higher change density of change 

points across the various time series (consensus)

The presence of such an area is attributed to an 

hypervisor failure if it has not occurred in the recent past 

(distinctiveness and consistency) 1

321

2

3

Current 

behavior

Current 

behavior
Past

behavior

1. Find Change 

Points

2. Dynamic Filtering

For each VM

3. Evaluate Density 

Change

end

start

Challenges

▪ Parameter selection

• thresholds, window size (3), … 

▪ Requires a set of online algorithms
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Algorithm Design

Change Point detection

Moving Z-score. Score outliers in a univariate and sequential dataset, i.e., a time series. Fits a moving average to a univariate time series and 

identifies points that are far from the fitted curve.

Approach

▪ The moving Z-score for a data point 𝑥𝑡 is 

simply the value of 𝑥𝑡 standardized by 

subtracting the moving mean just prior to time 𝑡
and dividing by the moving standard deviation 

just prior to 𝑡
▪ We use a variation of Z-score, by sampling the 

short window instead of using only data point 

𝑥𝑡, this make the approach more resilient to 

outliers 

1. Change Point detector = z-score(long, short)

Long window

Short window
VMn

time-series

moving average
moving standard deviation

Change Point techniques

▪ Window-based (e.g., Z-score) O(n)

▪ PELT (changes in mean, variance of time 

series) O(n)

▪ bcp package (Bayesian single change point 

analysis of univariate time series)

▪ Binary segmentation O(n log n)

▪ Multivariate CP detection

▪ EWMA
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Algorithm Design

Dynamic Filtering

𝑡𝑠1

𝑡𝑠2

𝑡𝑠3

𝑡𝑠𝑛

𝑡𝑖𝑚𝑒

function dynamic_filtering(queue, dp, threshold, mid):
if queue is full:
count = [1 if v > threshold else 0 for v in queue]
past_behavior = sum(count[:mid])
curr_behavior = sum(count[mid:])
if curr_count < past_count:
return True

return False

𝑡𝑠_𝑠𝑧

𝑛

Problem. When c change points are detected in a time series, is 

this observation historically consistent? The historical behavior of 

a time series needs to be considered to determine if the current 

behavior is different or not.

Solution. 𝑂(𝑛)

…

Filtering techniques

▪ Streaming Histograms

▪ Kolmogorov–Smirnov test

▪ Anderson-Darling (AD) test

Current 

behavior

Past

behavior

count = 2 drop 2 points

x x

Approach

▪ Use a simple form of past behavior modeling by counting the 

number of change points which occurred in the past during 

the same interval of time

▪ When a new change data point is detected, drop the point if 

it is below the count of past behavior

Queue Q

VM1

metric

VM2

metric

Current 

behavior

Past

behavior

Density D1 Density D2
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Algorithm Design

Correlation strength

𝑡𝑠1

𝑡𝑠2

𝑡𝑠3

𝑡𝑠𝑛

𝑡𝑖𝑚𝑒

function Overlap(x): (*)
for t in [0, ts_sz]:
color[0, n] = 0
for w in [t, t + window_sz]:
for i in [0, n]:
color[a[i][w]] = i

if |set(color[j] != 0)| > c:
print(t, color)

𝑡

𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑧

𝑡𝑠_𝑠𝑧

𝑛

Problem (Min Color Count Over Intervals Problem (MinColorCount)). Given 𝑛 time series 𝑡𝑠𝑖 , of lengths 𝑡𝑠𝑠𝑧, find the intervals with a 

maximum lengths of 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑧, which contain observations from 𝑐 time series.

Trivial solution. 𝑂(𝑛 × 𝑡𝑠𝑠𝑧 × 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑧)

Moving window

(*) Without loss of generalization, assume that all time series have the same length

function Update(x):
while q is not empty:
if x.timestamp - q[0].timestamp >= windows_sz:
dequeue q 

enqueue x in q
if |set(q[j].color)| > c:
print(q)

Online solution. 𝑂(𝑛 × 𝑡𝑠𝑠𝑧)

… 3 colors …

New point arrives: update(x)

▪ Case 1. distance between the timestamp of the new

point and the start data point is < windows_sz

‒ Enqueue data point x in Q

▪ Case 2. distance between the timestamp of the new

point and the start data point is >= windows_sz

‒ Until the first point distance is lower than 

windows_sz, dequeue Q 

‒ Enqueue x

▪ If queue q has more then c colors, emit queue state

Queue Q

A data point is a 

tuple (color, 

timestamp)

Start data point 

in window

𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑧
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Algorithm Design

Interface and Parameters

class HAD(TimeseriesAlgorithm):
"""

Hypervisor Anomaly Detection (HAD) using Change Points,
dynamic filtering and Min Color Count Over Intervals

"""
name = 'had'
version = '1.0'
multivariate_test = True

default_config = DEFAULTS

@typechecked
def __init__(self,

window_long_sz: int = DEFAULTS['window_long_sz'],
window_short_sz: int = DEFAULTS['window_short_sz'],
threshold: float = DEFAULTS['threshold'],
dynamic_filtering: bool = DEFAULTS['dynamic_filtering'],
overlap_min_pct: float = DEFAULTS['overlap_min_pct'],
overlap_window_sz: float = DEFAULTS['overlap_window_sz'],
online: float = DEFAULTS['online']
):

…

Parameters

▪ Parameters are derived from the implementation of 

the 3 features (change point detection, filtering and 

density change evaluation)

Parameter List

▪ window_long_sz, window_short_sz

• 2 temporal windows used to detect change 

points over time series

▪ threshold

• Define the magnitude of a change point to be 

considered relevant due to its magnitude

▪ dynamic_filtering

• To reduce the number of false positives, dynamic 

filtering can be activated

▪ overlap_min_pct

• Percentage of time series (i.e., VMs) which need 

to be correlated to trigger an hypervisor anomaly

▪ overlap_window_sz

• Windows size used to detect a correlation 

between time series

▪ online

• Execute HAD as using a stream paradigm
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Metrics Collector

Download OS image
• https://ubuntu.com/download/server

Create a VM
virt-install --name ubuntu-1 \

--memory 2048 \

--vcpus 2 \

--disk size=8 \

--cdrom /home/jcardoso/Downloads/ubuntu-23.10-live-server-amd64.iso \

--os-variant ubuntumantic

Configure OS 
Follow the instructions on the screen to configure your new OS

Clone VMs
virt-clone --original ubuntu-1 --name ubuntu-2 --auto-clone

virt-clone --original ubuntu-1 --name ubuntu-3 --auto-clone

virt-clone --original ubuntu-1 --name ubuntu-4 --auto-clone

Install node exporter
sudo apt-get update

sudo apt-get install prometheus-node-exporter -y

sudo apt-get install prometheus-libvirt-exporter -y

sudo systemctl status prometheus-node-exporter

libvirt metrics: curl http://localhost:9177/metrics

OS metrics: curl http://localhost:9100/metrics

http://localhost:9177/metrics
http://localhost:9100/metrics
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Injecting Stress

stress-ng --cpu 1 --cpu-cores 0,2

In this example, --cpu 1 instructs stress-ng to create 1 worker for CPU 

stress, and --cpu-cores 0,2 specifies that it should stress the CPU cores 0 

and 2. Adjust the number of workers and the list of CPU cores based on 

your requirements.

cpulimit

The cpulimit command allows you to limit the CPU usage of a process.

# Install cpulimit on Debian/Ubuntu

sudo apt-get install cpulimit

# Limit CPU usage of process to 50%

cpulimit -e process_id -l 50

Workflow

1. Each VM is set to a CPU load of 50%:

stress-ng --cpu 2 --cpu-load 50 --timeout 60s

2. Limit CPU usage in qemu processes

for pid in `pgrep qemu-system-x86`; do echo $pid && sudo cpulimit -b -l 50 -

p "$pid" ; done

3. Stop CPU limit

sudo killall cpulimit

#!/bin/bash

# Set the duration for each step (in seconds)

duration_per_step=5

n_cpu=2

# Function to run stress-ng with CPU stressor and specified load

run_stress_ng() {

local cpu_load=$1

if [ -z "$cpu_load" ]; then

echo "Load not assigned."

# Generates a random number between 0 and 99        

cpu_load=$((RANDOM % 100))

fi

echo "Load has a value: $cpu_load"

stress-ng --cpu $n_cpu --cpu-load $cpu_load --timeout ${duration_per_step}s

}

echo "Simulating workload increase and decrease..."

for ((i = 1; i <= 10; i++)); do

run_stress_ng

done

echo "Workload simulation completed."
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Virtualization Layer

Experimental Testbed

Overview

VM1 VMN

Role 1. Hypervisor host
Role 2. Operations  

Generator

Node roles
1. Hypervisor host (KVM with VMs running on top of it)

2. Workload Generator (emulates user traffic for applications 

running in VMs)

3. Monitoring (metrics processing)

metrics

Role 3. Monitoring

Prometheus

Fault Injection
Faults are injected to virtualization layer of hypervisor host: to hypervisor itself, host OS, 

virtual volumes and virtual networking

user workload

Grafana

Load Script

Type of VM workloads
1. Online shop: front-end, back-end and database. User requests are 

random

2. Monitoring database with uniformly-distributed write operations

3. CPU-bound operations, short-live with high CPU consumption and low IO

4. Almost idle: low CPU and low IO

Disk IO

CPU utilization

Number of VMs

Scenarios
1. Constant workload type, constant number of VMs: one case per type, plus one mixed 

consisting of VMs of different types of workload.

2. Constant workload, number of VMs changes over the time, e.g. some spawned, some 

removed.

3. Number of VMs changes and workload changes too.

Network IO

Testbed overview Metrics similar to available in the Cloud

Fault
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Experimental Testbed

Virtualization Platform and Metrics

CPU 0

Linux kernel OVS (virtual networking)

Application VM 1

vCPU 0

Physical 

Layer

Hypervisor

Virtual 

Machines

KVM 

CPU 1 CPU N ethN ethN /dev/sda /dev/sdN

vCPU 1

Application VM N

vCPU 0 vCPU 1

Storage (LVM or network)

net.N.rx.(bytes|pkts|errs|drop)

Received bytes, packets, errors or dropped

net.N.tx.(bytes|pkts|errs|drop)

Transmitted bytes, packets, errors or dropped

cpu.(time|user|system|wait|idle) 

System CPU metrics including 

user-space, kernel and i/o

block.N.rd.(reqs|bytres|times)

Number of read requests, bytes read and time spent on reads

block.N.wr.(reqs|bytres|times)

Number of write requests, bytes written and time spent on 

writes

vcpu.N.time

Virtual CPU time spent by virtual CPU 

(https://libvirt.org/html/libvirt-libvirt-

domain.html#virVcpuInfo)

net.N.rx.(bytes|pkts|errs|drop)

Received bytes, packets, errors or 

dropped

net.N.tx.(bytes|pkts|errs|drop)

Transmitted bytes, packets, errors or 

dropped

Virtual Machine metrics

Host Metrics

Container 
Container 

Container 
Container 

Container 
Container 

block.N.rd.(reqs|bytres|times)

Number of read requests, bytes read and 

time spent on reads

block.N.wr.(reqs|bytres|times)

Number of write requests, bytes written 

and time spent on writes

https://libvirt.org/html/libvirt-libvirt-domain.html#virVcpuInfo
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Experimental Testbed

Faults List

1. High CPU consumption by OS 

kernel of hypervisor host

Injection is done by using `stress-ng` 

tool with stressor affecting kernel 

space.

Fault Impact on the virtualization layer Impact on metrics (expectation)

Host kernel consumes a lot of CPU
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Experimental Testbed

Evaluation Framework

Data Generation Algorithm Test ModuleScenario

Parameters:

• VM count

• VM load profile (e.g. 

CPU consumption)

S
y
n
th

e
ti
c
 d

a
ta

S
im

u
la

te
d
 d

a
ta

R
e
a
l 
c
lo

u
d
 d

a
ta

• Generate synthetic 

metrics and labels

• Deploy VMs

• Generate user 

workload

• Inject faults and record 

time (used as labels)

• Collect metrics from 

hypervisor

• Download metrics

• Download the data 

from CloudMonitor

• Manually label the data

• Apply algorithm 

• Evaluation using 

labels

• Calculate scores 

(precision, recall, F1)

Parameters:

• VM count

• VM load profile (e.g. 

CPU consumption)

• Fault injection time

• Fault strength

• Run algorithm

• Evaluate

• Improve algorithm
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Experimental Testbed

Algorithm

Select window 

[t-w, t]

For each 

VM

Detect change 

point

Has 

change 

point?

Store change point  

in the list

Intersect change 

points

Has 

intersection

?

Input: one time-

series per VM

No anomaly Anomaly reported

Y Y

N

Done

Input:

• Set of time-series – one per VM

Algorithm parameters:

• Window size – number of points to take into account for change 

point detection

• Change threshold – how sensitive change point detection to 

feature variation

Output:

• True, if there is an anomaly in time t
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Experimental Testbed

Baseline Algorithm Evaluation

Positive case

Negative Case

Evaluation is done with 20 time-series, change threshold 5% and window size 

from 10 to 60 points

Further (future) improvements

• Voting threshold < 100%

• Handle a case when change point detected not in exact time but with small 

variation

• Improve change point detection algorithm (more sophisticated then just mean 

value)
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Evaluation (semi-synthetic)

Dataset Generation

Generate

Synthetic Data

Hypervisor 1

Hypervisor 2

Hypervisor 3

Hypervisor n

AbnormalNormal

Generators

(e.g., random)

…

Open Datasets

VM data

Change 

base signal

Dataset Time 

Ticks

Number 

of VMs

Positive 

Cases

Negative 

Cases

1 Synthetic Dataset [1] 1000 10 5 5

2 Experimental 

Synthetic Merged 

Dataset [2]

5400 2 + 8 

(synthetic)

42 17

3 Microsoft Azure 

Dataset*[3]

5400 10 16 10

4 Alibaba Dataset*[4] 5400 10 10 10

Other datasets used in previous experiments
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Evaluation (semi-synthetic)

Dataset Generation

Generators

Normal

Hypervisor 1

Random hard

Random difficult

Random easy

def gen_random_hard():
n_ts = 30
return {

'env':
{

'name': 'random_hard',
'description': 'Increase 20%-50% (with delay 0-30, width 1-15) in 90% VMs',
'n_hypervisors': 5,
'n_vms_sets': [10, 15],

},
'data':

{
'src_data_dir': os.path.abspath('../datasets/azure/normal/'),
'dst_data_dir': os.path.abspath('./.data/azure/random_hard/'),

'ts_len': 575,
'ts_anomaly_point': 50,
'n_ts': n_ts,
'ts_percentage_affected': .9,

'ts_increase_width': np.random.randint(1, 15, size=n_ts, dtype=int).tolist(),
'ts_increase_delay': np.random.randint(0, 30, size=n_ts, dtype=int).tolist(),
'ts_increase_height_percentage': np.random.uniform(0.2, 0.5, size=n_ts).tolist(),

'ts_stay_width': np.random.randint(200, 220, size=n_ts, dtype=int).tolist(),

'ts_decrease_width': np.random.randint(1, 5, size=n_ts, dtype=int).tolist(),
'ts_decrease_height_percentage': np.random.uniform(0.0, 0.0, size=n_ts).tolist(),
'ts_decrease_delay': np.random.randint(1, 40, size=n_ts, dtype=int).tolist(),

},
'param_grid':

{
'window_long_sz': [25, 30, 40],
'window_short_sz': [10, 20],
'threshold': [1.6, 1.8, 2.0, 2.2],
'dynamic_filtering': [True, False],
'overlap_min_pct': [.7, .8, .9],
'overlap_window_sz': [30],
'online': [True],

},
'optimization':

[
Integer(25, 40, name='window_long_sz', dtype=int),
Integer(10, 20, name='window_short_sz', dtype=int),
Real(1.8, 2.1, name='threshold', dtype=float),
Integer(0, 1, name='dynamic_filtering', dtype=int),
Real(.6, .8, name='overlap_min_pct', dtype=float),
Integer(40, 60, name='overlap_window_sz', dtype=int),

]
}

Abnormal

Parameter 

grid search

Parameter 

optimization

Simulation

environment

Hypervisor 

anomalyExample of a dataset generator for test case: 'random_hard’

Data 

generation

Each test case: 5 hypervisors with 30 VMs  each
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Evaluation (semi-synthetic)

Dataset Generation

ts_anomaly_point
ts_len

ts_percentage_affected

ts_increase_width

ts_increase_height_percentage

ts_increase_delay

ts_stay_width

Generators Key Parameters

▪ n_ts

• Number of time-series (VMs) to generate

▪ ts_anomaly_point

• timestamp when an anomaly occurs

▪ ts_percentage_affected

• Percentage of ts affected by the anomaly

▪ ts_increase_delay

• Number of data points after the anomaly at 

which VMs are affected

▪ ts_increase_height_percentage

• Percentage of ts change after anomaly

▪ ts_increase_width

• Width of ts change after anomaly

▪ ts_stay_width

• Width of stay after degradation
▪ ts_decrease_delay

• Number of data points after stay period

▪ ts_decrease_height_percentage

• Percentage of change after stay period
▪ ts_decrease_width

• Width of ts change after stay period

n_ts

Hypervisor 

anomaly

Degradation 

period



ULTRA-SCALE AIOPS LAB     33

Evaluation (semi-synthetic)

F1, precision, recall

Selecting Parameters for Evaluation

▪ Apply Bayesian optimization on random diff(icult) scenario to identify 

best parameters for addressing difficult cases

▪ Select random set of parameters from best sorted set

▪ Selected parameters 

• {'window_long_sz': 30.933333333333334, 'window_short_sz': 17.8, 

'threshold': 1.9886447684992719, 'overlap_min_pct': 

0.7206731936373396, 'overlap_window_sz': 51.0}

▪ Note: depending on the results from running HAD in production, the 

technique to find the pseudo optimal parameter set needs to be revised

Procedure

▪ Generate 3 types of datasets for hypervisors

• Random easy, random hard, random difficult

▪ Evaluation HAD on all 3 scenarios (e.g., random easy, random hard, …) 

by varying the number of VMs managed by hypervisor

▪ Calculate F1, precision and recall

Evaluation Results

▪ In general, the results are excellent at # VMs > 13

▪ For scenario 1) and 2), precision = 1, when # VMs > 13

• No false positives

▪ Recall is also good for these scenarios

• With the current implementation, a few hypervisor failures will not be 

caught when the # of VMs is low (# VM < 14)

F1, precision, recall 

Scenario name

# VMs > 13 VMs 

F1 = 1 or precision = 1.0

Excellent results 

# VMs > 13

Most probable 

production scenario

Good results 

8 > # VMs > 14

Excellent results 

# VMs > 13

Good results 

8 > # VMs > 14

Excellent precision

# VMs > 13

Good results 

8 > # VMs > 14
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Evaluation (semi-synthetic)

User Interface

Dashboard

▪ Shows the heath status of hypervisors (9 hypervisors are shown)

• Beige background indicates a problem

• Background color indicated correlation

▪ Each hypervisor shows the volatility of the managed VMs

• High bars indicate high volatility 

Background
Hypervisor anomaly

Bars
VM volatility

Most VMs have a low 

or no volatility. Thus, 
hypervisor is healthy

Dashboard

PinPoint Visualization

▪ Detailed visualization on the behavior of VMs’ signals

• Change points and overlapping regions are shown

VM 01

VM 02

VM 03

VM 04

VM 05

VM 06

VM 07

VM n

Vertical overlaps represent the correlation of behavior change as a 

consequence of, e.g., an hypervisor failure. The number of horizontal 
overlaps indicate the confidence of an anomaly.

Red line

Volatility correlation 
degree among VMs

Note: the correlation degree determines if the volatility of 

VMs is, or is not, related to the volatility/churn of workloads
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Evaluation (semi-synthetic)

Performance: Online vs Offline

Limitations of offline HAD

▪ Uses 2 sliding windows: mean and std are expensive to recompute

Effect of time series size on running time

▪ 1 hypervisor; 1 second sampling; 25 VMs

▪ Monitoring duration: 1h, 2h, 3h, 4h, 5h, 6h

▪ Online improvements: 4x (1h) to 13x (6h)

Effect of window size on running time

▪ 1 hypervisor; 1 second sampling; 25 VMs

▪ Sliding windows size: [16, 32, 64, 128, 256, 512, 1024, 2048], 15

▪ Monitoring duration: 6h

▪ Online improvements: 5.5x (sz: 16) to 18x (sz: 2048)

HAD Performance Analysis: Online vs. Offline (windows = (100, 25))

Time-series size

T
im

e
 (

s
e

c
)

Offline

Online

13x improvement

4x improvement

HAD Performance Analysis: Online vs. Offline (8 ts * 10k data points)

Windows size

T
im

e
 (

s
e

c
)

Offline

Online

18x improvement

5.5x improvement

+--------------+------+----------------+-----------------+-----------------+------------------+-------------+--------------+
| n_datapoints | n_ts | window_long_sz | window_short_sz | improvement_pct | improvement_fold | online_mean | offline_mean |
+--------------+------+----------------+-----------------+-----------------+------------------+-------------+--------------+
|    80000     |  8   |       16       |        15       |      17.76      |       5.63       |     0.75    |     4.21     |
|    80000     |  8   |       32       |        15       |      19.32      |       5.18       |     0.87    |     4.53     |
|    80000     |  8   |       64       |        15       |      18.45      |       5.42       |     0.88    |     4.76     |
|    80000     |  8   |      128       |        15       |      15.38      |       6.5        |     0.84    |     5.44     |
|    80000     |  8   |      256       |        15       |      12.26      |       8.16       |     0.83    |     6.74     |
|    80000     |  8   |      512       |        15       |       9.85      |      10.15       |     0.92    |     9.36     |
|    80000     |  8   |      1024      |        15       |       9.57      |      10.45       |     1.35    |    14.11     |
|    80000     |  8   |      2048      |        15       |       5.45      |      18.34       |     1.49    |    27.24     |
+--------------+------+----------------+-----------------+-----------------+------------------+-------------+--------------+

+--------------+------+----------------+-----------------+-----------------+------------------+-------------+--------------+
| n_datapoints | n_ts | window_long_sz | window_short_sz | improvement_pct | improvement_fold | online_mean | offline_mean |
+--------------+------+----------------+-----------------+-----------------+------------------+-------------+--------------+
|     3600     |  25  |      100       |        25       |      23.96      |       4.17       |     0.04    |     0.17     |
|     7200     |  25  |      100       |        25       |      19.41      |       5.15       |     0.07    |     0.35     |
|    10800     |  25  |      100       |        25       |      17.52      |       5.71       |     0.1     |     0.55     |
|    14400     |  25  |      100       |        25       |      16.38      |       6.1        |     0.13    |     0.8      |
|    18000     |  25  |      100       |        25       |      18.25      |       5.48       |     0.19    |     1.06     |
|    21600     |  25  |      100       |        25       |      13.52      |       7.39       |     0.17    |     1.22     |
+--------------+------+----------------+-----------------+-----------------+------------------+-------------+--------------+

High performance 

improvements 

recommend to adopt 

streaming technologies for 

monitoring
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Evaluation (semi-synthetic)

Conclusions

Assumptions

▪ CPU is the best metric to predict hypervisors’ anomalies

▪ Hypervisor anomalies cause changes in CPU mean and std. 3 scenarios exist:

• Increase 100%-150% (with delay 0, width 1) in 90% VMs

• Increase 20%-50% (with delay 0-15, width 1-15) in 90% VMs

• Increase 10%-30% (with delay 0-15, width 1-15) in 90% VMs

HAD algorithm

▪ Compare change point approaches with knee or trend identification

▪ Static training with holistic CPU model

▪ Dynamic training

▪ Effect of low CPU on false positives (e.g., the increase of 100% of a low metrics can be false positive dues to glitches and 

sudden increases of OS processing)

▪ Variable threshold as a function of the number of VMs running in an hypervisor

Next steps

▪ Evaluate HAD with production data

▪ Decide between using the offline or online implementation 

▪ Prepare system design

▪ Code goes to production (to be included in CAD)

Further research

▪ Can hypervisor application logs also be used?

▪ Can kvm_stat (which monitors more than 30 hypervisor metrics) also be used?
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Evaluation (CloudScope / CMC)

Insights on VM metrics

Only 1 observations

Only 2 observations

Only 6 observations

Case 1) Periodic

Case 2) Insufficient number of VMs

hypervisor = 3ee01be4-69ec-48f8-86cf-d5b9ec17d8b9

Case 3) Insufficient 

Number of observations
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Evaluation 

Baseline

Sr 

No.

Algorithm Input Parameters

1 IAD timeticks x num_vms Window Size, Threshold, Percentage VMs Anomalous 

2 ECP[5] timeticks x num_vms # of change points, Minimum number of observations between change points

3 BNB[6] timeticks x num_vms Window Size, number of trees, threshold for change points

4 BNBOnline[7] timeticks x num_vms Window Size, number of trees, threshold for change points

5 Isolation Forest[8] timeticks x num_vms contamination factor, requires training

6 Isolation Forest with Features timeticks x num_features contamination factor, requires training

Sr 

No.

Algorithm Synthetic Experimental Synthetic 

Merged

Azure Alibaba

1 IAD 0.96 0.86 0.96 0.57

2 ECP[5] 0.67 0.76

3 BNB[6] 0.62 0.90 0.8 0.33

4 BNBOnline[7] 0.87 0.81 0.86 0.4

5 Isolation Forest[8] 0.76 0.83 0.76 0.66

6 Isolation Forest with Features 0.76 0.83 0.76 0.66

https://gitlab.lrz.de/sw-campus-project-group/indirect_anomaly_detection/-/blob/master/example_notebooks/all_algorithms_synthetic.ipynb
https://gitlab.lrz.de/sw-campus-project-group/indirect_anomaly_detection/-/blob/master/example_notebooks/all_algorithms_eval_experimental_merged.ipynb
https://gitlab.lrz.de/sw-campus-project-group/indirect_anomaly_detection/-/blob/master/example_notebooks/all_algorithms_eval_azure_data.ipynb
https://gitlab.lrz.de/sw-campus-project-group/indirect_anomaly_detection/-/blob/master/example_notebooks/all_algorithms_eval_alibaba.ipynb
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Conclusions

Challenges

Improvements 

• How to handle seasonality at low cost?

• How to handle noise?

• Update Dashboard to handle between 1 and 9 hypervisors with 8-20 VMs 
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Related Work

https://cran.r-project.org/web/packages/ecp/vignettes/ecp.pdf

https://bhooi.github.io/papers/bnb_sdm19.pdf

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

https://cran.r-project.org/web/packages/ecp/vignettes/ecp.pdf
https://bhooi.github.io/papers/bnb_sdm19.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html
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