
Software Energy-Efficiency with Sweet Spot
Frequencies

Sebastian Götz∗, Thomas Ilsche∗, Jorge Cardoso∗†, Josef Spillner∗
∗ Technische Universität Dresden

Faculty of Computer Science
01062 Dresden, Germany

Email: {sebastian.goetz1, thomas.ilsche, josef.spillner}@tu-dresden.de
† University of Coimbra

Department of Informatics Engineering
3030-320 Coimbra, Portugal
Email: jcardoso@dei.uc.pt

Abstract—A common misconception is to equate software
energy-efficiency to CPU performance. The rationale of this fal-
lacy is that increasing CPU clock frequency involves a reduction
of CPU usage in time and, hence, energy consumption. In this
paper, we give empirical evidence for scenarios where a server
is more energy-efficient when its CPU(s) operate(s) at a lower
frequency than the maximum allowed frequency. Our approach
uses a novel high-precision, fine-grained energy measurement
infrastructure to investigate the energy (joules) consumed by
three different sorting algorithms. Our experiments show the
existence of algorithm sweet spots: CPU clock frequencies at
which algorithms achieve the lowest energy consumption to
complete the same computational task. To leverage these findings,
we describe how a new kind of self-adaptive software applications
can be engineered to increase their energy-efficiency.

I. INTRODUCTION

In 2010, electricity used in global data centers likely ac-
counted for between 1.1% and 1.5% of total electricity use.
For the US that number was between 1.7 and 2.2%. Data
center traffic is expected to quadruple by 2016. This calls for
the development of new energy and power efficient approaches
to reduce their consumption [1].

To address this increasing concern, the concept of energy-
proportional computing [2] was introduced by Google to
describe an ideal system which consumes no energy when idle
and whose power consumption grows linearly with utilization.
Such a computing system would enable a greater efficiency
at any level of utilization compared to today’s systems. To
calculate power efficiency, utilization is divided by its corre-
sponding power value. Thus, the formula to evaluate power
efficiency is given in [2] by:

ηP =
Util

P
(1)

ηP is the power efficiency, Util the utilization, and P the
power consumed by a computing system (server). Such an
ideal system would always yield the same optimal power
efficiency since P grows proportionally with Util. As an
example, a utilization of 25% would require only 25% of
computing power.Utilization can be considered the application

performance normalized to the maximum possible perfor-
mance of the system.

This suggests that when Util increases, P should be in-
creased to maintain a high efficiency or, for a running system,
P can be decreased to force Util to increase. This would yield
a better ηP . In this paper, we explore how the interplay of P
and Util affects energy-efficiency, and shed light on the fallacy
that increasing the P (CPU clock frequency) always involves
a reduction of energy consumption. We will show that some
computational tasks are more energy-efficient when executed
at lower CPU clock frequencies.

To better understand this claim, it is adequate to study
energy-efficiency instead of power efficiency, as done in [2].
Since energy E is a function of power P and time, the energy-
efficiency ηE can be written as:

ηE l=
Util ↓
P ↓ ×t ↑

(2)

Since Eq. 2 accounts for the time a system will be under a
certain utilization, it provides a more realistic model compared
to Eq. 1. Specifically, the equation suggests the hypothesis that
by decreasing the CPU clock frequency, and, thus, its P (↓)
and Util (↓), the time t (↑) to complete a computational task
increases. The goal of this paper is to study for which config-
urations of P , Util, and t, computational tasks are executed
in a more energy-efficient way, thus in which direction they
affect ηE (l).

Fig. 1 shows the reason why the model presented in [2]
needs to be relaxed. It is already known from previous
academic and industrial research that in practice, processors
do not follow a proportional path. Single processors have
power states and associated frequencies for which the power
efficiency, i.e., the ratio between utilization and power con-
sumption is maximized in so-called sweet spots [3] and often
minimized in high-performance turbo mode [4], [5]. In the
figure, the sweet spot is represented by the minimum of the
function divided by x, denoted as maximum efficiency. There
is always an offset, even when unused through idle power.
Furthermore, in multi-processor systems, additional overlap

Sebastian Gotz, Thomas Ilsche, Jorge Cardoso, Josef Spillner, Thomas Kissinger, Uwe Assmann, Wolfgang Lehner,
Wolfgang Nagel and Alexander Schill, Energy-Efficient Databases using Sweet Spot Frequencies, Green Cloud
Computing Workshop (GCC), London, UK, 2014.

P (W)

Util (%)

 energy-
 proportional

 current
 behavior

behaviour

η = Util / P

Idle power

Maximum
efficiency

(sweetspot)

Turbo mode

P

Fig. 1. Energy-proportional and current, non-linear power consumption.

effects result from using the turbo mode as a gap-filler before
switching on the next core when the utilization increases [6].
This effect, in particular the sweet spot, translate into time-
dependent energy-efficiency due to Dynamic Voltage Fre-
quency Scaling (DVFS; a commonly used power-management
technique).

The importance and implications of this effect has trig-
gered preliminary research on the design of energy-efficient
software. Proposals suggested to control the power states
from the application to select the most efficient frequency.
In [7], the authors control the CPU frequency of a laptop
while running specific applications (e.g., video encoders, web
browsers, and word processors) to reduce energy consumption.
In [8], similar experiments are done with message passing
interface programs running in high-performance computing
systems. In both studies, the notion of sweet spots was not
known since the experiments where done at a macro level,
measuring only consumption at the “plug”. While Livingston
et al. [3] mention sweet spots in their work, they did not fully
explore their sources, characteristics, and implications.

Therefore, a conclusive analysis on the design of self-
adaptive software applications which select the algorithms
to execute depending on the existence and characteristics of
sweet spots is missing. This sets our work apart from previous
approaches by providing an important contribution to foster
research on the development of energy-efficient software as a
complement to current hardware level energy optimizations.

This paper is structured as follows. Sect. II briefly describes
our motivation, and the importance and timeliness of this
work. Sect. III enumerates three central research questions
that are addressed throughout this paper. Sect. IV describes
our approach and the methodology we have followed to
experimentally analyze the energy-efficiency of computing
systems. We discuss the results of our experiments in Sect. V
and show in Sect. VI, how these findings can be used, to build
self-adaptive software, able to leverage this knowledge to save
energy. Finally, Sect. VII and VIII present related work and
our conclusions, respectively.

II. MOTIVATION

Google estimates1 that it requires 1 kJ of energy per search.
This corresponds to 0.2 grams of CO2. One thousand keyword

1http://googleblog.blogspot.de/2009/01/powering-google-search.html

Programming
language

Algorithm

Instruction set
(integer, fpoint, mm)

Hardware
periphery

Service context
(SLAs, preferences)

Data centre
context (fuses,

energy contracts)

Code
optimization

Data characteristics
(ranges)

Software Hardware

Service Data

our work

Fig. 2. Dimensions and directions of energy-efficient software research.

searches have approximately the same ecological footprint as
driving a car for one kilometer. Furthermore, as stated in
the introduction, existing data centers consume approximately
between 1.1% and 1.5% of all energy used in the world.

The magnitude of these numbers have driven researchers
and industries to look into new ways to make information
and communication technologies more energy-efficient. The
solutions found include high-efficiency power supplies, water
cooled servers, efficient multi-core CPUs, virtualization, dy-
namic power management, and live virtual machine migration.
For example, the consolidation of virtual machines through
live migration enables to aggregate work onto fewer server
nodes and shutdown idle nodes to reduce power consump-
tion [9].

While these solutions are important and complementary
(focusing on hardware and computing environments), another
form of energy reduction is to use more energy-efficient soft-
ware. The concept of energy-efficient software is to “use less
energy to achieve the same computational task”. Compared
to, e.g., live virtual machine migration, which is an energy
conservation technique (migrating and turning off idle servers),
the energy-efficiency of software looks into which software to
use to execute a specific computational task.

Our long-term research goal is to study how energy-efficient
mechanisms can be implementation as part of self-adaptive
software and service systems that change their behavior and
implementation, and affect the computing environment to
reduce energy consumption. Fig. 2 shows relevant dimensions
of research in this field. The short-term goal for this paper is
to answer three research questions while looking at a com-
putational task implemented in three different ways. Later we
extend the considerations to complex data centre setups with
trade-offs between energy, performance, and dependability (as,
e.g., in [10]).

III. RESEARCH QUESTIONS

The energy-efficiency of software looks into how software,
the underlying computing system and the environment affect
energy consumption. Our research questions (RQ) are the
following:

• RQ1 (Measurement Setup). How to instrument a comput-
ing system (server) with measurement devices to obtain
fine-grained measurements for its individual parts (e.g.,
fan, disk, power supply, and CPU sockets)? (Sect. IV-A).

• RQ2 (Sweet spots). How can sweet spot frequencies
be identified? Which mathematical functions characterize
them? Do sweet spot frequencies still exist on newer
computer architectures? (Sect. V).

• RQ3 (Dynamic Software Adaptation). How to capitalize
on the existence of sweet spots to dynamically adapt
software to achieve a higher energy-efficiency? (Sect. VI).

In this paper, we focus on studying how different imple-
mentations of the same software application affect differently
the energy-efficiency of a computing system. We take the
computational task of sorting n numbers and explore how
different implementations of sorting algorithms consume dif-
ferent amounts of energy.

While much research has looked into how to make informa-
tion and communication technologies more energy-efficient, it
is rather hard to find a precise definition for software energy-
efficiency. Thus, to remove any possible ambiguity on the
results of our research, we define the concept as follows:

Definition 1 (Software energy-efficiency). Energy is defined
as the amount of joules, required by a full or partial computing
environment, to execute a software application. A software
application S1 is said to be more energy-efficient than an
application S2, if it requires less energy to accomplish the
same computational task.

Definition 2 (Computing environment). A full computing
environment includes all the devices that, directly or indi-
rectly, consume energy to enable a software application to be
executed. For example, it typically includes CPUs, fans, and
disks. A partial computing environment only includes a subset
of those devices.

To simplify our study, we do not directly set a certain utility,
but focus on different CPU frequencies, which indirectly
affects the utility. For a single fixed task that executes without
interruptions, the utility is the inverse of the runtime so that
Eq. 2 can be reduced to to Eq. 3.

ηE =
1/t

(P × t)
=

1

(P × t2)
(3)

IV. APPROACH AND METHODOLOGY

Computational complexity (i.e., big O notation) is often
a first step in assessing the performance of an algorithm.
However, in practice, the best big O algorithm may perform
worse due to large constant factors or practical memory
constraints. Sorting is such an example, where quicksort is
often used as default even though it does not have the best
big O (worst case) performance. It is common practice to
optimize implementations for run-time and, in most cases,
optimizations will also reduce energy consumption. However,
in recent hardware with increasing energy-efficiency features,

such as DVFS, the fastest algorithm and system setting is often
no longer the most energy-efficient one.

Our approach to gain insights is pragmatic and experimen-
tal. We use energy as a main optimization goal and vary
the algorithm and hardware configuration for comparison. To
limit the search space, we do not investigate specific hardware
micro-optimizations, but use generic compiler optimization
flags instead. The methodology has the following activities:

• Measurement environment (Sect. IV-A).
– Instrument server with energy sensors.
– Determine static power consumption of the server.
– Setup software infrastructure to conduct the experi-

ments.
• Software under test (Sect. IV-B).

– Select the computational task to be tested experimen-
tally.

– Select different software implementations for the
task.

• Experimental results analysis (Sect. V).
– Determine resources affected by task.
– Interpret measurement results.

• Generalization and application of the results (Sect. VI).

A. Measurement Setup: Energy Monitoring

1) Hardware: The system under test is a dual socket system
with Intel Xeon E5-2690 processors. Several layers of power
measurement instrumentation are required. The complete AC
input is measured with a calibrated ZES Zimmer LMG450
power analyzer. Several custom-built, shunt-based sensors are
added to the system. All sensors are pluggable via Molex
connectors used in many standardized systems. For this paper,
we monitor the 12 V input of the two individual sockets
separately. They supply power for the CPUs and their attached
memory. The voltage drop over the measurement shunt is
amplified with calibrated amplifiers and digitally captured
by a National Instruments PCI-6255 data acquisition board
with 7541 samples per second. The power consumption is
computed digitally from individual readings for current and
voltage. During the experiment, all data processing happens
on a separate system to avoid perturbation of the system under
test. This comprehensive measurement infrastructure serves as
an answer to RQ1, but requires significant effort, as described
by Hackenberg et al. [11].

The processors provide 15 different frequencies from 1.2 to
2.9 GHz and the turbo mode with frequencies up to 3.8 GHz,
depending on thermal and power budget. Both, frequency
and voltage are set uniformly for all cores of a socket
by the hardware. As demonstrated in [12], the available
memory bandwidth depends on the core frequency for the
Sandy Bridge-EP architecture. Earlier intel architectures, such
as the one used in [3], provided a constant memory bandwidth
independent of the selected frequency. The variable memory
bandwidth did not allow for a straight-forward selection of
the optimal frequency for applications that become memory-
bound at a certain frequency. However, our approach does not

1.395522e+12 1.395522e+12 1.395522e+12 1.395522e+1

10
0

15
0

20
0

25
0

AC
 P

ow
er

 [W
]

22:00:00 22:00:01 22:00:02
Time of Day [HH:mm:ss]

Fig. 3. Energy trace of two succeeding sorting invocations with idle phase.

Power supply & Fans Board SSD Sockets Total
≈26W ≈7W ≈1W ≈20W × 2 ≈74W

TABLE I
STATIC IDLE POWER CONSUMPTION OF THE SERVER.

require specific bottleneck analysis, because it uses the energy
measurement results to select among different settings instead.

2) Measurements: To investigate the energy consumption
of algorithms, we run different sort algorithms for different in-
put sizes multiple times. Prior to each invocation, we randomly
generate integer lists to be sorted. Across all invocations,
we used lists of sizes between 10 and 50 million elements,
always containing integers with a value range of 6 million (i.e.,
0 ≤ x < 6× 106). Each invocation is preceded by a pause of
1 second to “cool down” the CPU and other resources (i.e.,
let them switch to idle mode).

Measurements of sort invocations utilizing a single core
of a multi-core machine are not representative, due to the
static power consumption of other devices besides the CPU,
which does not change, regardless of how many cores are
used. Hence, we fully utilized all cores of the machine with a
separate sort invocation operating on a copy of the same list.
By using MPI barriers [13], we ensure that all start invocations
are started at the same time. As execution time (or response
time), we measured the longest duration of the parallel sort
invocations and ensured that variation of durations among
parallel processes was less than 5%.

Fig. 3 visualizes the invocation scheduling by AC power
consumption (i.e., at the wall) over time for two consecutive
sort invocations. The spikes at the beginning and end of each
invocation are due to (MPI) synchronization. The short period
of 250 W in each run denotes the list generation.

As shown in Table I, the static power consumption of
the server originates from the power supply, the fan, the
motherboard, the disk, and the sockets.

For the investigation of the effect of different CPU frequen-
cies on the timing and energy-efficiency of sorting, we used
the userspace CPU governor of Linux to explicitly set the
frequency of the CPU. We executed list generation and sorting
for three algorithms with different list sizes for all possible
frequencies of the CPU and the turbo mode. We collected

the total energy consumption of the server per execution, the
energy consumption of the sockets, and the response time.
This enables to investigate whether a sweet spot frequency
exists and if static power consumption leads to a shift of the
sweet spot frequency for sockets, only compared to the whole
server.

B. Software Setup: Sorting Algorithm

As mentioned before, data centres and network infrastruc-
tures serving millions of users in massive online applications
are a key target for energy-efficiency with huge absolute sav-
ings, even for small percentages in relative savings. However,
these systems are very complex. Due to the novelty of the
topic, we suggest to understand a well-known generic algo-
rithm, sorting, which is used in many applications. According
to sources cited by Knuth, more than 25 percent of the running
time of computers has at some point been spent on sorting
[14], which may still be the case with today’s databases,
graphs, and other large data structures. Other software tasks
which are of interest but were not explored in this research
include search, indexing, and executing arithmetic operations
over large volumes of data.

Our choice of sorting algorithms encompasses the ones
generally considered the fastest. In the following, we elaborate
in two stable sort implementations – radix sort and counting
sort – by closely following textbook descriptions. In addition,
we look at the already implemented non-stable sorting of the
C++ Standard Library (std::sort). These algorithms can be
used to sort lists of integer values (or any data mappable
to integers). Depending on the size of the lists, the range
of the integer values to sort and the hardware in use, we
have produced interesting trade-offs such as that for small
lists radix sort is faster, whereas for bigger lists counting sort
is faster. However, these findings cannot yet be generalized
across hardware architectures. Pure performance comparisons
with intersections are therefore omitted from our experiments.

Counting sort takes a list A of size n as input and produces
a sorted list C of size n as output using the elements of A.
To sort the elements, the range of the elements in A has to
be known, because in a first step a list B of size range is
created. Every B[i] is set to the number of occurrences of the
element i in A (i.e., the frequency of elements in A is counted).
B is created based on an address/index computation over B.
Counting sort is a stable sorting algorithm with a linear time
complexity of O(n).

Radix sort is stable and has linear time complexity, too. It
also requires the range of the elements in the input list to
be know. But, in contrast to counting sort, radix sort does not
create an intermediate list B of size range. Instead it works
on the individual elements of the range. Thus, if the lists only
contain numbers, 10 lists are created–one for each digit. Radix
sort works in two phases: in the first phase, the elements of
A are moved to the intermediate lists (partitioning). In the
second phase, the elements are “stacked” into A. The number
of iterations is the number of alphanumerical characters of
range. For example, for a range of [0..999], 3 iterations

radix sort std::sort counting sort

32
5

33
0

33
5

34
0

34
5

A
C

 P
ow

er
 [W

]
AC Power Consumption of Sort for 50mio Elements

Fig. 4. AC power consumption for sorting 50 million elements.

result. Because of this, the range has a stronger effect on
the response time of counting sort compared to radix sort
(time ∼ range vs time ∼ log10(range)). Per definition
std::sort has a linearithmic complexity over the number of ele-
ments in the list. It performs O(n×log2(n)) comparisons[15].
Our implementation (GNU libstdc++) uses a combination of
intro sort and insertion sort.

Based on this common knowledge about the time com-
plexity of sorting algorithms, we investigated the energy
consumption of the three algorithms. Since sorting is compute
bound, one could assume the CPU to be the predominant
consumer of energy amongst all other resources in a server. We
collected empirical support for this hypothesis and, in addition,
determined further resources consuming energy due to sorting.
It is important to know that the frequency of a CPU affects
timing, power and, consequently, the energy consumption of
algorithms. In general, we will give empirical support for the
following claims:

1) The highest frequency of a CPU does not necessarily
lead to the lowest energy consumption (power integrated
over time).

2) Each algorithm has a detectable frequency at which
the resulting energy consumption is lowest (sweet spot
frequency).

3) Different algorithms can have different sweet spot fre-
quencies.

V. RESULTS OF THE EXPERIMENTS

Before investigating the impact of different frequencies
on energy-efficiency in Sect. V-B, we analyze in Sect. V-A
whether algorithms differ in their power consumption and
show that algorithms with low power consumption are not
necessarily the best in terms of energy consumption.

A. On the Power Level of Software

All raw measurements retrieved from the experiments were
processed with the statistics software R. The weighted mo-
ments, among them the mean value, quartiles, minimum and
maximum excluding extreme outliers, are shown in Fig. 4 for

TABLE II
SORTING ALGORITHMS CHARACTERISTIC COMPARISON FOR 50MIO

ELEMENTS (IN TURBO MODE).

Algo. tmin (s) tmax (s) trange (s) P (W) E (J)
radix 1.880 1.901 0.021 330.4 626.9
std::sort 4.226 4.230 0.004 346.3 1464.1
count. 8.444 8.516 0.072 330.3 2801.5

a sorting task on 50 million elements where both CPUs of the
server operate in turbo mode.

From the figure, one can infer that using radix or counting
sort leads to a lower power consumption than std::sort. The
former two have an almost equal level. The savings compared
to std::sort amount to 4.6%. Yet, radix sort is clearly the
fastest algorithm and, hence, the best when combining both
metrics without prioritization of one over the other. Counting
sort is, despite its low power consumption, the worst in terms
of energy consumption. From this so-called sweet spot per-
spective, which will be further elaborated on in the following
section, the savings for radix sort amount to 77.6% compared
to counting sort. Table II summarizes the key numbers from
the experiments: Duration including range, power consumption
per time unit and overall energy consumption for the mean
duration. All power values include 74 W idle consumption.

B. On the Sweet spot of Software
In this section, we investigate and prove wrong the common

misconception that software energy-efficiency equates directly
to CPU performance. For this purpose, we have collected
evidence that executing software applications at high CPU
frequencies may lead to lower software energy-efficiency.
Therefore, we refine research question RQ2 into:

• RQ2a (Effectiveness). Can we increase software energy-
efficiency by changing the clock frequency of the CPU
executing a software task?

• RQ2b (Determinability). Can the clock frequency of the
CPU executing a software task, which makes the software
more energy-efficient, be determined?

As outlined in the previous section, we use three different
algorithmic implementation of sorting: radix sort, std::sort and
counting sort. For each algorithm we measured the energy
consumed to sort 10, 20, . . . , 50 million integers. Fig. 5
shows the results obtained for sorting 50 million elements
using counting sort. Measurement results for all other list sizes
and algorithms are shown in Fig. 6. The figure shows three
charts: time per frequency, power per frequency, and energy
per frequency. Note that turbo mode frequency varies over
time, depends on different factors and can be between 2.9 and
3.8 GHz. Very high frequencies are unlikely as we fully use
all cores.

a) Time×Freq: Fig. 6(a) shows that as the clock fre-
quency of the CPU increases from 1.2 GHz to 2.9 GHz and
turbo mode, the mean time required to execute the software
task of sorting decreases in a non-linear form. What should
be noticed in this finding is that at 1.4 GHz the mean time to
complete the task drops significantly.

1200 1600 1900 2300 2700 3000

9
10

11
12

13
14

15

Frequency [MHz] (3000=turbo mode)

T
im

e
[s

]

(a) Time by Frequency

1200 1600 1900 2300 2700 3000

15
0

20
0

25
0

30
0

Frequency [MHz] (3000=turbo mode)

A
C

 p
ow

er
 c

on
su

m
pt

io
n

[W
]

(b) Power by Frequency

1200 1600 1900 2300 2700 3000

22
00

24
00

26
00

28
00

Frequency [MHz] (3000=turbo mode)

A
C

 e
ne

rg
y

co
ns

um
pt

io
n

[J
]

(c) Energy by Frequency

Fig. 5. The sweet spot of counting sort to sort 50mio elements.

b) Power×Freq: Fig. 6(b) shows the power consumed
based on the CPU clock frequency selected. The results could
be considered foreseeable, since the power consumption of the
CPU increases by its frequency. Nonetheless, up to 2 GHz the
power consumption is more modest and has visible increments
at 1.5 GHz, 2.2 GHz, 2.7 GHz and for the turbo mode.

c) Energy×Freq: Fig. 6(c) provides the results of our
findings that are most striking: the number of joules required
to execute the task of sorting has a sweet spot at 1.8 GHz. The
energy consumption declines by approximately 25% (708 J)
when the CPU frequency is changed from turbo mode to
1.8 GHz.

For the other algorithms, the results are also interesting.
std::sort is more energy-efficient at 2.4 GHz. This corresponds
to energy savings of approximately 12% (or 176 J) compared
to the turbo mode, which leads to the shortest response time.
Running the CPU at a low frequency, i.e., 1.2 GHz, increases
the energy consumed by 25% (427 J) compared to the sweet
spot frequency.

Radix sort is more energy-efficient at 2.2 GHz, which cor-
responds to energy savings of approximately 15% (or 96 J)
compared to the turbo mode and 18% (119 J) compared to the
lowest frequency.

Fig. 6 clearly shows the different sweet spot frequencies
(vertical dotted line), in ascending order, for counting, radix
and std::sort. The lines in the diagram correspond to list sizes
of 10..50 million elements.

Table III provides an overview of the results and identifies
the sweet spots for each algorithm (sweet spots are marked
with a star ’*’), and the energy savings that can be achieved
when the most energy-efficient CPU clock frequency is se-
lected compared to using the maximum frequency (i.e., turbo
mode).

In order to gain more insights, we calculate the energy
savings from running the algorithms at the sweet spot fre-
quency compared to the maximum frequency (AC-Save) and
the associated loss of performance (AC-Penalty). The penalty
is always higher than the savings. Fig. 7 compares AC-Save
and AC-Penalty for all three algorithms and all list sizes.

While researchers have already found that energy-efficiency

can be achieved by redesigning software code, by making
better use of memory and, by using more efficient hardware
components (see [16]), it is not well known that the energy-
efficiency of software is also affected by the frequency of
the CPU at very precise frequencies other than the maximum
frequency. Namely, our findings provide an answer (A) to our
two research questions:

• A2a (Effectiveness). Software energy-efficiency can be
improved by choosing the most adequate CPU clock
frequency. CPU clock frequency leads to a considerable
variability of the energy needed to complete a software
task.

• A2b (Determinability). The CPU clock frequency which
makes software more energy-efficient can be determined.
In the case of counting sort for 50mio elements, reducing
the clock frequency by ≈60% of its maximal speed can
lead to an energy reduction of 25%.

These results entail not only that for a given software
application the sweet spot of CPU frequency can, and should
be determined, but it also shows that software with the same
algorithmic complexity can have a different energy-efficiency.
Therefore, it seems natural to consider developing energy-
efficiency benchmarks for software applications. While ISO
software quality parameters include over 50 metrics [17],
SPEC CPU2006 provides comparative studies on hardware
performance and SPECpower for hardware energy-efficiency2,
the same does not happen to software energy-efficiency.

Since we have only studied CPU/memory intensive appli-

2https://www.spec.org

TABLE III
THE ENERGY-EFFICIENT SWEET SPOT OF SORTING ALGORITHMS.

Algorithm E (J) Freq. (MHz) t (s) P (W)
radix 530.8 *2200 2.6 204.2
radix 626.9 turbo 1.9 330.4
std::sort 1282.3 *2400 5.9 216.9
std::sort 1464.1 turbo 4.2 346.3
count. 2093.8 *1800 11.3 184.9
count. 2801.5 turbo 8.5 330.3

1500 2000 2500 3000

50
0

10
00

15
00

20
00

25
00

Frequency [MHz] (3000=turbo mode)

A
C

 e
ne

rg
y

co
ns

um
tp

io
n

[J
]

10mio

20mio

30mio

40mio

50mio

(a) counting sort (sweet spot at 1.8 GHz)

1500 2000 2500 3000

10
0

20
0

30
0

40
0

50
0

60
0

Frequency [MHz] (3000=turbo mode)

A
C

 e
ne

rg
y

co
ns

um
tp

io
n

[J
]

10mio

20mio

30mio

40mio

50mio

(b) radix sort (sweet spot at 2.2 GHz)

1500 2000 2500 3000

50
0

10
00

15
00

Frequency [MHz] (3000=turbo mode)

A
C

 e
ne

rg
y

co
ns

um
tp

io
n

[J
]

10mio

20mio

30mio

40mio

50mio

(c) std::sort (sweet spot at 2.4 GHz)

Fig. 6. AC energy consumption and the corresponding sweet spot frequencies.

10 20 30 40 50

Saving
Penalty

List size [mio]

S
av

in
gs

/P
en

al
ty

 [%
]

0
10

20
30

40
50

(a) counting sort

10 20 30 40 50

Saving
Penalty

List size [mio]

S
av

in
gs

/P
en

al
ty

 [%
]

0
10

20
30

40
50

(b) radix sort

10 20 30 40 50

Saving
Penalty

List size [mio]

S
av

in
gs

/P
en

al
ty

 [%
]

0
10

20
30

40
50

(c) std::sort

Fig. 7. AC energy saving compared with time penalty.

cations which do not access hard disks and other components,
further insights can be obtained by experimenting with other
types of software applications which require input/output
access to data storage systems. However, due to the interest in
overall system energy-efficiency, we relate the CPU efficiency
with the alternating current power supply (AC).

We conducted this paper as an “executable paper”. Hence,
all raw measurement results, executable source code used for
the experiments, logs and traces can be found online in a
dataset hosted at the experimental results platform Areca3.

VI. DYNAMIC SOFTWARE ADAPTATION

The results presented in the last section show empirical
support for the existence of sweet spot frequencies for sort
algorithms. Our idea to implement a new kind of self-adaptive
software system is to enable applications to select the fre-
quency of the CPU, based on the type of requests made for
execution. We will demonstrate how such a system could run
using the same computing task evaluated through this paper:

3http://areca.co/26/The-Cost-of-Sorting

sorting. A client can make a request for sorting, having as
constraints the performance or the energy-efficiency of the
execution, or a combination of both. When a self-adaptive
software system receives a request, it uses optimization tech-
niques to determine at which frequency the CPU should be
clocked to fulfill the constraints of the request. Optimization
uses the approximated functions from Table IV and the number
of elements requested to be sorted. The information is stored
in so-called QoS contracts. The result of the optimization is
the CPU frequency at which the sorting algorithm should be
executed. Thus, we propose a three-phase approach:

1) Approximate functions of sweet spot frequencies based
on micro-benchmarks to determine a server’s individual
sweet spot frequency,

2) QoS contracts to capture the assessed non-functional
behavior,

3) Optimization to compute the optimal frequency and
algorithm for a given user request at runtime.

The general approach has been published in [18]. We extend
previous work by incorporating hardware reconfiguration by

means of explicit frequency scaling. In the following, each
step will be examined in more detail.

A. Approximate functions

Fig. 6 depicts the energy consumption across all possible
frequencies for sort invocations of the three investigated sort
algorithms. As can be seen, for each algorithm a sweet spot
frequency can be determined independently from the list size.

It is possible to predict the sweet spot frequency by approx-
imating a function of the energy consumption depending on
the frequency using multiple linear regression and searching
the minimum value of this function for a given list size. This
task can be automated using R statistics tool.

For the measurements of radix sort, fourth grade polynomial
functions approximate the measured values very precisely as
shown in Table IV. The first five rows show functions for
10..50 millions elements, whereas the last row represents the
generic function E(freq, size) = a× freq+ b× freq2+ c×
freq3 + d × freq4 + e + f × listsize with an adjusted R2

of more then 99%. The minimum of this general function is
at 2.4 GHz for all list sizes, which is not the measured mean
sweet spot at 2.2 GHz, but is less than 1% distant from it.
The cause of this difference is the (small) deviation of the
approximated function and the closeness of the frequencies
around the sweet spot frequency.

Thus, to automatically determine a sweet spot frequency
on a target platform (unknown at design time), a developer
has to provide a (micro) benchmark for different algorithmic
implementations. Using the approach described above, the
system can compute the sweet spot frequency automatically.

B. QoS Contracts

The Quality Contract Language – QCL [18] – allows to
capture the non-functional behavior of an implementation. A
contract in QCL specifies for an implementation of a task
(e.g., radix sort for sort) pairs of non-functional provisions and
requirements. If the requirements are fulfilled, the provisions
are guaranteed to hold. Listing 1 depicts an example of a QCL
contract for the radix sort implementation used in this paper. It
specifies 2 modes, which are alternative pairs of requirements
and provisions. The two modes represent the most energy-
efficient and the fastest way to execute the algorithm. Thus,
for the first mode, the sweet spot frequency determined in
the previous phase is specified as a requirement on the CPU.
The second mode specifies the highest possible frequency as a
requirement. In addition, the runtime and energy consumption
on the CPU are specified as functions depending on the list
size. They are determined analogously to the sweet spot func-
tions in the first phase. All modes specify which guarantees
are given if a set of requirements is fulfilled. In the example
contract, a specific maximum response time, which is equal to
the time required on the CPU and a small overhead (x1 and
x2, respectively), is guaranteed.

Contracts, like the discussed example, can then be used
to generate problem formulations for off-the-shelf constraint
satisfaction and optimization problem solvers.

1 contract Radixsort implements Sort.sort {
2 mode efficient {
3 requires resource CPU {
4 frequency = 2.400 [MHz]
5 max time = f1<list_size> [ms]
6 max energy = f2<list_size> [J] }
7 provides max response_time = time + x1
8 }
9 mode fastest {

10 requires resource CPU {
11 frequency = 3.000 [MHz]
12 max time = f3<list_size> [ms]
13 max energy = f4<list_size> [J] }
14 provides max response_time = time + x2
15 }
16 }

Listing 1. Example of a QCL contract for radix sort.

C. Optimization

One approach to compute the decision of which algorithm
to use on which server is the application of an integer linear
program (ILP) as shown in Listing 2. For clarity, we only
show an ILP example for the decision whether radix sort
shall be executed on one of two servers in either the most
energy-efficient or the fastest way. In the example, all values
referring to server N1 correspond to the measurement values
shown in the last section for a sort request of 30 million
elements. The values referring to server N2 are not based on
measurements, but introduced to show the general applicability
of the approach to multiple servers.

The ILP example comprises 4 decision variables and 3 usage
variables per server.The decision variables of the optimiza-

1 min: energy#N1 + energy#N2;
2 //decide for one server and variant
3 b#rdx#eff#N1 + b#rdx#fast#N1 + b#rdx#eff#N2
4 + b#rdx#fast#N2 = 1;
5 //approximated runtime per decision
6 time#N1 = 1620b#rdx#eff#N1
7 + 1164b#rdx#fast#N1;
8 //base load + decision-induced consumption
9 energy#N1 = 97 + 324b#rdx#eff#N1

10 + 376b#rdx#fast#N1;
11 //min frequency + sweet spot-min frequency
12 frequency#N1 = 1200 + 1000b#rdx#eff#N1
13 + 2000b#rdx#fast#N1;
14

15 time#N2 = 1120b#rdx#eff#N2
16 + 940b#rdx#fast#N2;
17 energy#N2 = 100 + 420b#rdx#eff#N2
18 + 530b#rdx#fast#N2;
19 frequency#N2 = 1200 + 1000b#rdx#eff#N2
20 + 2000b#rdx#fast#N2;
21

22 bin b#rdx#eff#N1, b#rdx#fast#N1,
23 b#rdx#eff#N2, b#rdx#fast#N2;

Listing 2. Example of an Integer Linear Program for self-adaptive software.

e (intercept) a× freq b× freq2 c× freq3 d× freq4 f × listsize adj.r.squared
98.558887 -17.000578 24.473429 1.497380 5.577048 1.00E+07 (fixed) 0.939935

214.645925 -30.237388 45.255654 2.977515 10.231982 2.00E+07 (fixed) 0.9699779
344.115647 -43.960454 78.485585 1.588671 15.814538 3.00E+07 (fixed) 0.9519011
450.068206 -49.751193 103.690842 0.926805 21.180903 4.00E+07 (fixed) 0.9654956
564.112603 -51.629321 131.365326 6.015857 26.856475 5.00E+07 (fixed) 0.9554555

-15.65866 -86.12392 171.4039 5.816562 35.62546 1.16653E-05 0.994221

TABLE IV
FOURTH GRADE POLYNOMIAL FUNCTIONS FOR RADIX SORT ON 10 TO 50 MILLION ELEMENTS.

tion problem have the form b#algorithm#variant#server,
whereby the prefixing b denotes the Boolean type of the
variable, which is explicitly stated as constraint on lines 22/23,
and algorithm, variant and server, delimited by pounds
(#), denote the respective algorithm, variant (energy-efficient
or fast) and server. The meaning of b#rdx#eff#N1 = 1 is
the decision to use radix sort in its energy-efficient variant on
server N1. Thus, each decision is represented by a variable.

Each server is characterized by the variables time, energy
and frequency, which include the name of the server sepa-
rated by a pound. They denote the time required on, the energy
spent by and the CPU frequency used for the respective server.

The objective function of the ILP is a linear combination of
the problem’s variables. In the example, the objective function
specifies the goal to minimize the energy consumption of both
servers for user requests to sort n elements.

Then, two types of constraints are generated for a specific
request (e.g., the invocation of sort for a list of 30 million
elements as in the example above). First, a structural constraint
to ensure the selection of at least one variant is generated
(cf. line 3 and 4). Second, for each server variable (time,
energy and frequency) a constraint, reflecting the impact of
a decision on them is generated. For example, the constraint
in line 6/7 specifies that deciding for radix sort in efficient
mode on server N1 will require 1620 ms, whereas using fast
mode will require only 1164 ms. For energy consumption,
the idle consumption has to be considered in addition. The
constraint on line 9/10 reflects an idle consumption of 97 J and
the respective consumption of radix sort in the most efficient
and fastest mode. Considering the idle consumption is impor-
tant if the servers are always powered. The frequency con-
straint on line 12/13 reflects the minimum possible frequency
(1200 MHz), the sweet spot frequency (1000+1200 MHz), and
the maximum possible frequency (1000+2000 MHz).

To solve this optimization problem, standard solvers like
LP Solve [19] can be applied. The time required to solve
problems as shown in the example, depends on the number
of modes (i.e., execution variants) for which we used m = 2
representing the most efficient and the fastest variant, the
number of algorithms for the same task A (e.g., different sort
algorithms) and the number of servers N . Fig. 8 shows the
time required to solve ILPs with A = [1..10] algorithms with
2 modes each on N = [2..10] servers. As can be seen, the time
to derive the decision is negligible. It took ≈3.1 ms to identify
which algorithm out of 10 to run on which of 10 servers.

VII. RELATED WORK

The closest existing research to our work was conducted
by Livingston et al. [3]. Their work classifies software appli-
cations as memory- and compute-bound. For memory-bound
applications, they demonstrate that a higher energy-efficiency
is achieved at lower CPU frequencies since memory behaves
as a bottleneck. For compute-bound applications, a higher
energy-efficiency is achieved at higher CPU frequencies since
finishing work quickly is the best approach for efficiency. For
algorithms which cannot be purely classified as memory- or
compute-bound, they propose to use sweet spot frequencies, a
benchmarked optimal frequency between the lowest and high-
est frequency. Our work confirms the findings by Livingston et
al. also in newer computer architectures and makes a detailed
analysis of sweet spot frequencies.

Other related work can be classified taking into account
the level at which energy-efficiency analysis was conducted.
We use the terms macro-, meso-, and micro-level to express
studies conducted with large software applications, algorithms,
and instructions. At the macro-level, researchers (cf. [16]) have
looked into the energy-efficiency of large management infor-
mation systems such as ERP, CRM, and databases. While it is
important to look into the efficiency of such systems to identify
fields of improvements, the approach taken does not allow
to gather insights on how software could be re-engineered
differently to obtain energy reductions. At the meso-level,
Bunse et al. [20] evaluate various sorting algorithms in bat-
tery powered mobile communication using smartphones. The
results indicate that insertion sort is most efficient. Rivoire

 0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

 0

 2

 4

 6

 8

10

Number of Algorithms

N
um

be
r

of
 S

er
ve

rs

S
ol

vi
ng

 T
im

e
[m

s]

Fig. 8. Time for adaptation decision making using LP Solve.

et al. [21] investigate system-level benchmarks for sorting.
Nonetheless, the work does not explore the effect of CPU
frequency on software energy-efficiency. At the micro-level,
Ong and Yan [22] use an abstract machine to study the
energy consumption of search and sorting algorithms. The
energy requirement of each instruction was estimated and,
e.g., an ALU access consumes 8 × 10−12 joule per 32 bits.
Their findings indicate that the energy consumption can differ
in orders of magnitude between algorithms, and, also, that
faster algorithms can sometimes consume more energy than
slower ones. In [23], the authors propose a first-order, linear
power estimation model that uses performance counters to
estimate CPU and memory consumption. The accuracy of the
model estimates consumption within 4% of the measured CPU
consumption.

Related to future work, Beloglazov et al. [24] observe that
modern large servers currently use 32 or 64 DIMMs that lead
to power consumption by memory higher than by CPUs. This
suggests that the study and design of energy-efficient software
should account for CPU and memory efficiency.

VIII. CONCLUSION

Over the years, hardware energy-efficiency has significantly
improved. Nevertheless, research on software efficiency has
not received the same attention. Thus, in this paper we
study mechanisms to make software more energy-efficient.
Our findings indicate that the existence of sweet spots can
be explored to realize software energy-efficiency in at least
three fields: 1) by adapting the CPU frequency to sweet spots,
the maximum power of the upper limit used by a computing
system can be established; 2) the consideration of sweet spots
leads to effective energy gains which reached up to 25% for
the investigated sorting algorithms; and 3) the existence of
sweet spots enables the design of new and more efficient
self-adaptive software architectures. Our results are important
and relevant since experiments were conducted using the most
advanced hardware measuring devices.

ACKNOWLEDGEMENTS

This work has been partially funded by the German Re-
search Foundation (DFG) under project agreements SFB 912/1
2011 and SCHI 402/11-1.

REFERENCES

[1] J. Koomey., “Growth in Data center electricity use 2005 to 2010,”
Analytics Press, 2011. [Online]. Available: http://www.analyticspress.
com/datacenters.html

[2] L. Barroso and U. Holzle, “The case for energy-proportional computing,”
Computer, vol. 40, no. 12, pp. 33–37, Dec 2007.

[3] K. Livingston, N. Triquenaux, T. Fighiera, J. Beyler, and W. Jalby,
“Computer using too much power? give it a rest (runtime energy saving
technology),” Computer Science - Research and Development, pp. 1–8,
2012. [Online]. Available: http://dx.doi.org/10.1007/s00450-012-0226-0

[4] K. Choi, R. Soma, and M. Pedram, “Fine-Grained Dynamic Voltage and
Frequency Scaling for Precise Energy and Performance Trade-Off Based
on the Ratio of Off-Chip Access to On-Chip Computation Times,” in
Proceedings of the conference on Design, automation and test in Europe
(DATE), February 2004, Paris, France.

[5] L. Brochard, R. Panda, and F. Thomas, “Power consumption of clusters:
Control and Optimization,” Industry Talk at Fourth International Con-
ference on Energy-Aware High Performance Computing (EnA-HPC),
September 2013.

[6] D. Versick, I. Waßmann, and D. Tavangarian, “Power consumption
estimation of CPU and peripheral components in virtual machines,”
ACM SIGAPP Applied Computing Review, vol. 13, no. 3, pp. 17–25,
September 2013.

[7] X. Liu, P. Shenoy, and M. Corner, “Chameleon: application level power
management with performance isolation,” in Proceedings of the 13th
Annual ACM International Conference on Multimedia (MULTIMEDIA),
November 2005, Singapore.

[8] M. Y. Lim, V. W. Freeh, and D. K. Lowenthal, “Adaptive, transparent fre-
quency and voltage scaling of communication phases in MPI programs,”
in Proceedings of the 19th ACM/IEEE Conference on Supercomputing
(SC), November 2006, p. Article 107, Tampa, Florida, USA.

[9] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach, I. Pratt,
and A. Warfield, “Live migration of virtual machines,” in Proceedings
of the 2Nd Conference on Symposium on Networked Systems Design
& Implementation - Volume 2, ser. NSDI’05. Berkeley, CA,
USA: USENIX Association, 2005, pp. 273–286. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1251203.1251223

[10] M. Cinque, D. Cotroneo, F. Frattini, and S. Russo, “Cost-Benefit Anal-
ysis of Virtualizing Batch Systems: Performance-Energy-Dependability
Trade-offs,” in 2013 IEEE/ACM 6th International Conference on Utility
and Cloud Computing, December 2013, pp. 264–268, Dresden, Ger-
many.

[11] D. Hackenberg, T. Ilsche, R. Schone, D. Molka, M. Schmidt, and W. E.
Nagel, “Power measurement techniques on standard compute nodes:
A quantitative comparison,” 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), vol. 0, pp.
194–204, 2013.

[12] R. Schöne, D. Hackenberg, and D. Molka, “Memory performance
at reduced cpu clock speeds: an analysis of current x86_64
processors,” in Proceedings of the 2012 USENIX conference on
Power-Aware Computing and Systems, ser. HotPower’12. Berkeley,
CA, USA: USENIX Association, 2012, pp. 9–9. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2387869.2387878

[13] M. P. I. Forum. (2012, Sep.) Mpi: A message-passing interface standard
- version 3.0. http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf.

[14] D. E. Knuth, The Art of Computer Programming. Addison-Wesley,
1998, vol. 3 - Sorting and Searching, 2nd Edition.

[15] ISO/IEC, “ISO/IEC 14882:2011: Programming languages – C++,” Tech.
Rep., 1998.

[16] E. Capra, C. Francalanci, and S. Slaughter, “Measuring application
software energy efficiency,” IT Professional, vol. 14, no. 2, pp. 54–61,
March 2012.

[17] ISO/IEC, “ISO/IEC 25010: Systems and software engineering - Systems
and software Quality Requirements and Evaluation (SQuaRE) - System
and software quality models,” Tech. Rep., 2010.

[18] S. Götz, C. Wilke, S. Richly, and U. Aßmann, “Approximating quality
contracts for energy auto-tuning software,” in Proceedings of First
International Workshop on Green and Sustainable Software (GREENS
2012), 2012.

[19] K. Eikland and P. Notebaert, “LP Solve 5.5 reference guide,”
http://lpsolve.sourceforge.net/5.5/ (access on 26.11.2012).

[20] C. Bunse, H. Höpfner, S. Roychoudhury, and E. Mansour, “Choosing the
best sorting algorithm for optimal energy consumption,” in Proceedings
of the International Conference on Software and Data Technologies
(ICSOFT), 2009, pp. 199–206.

[21] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis, “Joulesort:
A balanced energy-efficiency benchmark,” in Proceedings of the ACM
SIGMOD Intl. Conference on Management of Data (SIGMOD), 2007.

[22] P.-W. Ong and R.-H. Yan, “Power-conscious software design-a frame-
work for modeling software on hardware,” in Low Power Electronics,
1994. Digest of Technical Papers., IEEE Symposium, Oct 1994, pp. 36–
37.

[23] G. Contreras and M. Martonosi, “Power prediction for intel xscale reg;
processors using performance monitoring unit events,” in Low Power
Electronics and Design, 2005. ISLPED ’05. Proceedings of the 2005
International Symposium on, Aug 2005, pp. 221–226.

[24] A. Beloglazov, R. Buyya, Y. C. Lee, and A. Y. Zomaya, “A taxonomy
and survey of energy-efficient data centers and cloud computing sys-
tems.” Advances in Computers, vol. 82, pp. 47–111, 2011.

