
Hypervisor Anomaly Detection
Multivariate time series analysis

Lecture at Technical University of Berlin

Jorge Cardoso

Chief Engineer for Hyperscale AIOps

Munich Research Center

2022.04.12

ULTRA-SCALE AIOPS LAB 1

Indirect Hypervisor Anomaly Detection

Description

Background. Hypervisors create and manage virtual machines (VMs). As public clouds become critical infrastructures, the reliability of

hypervisors and VMs becomes increasingly important.

Problem. However, the reliability of the virtualization layer has not been properly addressed and mechanisms to evaluate its health are limited.

For example, if a hypervisor faces a fail-stop or gray failure, the failure is propagated to all hosted virtual machines. This makes production VMs

dependent on a single point of failure.

Objective. The objective of this research is to detect anomalous hypervisors based on the behavior of the VMs they manage.

Approach. Thus, to identify hypervisors that are experiencing failures, we developed the HAD (Hypervisor Anomaly Detection) algorithm. The

objective is to preemptively migrate VMs to another hypervisor when the underlying hypervisor is faulty. HAD design was inspired on Attribution

Theory. HAD observes and learns the behavior of metrics of individual virtual machine running on a hypervisor. When a VM exhibits a different

behavior, HAD determines if the behavior is intrinsic to the VM or it is observed across several VMs. Finally, the algorithm attributes the observed

behavior to either internal causes (e.g., a VM is stressed because it is running a CPU intensive application) or external causes (e.g., a hypervisor

failure).

Results. HAD is an online algorithm which achieves up to 14x speed improvement when compared to its offline implementation. It implements a

new online algorithm for root-cause attribution. It was evaluated with metrics collected from VMs running on Azure cloud and an F1 score of >90%

was achieved.

ULTRA-SCALE AIOPS LAB 2

Indirect Hypervisor Anomaly Detection

Detecting Faulty Hypervisors using VMs Metrics

Problem

▪ Hypervisors do not have effective methods to

determine their health

Virtualization failures affect VMs but

cannot be observed directly

Indirect approach to detect hypervisor
failures by monitoring VMs

▪ Insight. Resource saturation of VMs suddenly
changes, within a window w, when an hypervisor
is malfunctioning

TRL 5. Basic technological components are integrated with realistic

supporting elements so it can be evaluated in test environment

MAIN ACHIEVEMENT

HAD algorithm – quorum change-point detection

▪ Analyzes individual time-series, and uses change points and
voting to decide whether there is an hypervisor malfunction

▪ Key results: F1 score 72% (data from 2 VMs); 80+% (3+ VMs)

ASSUMPTIONS & LIMITATIONS

▪ Datasets used for evaluation were collected from simulation
environment, synthetic data generator and public sources

IAD: Indirect Anomalous VMMs Detection in the Cloud-based
Environment. Jindal, A.; et al.. AIOPS 2020 International Workshop on
Artificial Intelligence for IT Operations, Springer, 2021

Predictive Maintenance for Hypervisors

Migrate customers’ VMs before hypervisors
completely fail

HOW IT WORKS

Benefits

▪ Reduce the number of VMs crashes due to
hypervisor failures in 80%

Method 1 (Change Points)

1. Treat time-series as univariate

2. Detect change points

3. Vote to decide global changes

Method 2 (Isolation Forest)

1. Treat time-series as features

2. Detect significant changes

Method 3 (ECP E.Divisive)

1. Treat time-series as

multivariate

2. Detect multiple change points

Fig. VM exhibit

abnormal

behavior when

the hypervisor

has technical

issues

Fig. Several time-

series generated

by several VMs

running in the

same hypervisor

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

N
o
rm

a
l

A
n
o
m

a
ly

N
o
rm

a
l

Analyze VM resources to detect

correlated anomalies

Correlated
anomalies

ULTRA-SCALE AIOPS LAB 3

Problem Definition

Limited Health Monitoring

Background

▪ Hypervisors manage virtual machines (VMs)

▪ As public clouds become critical infrastructures, the

reliability of hypervisors becomes increasingly

important

Problem

▪ For example, if a hypervisor faces a fail-stop or gray

failure, the failure is propagated to all hosted virtual

machines

▪ This makes production VMs dependent on a single

point of failure.

Approach

▪ Existing mechanisms to evaluate the health of

hypervisors is limited

▪ Observes and learns the behavior of metrics of

individual VM running on a hypervisor

• (next slide discuss the type of behavior monitored)

▪ When VMs exhibit different behaviors, determine if the

behavior is intrinsic to VMs or it is observed across

several VMs

CloudAgent / Kafka

Hypervisor

(e.g., KVM)

Host

192.168.5.11

Hypervisor

Host

192.168.5.12

Hypervisor

Host

192.168.5.15

Monitoring Database

192.168.5.11 OK health report
192.168.5.12 OK health report
192.168.5.15 ERROR health report

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

VM

normal normal abnormal

IaaS Layer IaaS Layer IaaS Layer

failure

propagation

CAD / HAD

Possible

root
causes

Get metrics from

SQL: I give the IP:

192.168.5.11

1. All VMs running in

the IP hypervisors

(MEM, CPU, IO) OK

2. IaaS layer

processes (CPU user,

system, i/o)

3. Host IP: MEM,

CPU, IO

I don’t know the SQL

query, the db, the

fields.

ULTRA-SCALE AIOPS LAB 4

Problem overview

VM1 VMN

virtualization platform

Platform monitoring

• BM host metrics:

• CPU, network IO, disk IO

• per-VM metrics:

• total CPU utilization

• total memory allocation (virtual memory assigned to VM)

• network IO (packet transmitted and received, error count)

per network card

• storage IO (bytes read and written, timings) per volume

attached to VM

VM monitoring is not available

• VMs belong to customers and do not have

monitoring agents inside

Compute service Monitoring

Hypervisor

Tenant networking

Storage

Proposed solution

By knowing the model of VMs’ behavior, check if it persists over the time. Simultaneous change

for all VMs may indicate problems in the virtualization platform.

Challenges

• Type of VM workload is not known, it may even change during VM lifetime

• Many VMs could be in almost idle state

• VMs change over the time (some come, some go)

Problem statement

Failures of virtualization platform affect VMs but could not be observed

directly.

Example 1: network storage throughput is affected by failure, causing

latency in all disk operations in all VMs

Example 2: tenant networking is affected by packet loss in underlying

vxlan tunnel, it cannot be measured directly on tunnel level, but affects

TCP traffic between VMs.

m
e
tr

ic
s

ULTRA-SCALE AIOPS LAB 5

Hypervisor Health

Behavior Evaluation

Load generated on hypervisor affected the

VMs CPU utilization

Our experiments indicate that the best way to

detect the failure of hypervisors is to monitor the

CPU usage of VMs

Observation

▪ We analyzed the effect of overloading the host

running the hypervisor

▪ 4 metrics were monitored: CPU, MEM, Disk

Rate and IO

▪ CPU metric is the most affected and visualized

parameters in the VMs

▪ CPU in the Virtual machines decreases if there

is certain workload going on them

▪ CPU in the virtual machines increases if there

is no workload going on them

▪ All or most of the virtual machines are affected

when a load is introduced on hypervisor

Further research

▪ How generic and representative is the fault

(i.e., hypervisor load)? Disk IO

MEM

Disk rate

CPU

Linux Kernel

KVM Kernel Module

QEMU-KVM

VM2

Application

Containers

Ubuntu 18.04

vCPU0 vCPU4…
Other

Userspace

Processes

Stress-ng

Monitoring

Agents

libvirtd

Ubuntu 18.04 VM

Store

VM metrics

QEMU-KVM

VM1

Application

Containers

Ubuntu 18.04

vCPU0 vCPU4…

Monitoring

Agents

Monitoring

Agents

InfluxDB

Prometheus

Grafana

Observe

metric behavior

ULTRA-SCALE AIOPS LAB 6

KVM

KVM (Kernel-based Virtual Machine) hypervisor is a kernel module (kvm.ko). The

process that runs KVM is typically the QEMU (Quick Emulator) process.

KVM/QEMU combination works as follows:

• KVM Module: Loaded into the Linux kernel. It provides the necessary

infrastructure for hardware-assisted virtualization.

• QEMU Process: User-space emulator that interfaces with the KVM kernel

module for creating and managing virtual machines.

When starting a virtual machine using qemu-system-x86_64, it launches a QEMU

process that calls KVM module:

qemu-system-x86_64 -enable-kvm -cpu host -m 2048 -hda your_disk_image.qcow2

• -enable-kvm: Enables KVM for hardware virtualization.

• -cpu host: Uses the host CPU features.

• -m 2048: Allocates 2 GB of RAM for the virtual machine.

• -hda your_disk_image.qcow2: Specifies the disk image for the virtual machine

Tools such as libvirt or virt-manager abstract the details of starting KVM/QEMU

virtual machines.

$ ps -ef | grep qemu-system-x86_64
libvirt+ 756677 1 0 Dez14 ? 00:14:21
/usr/bin/qemu-system-x86_64 -name guest=ubuntu-
1,debug-threads=on -S -object {"qom-
type":"secret","id":"masterKey0","format":"raw","fi
le":"/var/lib/libvirt/qemu/domain-50-ubuntu-
1/master-key.aes"} -machine pc-q35-
6.2,usb=off,vmport=off,dump-guest-core=off,memory-
backend=pc.ram -accel kvm -cpu host,migratable=on -
m 2048 -object {"qom-type":"memory-backend-
ram","id":"pc.ram","size":2147483648} -overcommit
mem-lock=off -smp 2,sockets=2,cores=1,threads=1 -
uuid 283f1e7c-c249-44b7-bcd5-b48e406c32e4 -no-user-
config -nodefaults -chardev
socket,id=charmonitor,fd=43,server=on,wait=off -mon
chardev=charmonitor,id=monitor,mode=control -rtc
base=utc,driftfix=slew -global kvm-
pit.lost_tick_policy=delay -no-hpet -no-shutdown -
global ICH9-LPC.disable_s3=1 -global ICH9- …

https://virt-manager.org/

ps -ef | grep qemu-system-x86_64

ULTRA-SCALE AIOPS LAB 7

Theory

Anomaly detection for multivariate time series

A review on outlier/anomaly detection in time series data, Ane Blázquez-García, et

al.

Model Paper reference

PCA

[2003] Shyu M L, Chen S C, Sarinnapakorn K, et al. A novel

anomaly detection scheme based on principal component

classifier

iForest
[ICDM'2008] Fei Tony Liu, Kai Ming Ting, Zhi-Hua Zhou:

Isolation Forest

LODA
[Machine Learning'2016] Tomás Pevný. Loda: Lightweight

online detector of anomalies

LSTM

[KDD'2018] Kyle Hundman, Valentino Constantinou,

Christopher Laporte, Ian Colwell, Tom Söderström. Detecting

Spacecraft Anomalies Using LSTMs and Nonparametric

Dynamic Thresholding

Comprehensive list of techniques: https://github.com/durgeshsamariya/awesome-outlier-detection-resources

Lightweight Online Detector of Anomalies (LODA)

Given a set of data points, the algorithm randomly creates numerous

sparse random projections, and then fits a 1-dimensional density

model. Then, “surprise” is measured based on the density estimator

(i.e., adaptive histogram estimator).

ULTRA-SCALE AIOPS LAB 8

Theory

Anomaly detection for multivariate time series

Comprehensive list of techniques: https://github.com/durgeshsamariya/awesome-outlier-detection-resources

As the problem above clearly has zero Anomaly data, this unsupervised

Anomaly detection problem will be treated as an outlier detection problem.

There are several approaches to deal with this problem, which are as follows:

Density Based

• RKDE: Robust Kernel Density Estimation

• DBSCAN: Density-Based Spatial Clustering of Applications with Noise

• EGMM: Ensemble Gaussian Mixture Model

Neighbour or Distance Based

• LOF: Local Outlier Factor

• ABOD: kNN Angle-Based Outlier Detector

• ORCA: Outlier detection and Robust Clustering

Quantile Based

• OCSVM: One-class SVM

• SVDD: Support Vector Data Description

Projection Based

• IFOR: Isolation Forest

• LODA: Lightweight Online Detector of Anomalies

ULTRA-SCALE AIOPS LAB 9

Metrics

Overview

Available metrics
• Metrics are collected from hypervisor via libvirt API

• List of available metrics:
https://libvirt.org/html/libvirt-libvirt-domain.html#virConnectGetAllDomainStats

• Some metrics require guest agent to be installed. In this presentation only agent-less metrics

are covered.

Metrics collection
• From the shell metrics can be viewed by command

virsh domstats <domain>
• Collectd virt plugin.

• Direct Prometheus writer https://github.com/kumina/libvirt_exporter/

Nova metadata
• VMs created by OpenStack contain metadata with name, flavor and user information.

• Metadata can be retrieved by command:

virsh metadata <domain> --uri http://openstack.org/xmlns/libvirt/nova/1.0
• Metadata retrieval is supported in collectd version 5.9 (possible to extend name with attributes

extracted by XPath)

Hypervisor (KVM)

VM1 VM2
VMN

Host OS

Metrics

Collectd configuration:

LoadPlugin libvirt

<Plugin virt>
Connection "qemu:///system"
HostnameFormat name
ExtraStats cpu_util disk operations disk_err

domain_state job_stats_background
job_stats_completed pcpu perf vcpupin
</Plugin>

Metric retrieval

https://libvirt.org/html/libvirt-libvirt-domain.html#virConnectGetAllDomainStats
https://github.com/kumina/libvirt_exporter/
http://openstack.org/xmlns/libvirt/nova/1.0

ULTRA-SCALE AIOPS LAB 10

Metrics

Perf events statistics

What is perf?

• Perf is a performance analyzing tool in Linux, and it can instrument CPU performance counters, tracepoints, kprobes, and uprobes (dynamic tracing). Perf

supports a list of measurable events, and can measure events coming from different sources. For instance, some event are pure kernel counters, in this case

they are called software events, including context-switches, minor-faults, etc..

• Full list of performance events: https://libvirt.org/html/libvirt-libvirt-domain.html#virConnectGetAllDomainStats

How to:

• Get all perf events:

virsh perf <domain>

• Enable perf event:

virsh perf <domain> --enable <event>

• Get counter of the event:

virsh domstats <domain>

• Disable event:
virsh perf <domain> --disable <event>

Collectd configuration

• Collectd is a daemon which collects system and application performance metrics periodically and provides mechanisms to store the values in a variety of ways.

• Collecting perf metrics need to be enabled explicitly (https://collectd.org/documentation/manpages/collectd.conf.5.shtml#extrastats_string)
• All metrics are exported as collectd_virt_perf_total with event name specified as metric tag, e.g. collectd_virt_perf_total{virt="perf_cpu_clock“}

https://libvirt.org/html/libvirt-libvirt-domain.html#virConnectGetAllDomainStats
https://collectd.org/documentation/manpages/collectd.conf.5.shtml#extrastats_string

ULTRA-SCALE AIOPS LAB 11

Metrics

CPU

It is expected that cpu.time = cpu.user + cpu.system + guest_time, where guest_time is sum of vcpu.N.time metrics

Libvirt metric name Unit Collectd metric name Description

cpu.time nanosecond Total CPU time spent for this domain

cpu.user nanosecond collectd_virt_ps_cputime_user_total User CPU time spent

cpu.system nanosecond collectd_virt_ps_cputime_syst_total System CPU time spent

vcpu.current count Current number of online virtual CPUs

vcpu.maximum count Maximum number of online virtual CPUs

vcpu.N.state enum State of the virtual CPU: 0 – offline, 1 – running, 2 –

blocked (https://libvirt.org/html/libvirt-libvirt-
domain.html#virVcpuState)

vcpu.N.time nanosecond collectd_virt_virt_vcpu_total{virt=“N”} Virtual CPU time spent by virtual CPU
(https://libvirt.org/html/libvirt-libvirt-
domain.html#virVcpuInfo)

vcpu.N.wait nanosecond Virtual CPU time spent by virtual CPU <num>

waiting on I/O
(https://www.redhat.com/archives/libvir-list/2015-
December/msg00408.html)

nanosecond collectd_virt_virt_cpu_total_total Total utilization of all guest virtual CPUs

https://libvirt.org/html/libvirt-libvirt-domain.html#virVcpuState
https://libvirt.org/html/libvirt-libvirt-domain.html#virVcpuInfo
https://www.redhat.com/archives/libvir-list/2015-December/msg00408.html

ULTRA-SCALE AIOPS LAB 12

Metrics

Memory

Libvirt metric name Unit Collectd metric name Description

balloon.current kiB (1024 bytes) collectd_virt_memory{virt="actual_balloon“} The memory in kiB currently used
(https://libvirt.org/html/libvirt-libvirt-
domain.html#virDomainInfo)

balloon.maximum kiB collectd_virt_memory{virt="total“} The maximum memory in kiB allowed
(https://libvirt.org/html/libvirt-libvirt-
domain.html#virDomainInfo)

balloon.last-update second collectd_virt_memory{virt="last_update“} The time in seconds sine the UNIX epoch (1970-

01-01) at which the statistics where last updated.

0 means that polling is not enabled.

balloon.rss kiB collectd_virt_memory{virt="rss“} Resident Set Size of the running domain's

process

VirtIO Memory Ballooning
VirtIO provides Memory Ballooning: the host system can reclaim memory from virtual machines (VM) by telling them to give back part of their memory to the host

system. This is achieved by inflating the memory balloon inside the VM, which reduced the memory available to other tasks inside the VM. Which memory pages

are given back is the decision of the guest operating system (OS): It just tells the host OS which pages it does no longer need and will no longer access. The host

OS then un-maps those pages from the guests and marks them as unavailable for the guest VM. The host system can then use them for other tasks like starting

even more VMs or other processes. (https://pmhahn.github.io/virtio-balloon/)

Agent-based metrics
• swap_in, swap_out -The number of swapped-in and swapped-out pages as reported by the guest OS since the start of the VM.

• major_fault, minor_fault - The number of page faults as reported by the guest OS since the start of the VM.

• unused - Inside the Linux kernel this actually is named MemFree.

usable - Inside the Linux kernel this is named MemAvailable

• available - Inside the Linux kernel this is named MemTotal.

https://libvirt.org/html/libvirt-libvirt-domain.html#virDomainInfo
https://libvirt.org/html/libvirt-libvirt-domain.html#virDomainInfo
https://pmhahn.github.io/virtio-balloon/

ULTRA-SCALE AIOPS LAB 13

Metrics

Network

Libvirt metric name Unit Collectd metric name Description

net.count count Number of network interfaces on this domain

net.N.name string tag in metric Interface name

net.N.rx.bytes bytes collectd_virt_if_octets_rx_total{virt=“name”} Bytes received

https://libvirt.org/html/libvirt-libvirt-
domain.html#virDomainInterfaceStatsStruct

net.N.rx.pkts packets collectd_virt_if_packets_rx_total{virt=“name”} Packets received

net.N.rx.errs packets collectd_virt_if_errors_rx_total{virt=“name”} Receive errors

net.N.rx.drop packets collectd_virt_if_dropped_rx_total{virt=“name”} Receive packets dropped

net.N.tx.bytes bytes collectd_virt_if_octets_tx_total{virt=“name”} Bytes transmitted

net.N.tx.pkts packets collectd_virt_if_packets_tx_total{virt=“name”} Packets transmitted

net.N.tx.errs packets collectd_virt_if_errors_tx_total{virt=“name”} Transmission errors

net.N.tx.drop packets collectd_virt_if_dropped_tx_total{virt=“name”} Transmit packets dropped

• Network metrics are available per network interface.

• Name of network interface is the same as on host system. Metrics also can be retrieved from ifconfig <interface> with swap of rx and tx fields.

ULTRA-SCALE AIOPS LAB 14

Metrics

Disk

Libvirt metric name Unit Collectd metric name Description

block.count count Number of block devices

block.N.name string tag in metric Name of the block device <num> as string. Matches
the target name (vda/sda/hda) of the block device.

block.N.path string String describing the source of block device <num>, if
it is a file or block device

block.N.rd.reqs count collectd_virt_disk_ops_read_total{virt=“name”} Number of read requests

block.N.rd.bytes byte collectd_virt_disk_octets_read_total{virt=“name“} Number of read bytes

block.N.rd.times nanosecond collectd_virt_disk_time_read_total{virt=“name”} Total time (ns) spent on reads

block.N.wr.reqs count collectd_virt_disk_ops_write_total{virt=“name”} Number of write requests

block.N.wr.bytes byte collectd_virt_disk_octets_write_total{virt=“name”} Number of written bytes

block.N.wr.times nanosecond collectd_virt_disk_time_write_total{virt=“name”} Total time (ns) spent on writes

block.N.fl.reqs count Total flush requests

block.N.fl.times nanosecond Total time (ns) spent on cache flushing

block.N.allocation Offset of the highest written sector

block.N.capacity byte Logical size in bytes of the block device backing image

block.N.physical byte Physical size in bytes of the container of the backing
image

ULTRA-SCALE AIOPS LAB 15

Datasets

Hosts

Server Machine Dataset (SMD) Download raw datasets⬇️
• Collected from a large Internet company containing a 5-week-long monitoring KPIs of 28

machines. The meaning for each KPI could be found here.

https://github.com/NetManAIOps/OmniAnomaly.git
https://github.com/NetManAIOps/OmniAnomaly/issues/22

ULTRA-SCALE AIOPS LAB 16

Algorithm Design

Attribution Theory

Reasoning

▪ Use historical data to learn historical behavior of metrics

• Determine distinctiveness and consistency

• E.g., Historical behavior = [A, A, B, C, Z, A, B]

▪ At time t, compare current behavior of VMs

• Hypervisor is faulty if:

‒ high consensus and

‒ (low consistency and/or high distinctiveness)

Observation Interpretation Attribution Root Cause

Does the metric

behaves this way

when executing other

workloads?

Yes. Low distinctiveness Internal Workload

No. High distinctiveness External Hypervisor

Do other metrics

behave the same way

when a hypervisor

fails?

Yes. High consensus External Hypervisor

No. Low consensus Internal Workload

Does metrics behave

this way historically?

Yes. High consistency Internal Workload

No. Low consistency External Hypervisor

Behavior A Behavior B Behavior C Behavior Z

now (t)

Current

behavior

Is the current behavior of the metric

different from past behaviors

(distinctiveness and consistency)?

Past

Is there a consensus of

metrics behavior across

VMs (consensus)?

VM1

VM2

VM3

VM4

VM5

VM6

VM7

HAD algorithm

answers to 2

questions

1 2 3

now (t)

Current

behavior

Note: Ideally, historical behavior should not include previous hypervisor failures. Once an hypervisor fails, its history needs to be deleted

ULTRA-SCALE AIOPS LAB 17

Algorithm Design

Procedure

Procedure

▪ 1. For each time series, find its change points

▪ 2. Using past behavior, dynamically filter change points

▪ 3. Find an area with a higher change density of change

points across the various time series (consensus)

The presence of such an area is attributed to an

hypervisor failure if it has not occurred in the recent past

(distinctiveness and consistency) 1

321

2

3

Current

behavior

Current

behavior
Past

behavior

1. Find Change

Points

2. Dynamic Filtering

For each VM

3. Evaluate Density

Change

end

start

Challenges

▪ Parameter selection

• thresholds, window size (3), …

▪ Requires a set of online algorithms

ULTRA-SCALE AIOPS LAB 18

Algorithm Design

Change Point detection

Moving Z-score. Score outliers in a univariate and sequential dataset, i.e., a time series. Fits a moving average to a univariate time series and

identifies points that are far from the fitted curve.

Approach

▪ The moving Z-score for a data point 𝑥𝑡 is

simply the value of 𝑥𝑡 standardized by

subtracting the moving mean just prior to time 𝑡
and dividing by the moving standard deviation

just prior to 𝑡
▪ We use a variation of Z-score, by sampling the

short window instead of using only data point

𝑥𝑡, this make the approach more resilient to

outliers

1. Change Point detector = z-score(long, short)

Long window

Short window
VMn

time-series

moving average
moving standard deviation

Change Point techniques

▪ Window-based (e.g., Z-score) O(n)

▪ PELT (changes in mean, variance of time

series) O(n)

▪ bcp package (Bayesian single change point

analysis of univariate time series)

▪ Binary segmentation O(n log n)

▪ Multivariate CP detection

▪ EWMA

ULTRA-SCALE AIOPS LAB 19

Algorithm Design

Dynamic Filtering

𝑡𝑠1

𝑡𝑠2

𝑡𝑠3

𝑡𝑠𝑛

𝑡𝑖𝑚𝑒

function dynamic_filtering(queue, dp, threshold, mid):
if queue is full:
count = [1 if v > threshold else 0 for v in queue]
past_behavior = sum(count[:mid])
curr_behavior = sum(count[mid:])
if curr_count < past_count:
return True

return False

𝑡𝑠_𝑠𝑧

𝑛

Problem. When c change points are detected in a time series, is

this observation historically consistent? The historical behavior of

a time series needs to be considered to determine if the current

behavior is different or not.

Solution. 𝑂(𝑛)

…

Filtering techniques

▪ Streaming Histograms

▪ Kolmogorov–Smirnov test

▪ Anderson-Darling (AD) test

Current

behavior

Past

behavior

count = 2 drop 2 points

x x

Approach

▪ Use a simple form of past behavior modeling by counting the

number of change points which occurred in the past during

the same interval of time

▪ When a new change data point is detected, drop the point if

it is below the count of past behavior

Queue Q

VM1

metric

VM2

metric

Current

behavior

Past

behavior

Density D1 Density D2

ULTRA-SCALE AIOPS LAB 20

Algorithm Design

Correlation strength

𝑡𝑠1

𝑡𝑠2

𝑡𝑠3

𝑡𝑠𝑛

𝑡𝑖𝑚𝑒

function Overlap(x): (*)
for t in [0, ts_sz]:
color[0, n] = 0
for w in [t, t + window_sz]:
for i in [0, n]:
color[a[i][w]] = i

if |set(color[j] != 0)| > c:
print(t, color)

𝑡

𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑧

𝑡𝑠_𝑠𝑧

𝑛

Problem (Min Color Count Over Intervals Problem (MinColorCount)). Given 𝑛 time series 𝑡𝑠𝑖 , of lengths 𝑡𝑠𝑠𝑧, find the intervals with a

maximum lengths of 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑧, which contain observations from 𝑐 time series.

Trivial solution. 𝑂(𝑛 × 𝑡𝑠𝑠𝑧 × 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑧)

Moving window

(*) Without loss of generalization, assume that all time series have the same length

function Update(x):
while q is not empty:
if x.timestamp - q[0].timestamp >= windows_sz:
dequeue q

enqueue x in q
if |set(q[j].color)| > c:
print(q)

Online solution. 𝑂(𝑛 × 𝑡𝑠𝑠𝑧)

… 3 colors …

New point arrives: update(x)

▪ Case 1. distance between the timestamp of the new

point and the start data point is < windows_sz

‒ Enqueue data point x in Q

▪ Case 2. distance between the timestamp of the new

point and the start data point is >= windows_sz

‒ Until the first point distance is lower than

windows_sz, dequeue Q

‒ Enqueue x

▪ If queue q has more then c colors, emit queue state

Queue Q

A data point is a

tuple (color,

timestamp)

Start data point

in window

𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑧

ULTRA-SCALE AIOPS LAB 21

Algorithm Design

Interface and Parameters

class HAD(TimeseriesAlgorithm):
"""

Hypervisor Anomaly Detection (HAD) using Change Points,
dynamic filtering and Min Color Count Over Intervals

"""
name = 'had'
version = '1.0'
multivariate_test = True

default_config = DEFAULTS

@typechecked
def __init__(self,

window_long_sz: int = DEFAULTS['window_long_sz'],
window_short_sz: int = DEFAULTS['window_short_sz'],
threshold: float = DEFAULTS['threshold'],
dynamic_filtering: bool = DEFAULTS['dynamic_filtering'],
overlap_min_pct: float = DEFAULTS['overlap_min_pct'],
overlap_window_sz: float = DEFAULTS['overlap_window_sz'],
online: float = DEFAULTS['online']
):

…

Parameters

▪ Parameters are derived from the implementation of

the 3 features (change point detection, filtering and

density change evaluation)

Parameter List

▪ window_long_sz, window_short_sz

• 2 temporal windows used to detect change

points over time series

▪ threshold

• Define the magnitude of a change point to be

considered relevant due to its magnitude

▪ dynamic_filtering

• To reduce the number of false positives, dynamic

filtering can be activated

▪ overlap_min_pct

• Percentage of time series (i.e., VMs) which need

to be correlated to trigger an hypervisor anomaly

▪ overlap_window_sz

• Windows size used to detect a correlation

between time series

▪ online

• Execute HAD as using a stream paradigm

ULTRA-SCALE AIOPS LAB 22

Metrics Collector

Download OS image
• https://ubuntu.com/download/server

Create a VM
virt-install --name ubuntu-1 \

--memory 2048 \

--vcpus 2 \

--disk size=8 \

--cdrom /home/jcardoso/Downloads/ubuntu-23.10-live-server-amd64.iso \

--os-variant ubuntumantic

Configure OS
Follow the instructions on the screen to configure your new OS

Clone VMs
virt-clone --original ubuntu-1 --name ubuntu-2 --auto-clone

virt-clone --original ubuntu-1 --name ubuntu-3 --auto-clone

virt-clone --original ubuntu-1 --name ubuntu-4 --auto-clone

Install node exporter
sudo apt-get update

sudo apt-get install prometheus-node-exporter -y

sudo apt-get install prometheus-libvirt-exporter -y

sudo systemctl status prometheus-node-exporter

libvirt metrics: curl http://localhost:9177/metrics

OS metrics: curl http://localhost:9100/metrics

http://localhost:9177/metrics
http://localhost:9100/metrics

ULTRA-SCALE AIOPS LAB 23

Injecting Stress

stress-ng --cpu 1 --cpu-cores 0,2

In this example, --cpu 1 instructs stress-ng to create 1 worker for CPU

stress, and --cpu-cores 0,2 specifies that it should stress the CPU cores 0

and 2. Adjust the number of workers and the list of CPU cores based on

your requirements.

cpulimit

The cpulimit command allows you to limit the CPU usage of a process.

Install cpulimit on Debian/Ubuntu

sudo apt-get install cpulimit

Limit CPU usage of process to 50%

cpulimit -e process_id -l 50

Workflow

1. Each VM is set to a CPU load of 50%:

stress-ng --cpu 2 --cpu-load 50 --timeout 60s

2. Limit CPU usage in qemu processes

for pid in `pgrep qemu-system-x86`; do echo $pid && sudo cpulimit -b -l 50 -

p "$pid" ; done

3. Stop CPU limit

sudo killall cpulimit

#!/bin/bash

Set the duration for each step (in seconds)

duration_per_step=5

n_cpu=2

Function to run stress-ng with CPU stressor and specified load

run_stress_ng() {

local cpu_load=$1

if [-z "$cpu_load"]; then

echo "Load not assigned."

Generates a random number between 0 and 99

cpu_load=$((RANDOM % 100))

fi

echo "Load has a value: $cpu_load"

stress-ng --cpu $n_cpu --cpu-load $cpu_load --timeout ${duration_per_step}s

}

echo "Simulating workload increase and decrease..."

for ((i = 1; i <= 10; i++)); do

run_stress_ng

done

echo "Workload simulation completed."

ULTRA-SCALE AIOPS LAB 24

Virtualization Layer

Experimental Testbed

Overview

VM1 VMN

Role 1. Hypervisor host
Role 2. Operations

Generator

Node roles
1. Hypervisor host (KVM with VMs running on top of it)

2. Workload Generator (emulates user traffic for applications

running in VMs)

3. Monitoring (metrics processing)

metrics

Role 3. Monitoring

Prometheus

Fault Injection
Faults are injected to virtualization layer of hypervisor host: to hypervisor itself, host OS,

virtual volumes and virtual networking

user workload

Grafana

Load Script

Type of VM workloads
1. Online shop: front-end, back-end and database. User requests are

random

2. Monitoring database with uniformly-distributed write operations

3. CPU-bound operations, short-live with high CPU consumption and low IO

4. Almost idle: low CPU and low IO

Disk IO

CPU utilization

Number of VMs

Scenarios
1. Constant workload type, constant number of VMs: one case per type, plus one mixed

consisting of VMs of different types of workload.

2. Constant workload, number of VMs changes over the time, e.g. some spawned, some

removed.

3. Number of VMs changes and workload changes too.

Network IO

Testbed overview Metrics similar to available in the Cloud

Fault

ULTRA-SCALE AIOPS LAB 25

Experimental Testbed

Virtualization Platform and Metrics

CPU 0

Linux kernel OVS (virtual networking)

Application VM 1

vCPU 0

Physical

Layer

Hypervisor

Virtual

Machines

KVM

CPU 1 CPU N ethN ethN /dev/sda /dev/sdN

vCPU 1

Application VM N

vCPU 0 vCPU 1

Storage (LVM or network)

net.N.rx.(bytes|pkts|errs|drop)

Received bytes, packets, errors or dropped

net.N.tx.(bytes|pkts|errs|drop)

Transmitted bytes, packets, errors or dropped

cpu.(time|user|system|wait|idle)

System CPU metrics including

user-space, kernel and i/o

block.N.rd.(reqs|bytres|times)

Number of read requests, bytes read and time spent on reads

block.N.wr.(reqs|bytres|times)

Number of write requests, bytes written and time spent on

writes

vcpu.N.time

Virtual CPU time spent by virtual CPU

(https://libvirt.org/html/libvirt-libvirt-

domain.html#virVcpuInfo)

net.N.rx.(bytes|pkts|errs|drop)

Received bytes, packets, errors or

dropped

net.N.tx.(bytes|pkts|errs|drop)

Transmitted bytes, packets, errors or

dropped

Virtual Machine metrics

Host Metrics

Container
Container

Container
Container

Container
Container

block.N.rd.(reqs|bytres|times)

Number of read requests, bytes read and

time spent on reads

block.N.wr.(reqs|bytres|times)

Number of write requests, bytes written

and time spent on writes

https://libvirt.org/html/libvirt-libvirt-domain.html#virVcpuInfo

ULTRA-SCALE AIOPS LAB 26

Experimental Testbed

Faults List

1. High CPU consumption by OS

kernel of hypervisor host

Injection is done by using `stress-ng`

tool with stressor affecting kernel

space.

Fault Impact on the virtualization layer Impact on metrics (expectation)

Host kernel consumes a lot of CPU

ULTRA-SCALE AIOPS LAB 27

Experimental Testbed

Evaluation Framework

Data Generation Algorithm Test ModuleScenario

Parameters:

• VM count

• VM load profile (e.g.

CPU consumption)

S
y
n
th

e
ti
c
 d

a
ta

S
im

u
la

te
d
 d

a
ta

R
e
a
l
c
lo

u
d
 d

a
ta

• Generate synthetic

metrics and labels

• Deploy VMs

• Generate user

workload

• Inject faults and record

time (used as labels)

• Collect metrics from

hypervisor

• Download metrics

• Download the data

from CloudMonitor

• Manually label the data

• Apply algorithm

• Evaluation using

labels

• Calculate scores

(precision, recall, F1)

Parameters:

• VM count

• VM load profile (e.g.

CPU consumption)

• Fault injection time

• Fault strength

• Run algorithm

• Evaluate

• Improve algorithm

ULTRA-SCALE AIOPS LAB 28

Experimental Testbed

Algorithm

Select window

[t-w, t]

For each

VM

Detect change

point

Has

change

point?

Store change point

in the list

Intersect change

points

Has

intersection

?

Input: one time-

series per VM

No anomaly Anomaly reported

Y Y

N

Done

Input:

• Set of time-series – one per VM

Algorithm parameters:

• Window size – number of points to take into account for change

point detection

• Change threshold – how sensitive change point detection to

feature variation

Output:

• True, if there is an anomaly in time t

ULTRA-SCALE AIOPS LAB 29

Experimental Testbed

Baseline Algorithm Evaluation

Positive case

Negative Case

Evaluation is done with 20 time-series, change threshold 5% and window size

from 10 to 60 points

Further (future) improvements

• Voting threshold < 100%

• Handle a case when change point detected not in exact time but with small

variation

• Improve change point detection algorithm (more sophisticated then just mean

value)

ULTRA-SCALE AIOPS LAB 30

Evaluation (semi-synthetic)

Dataset Generation

Generate

Synthetic Data

Hypervisor 1

Hypervisor 2

Hypervisor 3

Hypervisor n

AbnormalNormal

Generators

(e.g., random)

…

Open Datasets

VM data

Change

base signal

Dataset Time

Ticks

Number

of VMs

Positive

Cases

Negative

Cases

1 Synthetic Dataset [1] 1000 10 5 5

2 Experimental

Synthetic Merged

Dataset [2]

5400 2 + 8

(synthetic)

42 17

3 Microsoft Azure

Dataset*[3]

5400 10 16 10

4 Alibaba Dataset*[4] 5400 10 10 10

Other datasets used in previous experiments

ULTRA-SCALE AIOPS LAB 31

Evaluation (semi-synthetic)

Dataset Generation

Generators

Normal

Hypervisor 1

Random hard

Random difficult

Random easy

def gen_random_hard():
n_ts = 30
return {

'env':
{

'name': 'random_hard',
'description': 'Increase 20%-50% (with delay 0-30, width 1-15) in 90% VMs',
'n_hypervisors': 5,
'n_vms_sets': [10, 15],

},
'data':

{
'src_data_dir': os.path.abspath('../datasets/azure/normal/'),
'dst_data_dir': os.path.abspath('./.data/azure/random_hard/'),

'ts_len': 575,
'ts_anomaly_point': 50,
'n_ts': n_ts,
'ts_percentage_affected': .9,

'ts_increase_width': np.random.randint(1, 15, size=n_ts, dtype=int).tolist(),
'ts_increase_delay': np.random.randint(0, 30, size=n_ts, dtype=int).tolist(),
'ts_increase_height_percentage': np.random.uniform(0.2, 0.5, size=n_ts).tolist(),

'ts_stay_width': np.random.randint(200, 220, size=n_ts, dtype=int).tolist(),

'ts_decrease_width': np.random.randint(1, 5, size=n_ts, dtype=int).tolist(),
'ts_decrease_height_percentage': np.random.uniform(0.0, 0.0, size=n_ts).tolist(),
'ts_decrease_delay': np.random.randint(1, 40, size=n_ts, dtype=int).tolist(),

},
'param_grid':

{
'window_long_sz': [25, 30, 40],
'window_short_sz': [10, 20],
'threshold': [1.6, 1.8, 2.0, 2.2],
'dynamic_filtering': [True, False],
'overlap_min_pct': [.7, .8, .9],
'overlap_window_sz': [30],
'online': [True],

},
'optimization':

[
Integer(25, 40, name='window_long_sz', dtype=int),
Integer(10, 20, name='window_short_sz', dtype=int),
Real(1.8, 2.1, name='threshold', dtype=float),
Integer(0, 1, name='dynamic_filtering', dtype=int),
Real(.6, .8, name='overlap_min_pct', dtype=float),
Integer(40, 60, name='overlap_window_sz', dtype=int),

]
}

Abnormal

Parameter

grid search

Parameter

optimization

Simulation

environment

Hypervisor

anomalyExample of a dataset generator for test case: 'random_hard’

Data

generation

Each test case: 5 hypervisors with 30 VMs each

ULTRA-SCALE AIOPS LAB 32

Evaluation (semi-synthetic)

Dataset Generation

ts_anomaly_point
ts_len

ts_percentage_affected

ts_increase_width

ts_increase_height_percentage

ts_increase_delay

ts_stay_width

Generators Key Parameters

▪ n_ts

• Number of time-series (VMs) to generate

▪ ts_anomaly_point

• timestamp when an anomaly occurs

▪ ts_percentage_affected

• Percentage of ts affected by the anomaly

▪ ts_increase_delay

• Number of data points after the anomaly at

which VMs are affected

▪ ts_increase_height_percentage

• Percentage of ts change after anomaly

▪ ts_increase_width

• Width of ts change after anomaly

▪ ts_stay_width

• Width of stay after degradation
▪ ts_decrease_delay

• Number of data points after stay period

▪ ts_decrease_height_percentage

• Percentage of change after stay period
▪ ts_decrease_width

• Width of ts change after stay period

n_ts

Hypervisor

anomaly

Degradation

period

ULTRA-SCALE AIOPS LAB 33

Evaluation (semi-synthetic)

F1, precision, recall

Selecting Parameters for Evaluation

▪ Apply Bayesian optimization on random diff(icult) scenario to identify

best parameters for addressing difficult cases

▪ Select random set of parameters from best sorted set

▪ Selected parameters

• {'window_long_sz': 30.933333333333334, 'window_short_sz': 17.8,

'threshold': 1.9886447684992719, 'overlap_min_pct':

0.7206731936373396, 'overlap_window_sz': 51.0}

▪ Note: depending on the results from running HAD in production, the

technique to find the pseudo optimal parameter set needs to be revised

Procedure

▪ Generate 3 types of datasets for hypervisors

• Random easy, random hard, random difficult

▪ Evaluation HAD on all 3 scenarios (e.g., random easy, random hard, …)

by varying the number of VMs managed by hypervisor

▪ Calculate F1, precision and recall

Evaluation Results

▪ In general, the results are excellent at # VMs > 13

▪ For scenario 1) and 2), precision = 1, when # VMs > 13

• No false positives

▪ Recall is also good for these scenarios

• With the current implementation, a few hypervisor failures will not be

caught when the # of VMs is low (# VM < 14)

F1, precision, recall

Scenario name

VMs > 13 VMs

F1 = 1 or precision = 1.0

Excellent results

VMs > 13

Most probable

production scenario

Good results

8 > # VMs > 14

Excellent results

VMs > 13

Good results

8 > # VMs > 14

Excellent precision

VMs > 13

Good results

8 > # VMs > 14

ULTRA-SCALE AIOPS LAB 34

Evaluation (semi-synthetic)

User Interface

Dashboard

▪ Shows the heath status of hypervisors (9 hypervisors are shown)

• Beige background indicates a problem

• Background color indicated correlation

▪ Each hypervisor shows the volatility of the managed VMs

• High bars indicate high volatility

Background
Hypervisor anomaly

Bars
VM volatility

Most VMs have a low

or no volatility. Thus,
hypervisor is healthy

Dashboard

PinPoint Visualization

▪ Detailed visualization on the behavior of VMs’ signals

• Change points and overlapping regions are shown

VM 01

VM 02

VM 03

VM 04

VM 05

VM 06

VM 07

VM n

Vertical overlaps represent the correlation of behavior change as a

consequence of, e.g., an hypervisor failure. The number of horizontal
overlaps indicate the confidence of an anomaly.

Red line

Volatility correlation
degree among VMs

Note: the correlation degree determines if the volatility of

VMs is, or is not, related to the volatility/churn of workloads

ULTRA-SCALE AIOPS LAB 35

Evaluation (semi-synthetic)

Performance: Online vs Offline

Limitations of offline HAD

▪ Uses 2 sliding windows: mean and std are expensive to recompute

Effect of time series size on running time

▪ 1 hypervisor; 1 second sampling; 25 VMs

▪ Monitoring duration: 1h, 2h, 3h, 4h, 5h, 6h

▪ Online improvements: 4x (1h) to 13x (6h)

Effect of window size on running time

▪ 1 hypervisor; 1 second sampling; 25 VMs

▪ Sliding windows size: [16, 32, 64, 128, 256, 512, 1024, 2048], 15

▪ Monitoring duration: 6h

▪ Online improvements: 5.5x (sz: 16) to 18x (sz: 2048)

HAD Performance Analysis: Online vs. Offline (windows = (100, 25))

Time-series size

T
im

e
 (

s
e

c
)

Offline

Online

13x improvement

4x improvement

HAD Performance Analysis: Online vs. Offline (8 ts * 10k data points)

Windows size

T
im

e
 (

s
e

c
)

Offline

Online

18x improvement

5.5x improvement

+--------------+------+----------------+-----------------+-----------------+------------------+-------------+--------------+
| n_datapoints | n_ts | window_long_sz | window_short_sz | improvement_pct | improvement_fold | online_mean | offline_mean |
+--------------+------+----------------+-----------------+-----------------+------------------+-------------+--------------+
80000	8	16	15	17.76	5.63	0.75	4.21
80000	8	32	15	19.32	5.18	0.87	4.53
80000	8	64	15	18.45	5.42	0.88	4.76
80000	8	128	15	15.38	6.5	0.84	5.44
80000	8	256	15	12.26	8.16	0.83	6.74
80000	8	512	15	9.85	10.15	0.92	9.36
80000	8	1024	15	9.57	10.45	1.35	14.11
80000	8	2048	15	5.45	18.34	1.49	27.24
+--------------+------+----------------+-----------------+-----------------+------------------+-------------+--------------+

+--------------+------+----------------+-----------------+-----------------+------------------+-------------+--------------+
| n_datapoints | n_ts | window_long_sz | window_short_sz | improvement_pct | improvement_fold | online_mean | offline_mean |
+--------------+------+----------------+-----------------+-----------------+------------------+-------------+--------------+
3600	25	100	25	23.96	4.17	0.04	0.17
7200	25	100	25	19.41	5.15	0.07	0.35
10800	25	100	25	17.52	5.71	0.1	0.55
14400	25	100	25	16.38	6.1	0.13	0.8
18000	25	100	25	18.25	5.48	0.19	1.06
21600	25	100	25	13.52	7.39	0.17	1.22
+--------------+------+----------------+-----------------+-----------------+------------------+-------------+--------------+

High performance

improvements

recommend to adopt

streaming technologies for

monitoring

ULTRA-SCALE AIOPS LAB 36

Evaluation (semi-synthetic)

Conclusions

Assumptions

▪ CPU is the best metric to predict hypervisors’ anomalies

▪ Hypervisor anomalies cause changes in CPU mean and std. 3 scenarios exist:

• Increase 100%-150% (with delay 0, width 1) in 90% VMs

• Increase 20%-50% (with delay 0-15, width 1-15) in 90% VMs

• Increase 10%-30% (with delay 0-15, width 1-15) in 90% VMs

HAD algorithm

▪ Compare change point approaches with knee or trend identification

▪ Static training with holistic CPU model

▪ Dynamic training

▪ Effect of low CPU on false positives (e.g., the increase of 100% of a low metrics can be false positive dues to glitches and

sudden increases of OS processing)

▪ Variable threshold as a function of the number of VMs running in an hypervisor

Next steps

▪ Evaluate HAD with production data

▪ Decide between using the offline or online implementation

▪ Prepare system design

▪ Code goes to production (to be included in CAD)

Further research

▪ Can hypervisor application logs also be used?

▪ Can kvm_stat (which monitors more than 30 hypervisor metrics) also be used?

ULTRA-SCALE AIOPS LAB 37

Evaluation (CloudScope / CMC)

Insights on VM metrics

Only 1 observations

Only 2 observations

Only 6 observations

Case 1) Periodic

Case 2) Insufficient number of VMs

hypervisor = 3ee01be4-69ec-48f8-86cf-d5b9ec17d8b9

Case 3) Insufficient

Number of observations

ULTRA-SCALE AIOPS LAB 38

Evaluation

Baseline

Sr

No.

Algorithm Input Parameters

1 IAD timeticks x num_vms Window Size, Threshold, Percentage VMs Anomalous

2 ECP[5] timeticks x num_vms # of change points, Minimum number of observations between change points

3 BNB[6] timeticks x num_vms Window Size, number of trees, threshold for change points

4 BNBOnline[7] timeticks x num_vms Window Size, number of trees, threshold for change points

5 Isolation Forest[8] timeticks x num_vms contamination factor, requires training

6 Isolation Forest with Features timeticks x num_features contamination factor, requires training

Sr

No.

Algorithm Synthetic Experimental Synthetic

Merged

Azure Alibaba

1 IAD 0.96 0.86 0.96 0.57

2 ECP[5] 0.67 0.76

3 BNB[6] 0.62 0.90 0.8 0.33

4 BNBOnline[7] 0.87 0.81 0.86 0.4

5 Isolation Forest[8] 0.76 0.83 0.76 0.66

6 Isolation Forest with Features 0.76 0.83 0.76 0.66

https://gitlab.lrz.de/sw-campus-project-group/indirect_anomaly_detection/-/blob/master/example_notebooks/all_algorithms_synthetic.ipynb
https://gitlab.lrz.de/sw-campus-project-group/indirect_anomaly_detection/-/blob/master/example_notebooks/all_algorithms_eval_experimental_merged.ipynb
https://gitlab.lrz.de/sw-campus-project-group/indirect_anomaly_detection/-/blob/master/example_notebooks/all_algorithms_eval_azure_data.ipynb
https://gitlab.lrz.de/sw-campus-project-group/indirect_anomaly_detection/-/blob/master/example_notebooks/all_algorithms_eval_alibaba.ipynb

ULTRA-SCALE AIOPS LAB 39

Conclusions

Challenges

Improvements

• How to handle seasonality at low cost?

• How to handle noise?

• Update Dashboard to handle between 1 and 9 hypervisors with 8-20 VMs

ULTRA-SCALE AIOPS LAB 40

Related Work

https://cran.r-project.org/web/packages/ecp/vignettes/ecp.pdf

https://bhooi.github.io/papers/bnb_sdm19.pdf

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

https://cran.r-project.org/web/packages/ecp/vignettes/ecp.pdf
https://bhooi.github.io/papers/bnb_sdm19.pdf
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html

Copyright©2019 Huawei Technologies Co., Ltd.

All Rights Reserved.

The information in this document may contain predictive

statements including, without limitation, statements regarding

the future financial and operating results, future product

portfolio, new technology, etc. There are a number of factors that

could cause actual results and developments to differ materially

from those expressed or implied in the predictive statements.

Therefore, such information is provided for reference purpose

only and constitutes neither an offer nor an acceptance. Huawei

may change the information at any time without notice.

Bring digital to every person, home and
organization for a fully connected,
intelligent world.

Thank you.

