
Benchmarking a Semantic Web Service Architecture for Fault-tolerant B2B

Integration

Jorge Cardoso

Department of Mathematics and Engineering

 University of Madeira, 9050-390 Funchal, Portugal

jcardoso@uma.pt

Abstract

With the development and maturity of Service-

Oriented Architectures (SOA) to support business-to-

business transactions, organizations are implementing

Web services to expose their public functionalities

associated with internal systems and business

processes. In many business processes, Web services

need to provide is a high level of availability, since the

globalization of the Internet enables business partners

to easily switch to other competitors when services are

not available. Along with the development of SOA,

considerable technological advances are being made

to use the semantic Web to achieve the automated

processing and integration of data and applications.

This paper describes the implementation and

benchmarking of an architecture that semantically

integrates Web services with a peer-to-peer

infrastructure to increase service availability through

fault-tolerance.

1. Introduction

Organizations are using the architectural benefits of

Service-Oriented Architectures (SOA) to coherently

map business processes with enterprise applications.

Using Web services it is possible to support the

externalization of atomic business capabilities by

making business interfaces more transparent. As

organizations move to business-to-business (B2B)

models, supported by SOA and Web services, they

must develop solutions to cope with failures that can

cause systems downtime in the supply-chain. The

consequences of failures can ripple across multiple

organizations and can have significant financial costs.

Therefore, providing highly reliable B2B systems is an

important goal. Web service computing is still in an

evolving state and much research needs to be done to

overcome complex issues such as fault-tolerance,

availability, and scalability.

Many organizations currently use, or will be soon

using, Web services to manage a broad range of

distinct distributed applications, such as insurance

claim processing, bank loan management, and

healthcare processes. Applications can be more

oriented to support or enhance existing business

processes, to increase competitive advantage, to reduce

costs, and also to manage critical infrastructures. In

many cases, Web services are of vital significance to

the organizations that govern them and the downtime of

services can easily incapacitate the completion of

running business processes. For example, it is not

advisable for an insurance company to delay a

customer’s insurance claim processing due to a Web

service failure. It is also not acceptable to delay a

patient’s treatment due to a Web service malfunction.

High availability, fault tolerance, and scalability are

aspects of intra- and inter-organizational Web service-

based distributed applications that represent important

research areas for SOA.

Current Web service specifications [1] do not

provide support to handle service failures and prevent

service downtime. The mechanisms provided by SOAP

and WSDL help handling errors raised by applications,

but no mechanism exists for handling system failures

[2]. At the SOAP messaging layer, the <soap:fault> tag

is provided to inform a client about errors encountered

while processing an invocation message. At the WSDL

description layer, the <wsdl:fault> tag provides a way

to output the result of a remote operation invocation

error.

The purpose of our work is to describe the design,

implementation, and benchmarking analysis of a fault-

tolerant architecture called Whisper, which provides a

transparent approach to enable a significant increase in

the availability of Web services whilst at the same time

have a minimal impact on B2B distributed

Cardoso, J., “Benchmarking a Semantic Web Service Architecture for Fault-tolerant B2B Integration”, International Workshop on Dynamic
Distributed Systems (IWDDS), In conjunction with the ICDCS 2006, The 26th International Conference on Distributed Computing Systems July 4-7,
2006 - Lisboa, Portugal. IEEE Computer Society. ISBN: 0-7695-2541-5, ISSN: 1545-0678.

applications’ complexity. Whisper system uses

emerging technologies, such as the semantic Web, Web

services, and peer-to-peer (P2P) networks, for building

the next-generation service oriented systems.

The system that we have developed to increase the

fault tolerance of Web services differs from previous

work [2, 3] since we explore the features and

characteristics of peer-to-peer networks to develop a

transparent and scalable mechanism to increase the

availability of Web services. Another major difference

is related to the approach that we have adopted to

enable the integration and interoperation of Web

services and P2P networks, which uses semantics and

ontologies.

2. Web service and P2P semantic

Integration

Our approach to Web service fault-tolerance

consists of an infrastructure based on a service-oriented

architecture, named Whisper, which increases the

availability of Web services by using a fault-tolerant

mechanism built on peer-to-peer networks and the

semantic Web. Whisper architecture integrates

semantic Web services and a semantic P2P

infrastructure (Figure 1).

Web Services are based on a centralized model and

primarily focused on standardizing messaging formats

and communication protocols. P2P computing, on the

other hand, is based on a decentralized model.

The decentralized model gives a natural approach to

develop self-healing and resilience architectures

through redundancy. This is precisely how Whisper

achieves fault tolerance. We have selected the JXTA

[4] infrastructure to implement fault-tolerant

mechanisms to insure a high degree of availability of

peers that actively communicate with Web services.

Student Information
Semantic Web

service

Semantic
Web services

Student Information
SWS-Proxy

Register Student

B-peer A

Register Student

B-peer B

Semantic P2P

Infrastructure

Semantic

Integration

Semantic Data Integration

Semantic Functional Integration

Figure 1. Semantic Integration

2.1. Heterogeneity and Integration Challenges

The problems that might arise when integrating Web

services and JXTA infrastructures due to several types

of heterogeneity are very similar to the problems

known within the distributed database systems

community (e. g. [5, 6]). Heterogeneity occurs when

there is a disagreement about the meaning,

interpretation, or intended use of the same or related

data. As with distributed database systems, four types

of information heterogeneity [7, 8] may arise in

Whisper: system heterogeneity, syntactic heterogeneity,

structural or schematic heterogeneity, and semantic

heterogeneity.

While Whisper deals with all these types of

heterogeneity, it tackles in particular semantic

heterogeneity. Approaches to the problems of semantic

heterogeneity should equip heterogeneous,

autonomous, and distributed software systems with the

ability to share and exchange information in a

semantically consistent way. The semantic integration

of Web services and the P2P infrastructure is achieved

using an ontology representation language (OWL)

which provides a key element to deal with semantic

heterogeneity. Integrating two distinct architectural

models requires, among other types of integration,

dealing with semantic data integration and semantic

functional integration.

2.2. Semantic Data Integration

Web services and JXTA networks use different

standardized technology. As a result, incompatibility

arises from semantic differences of data schema. In a

B2B application, Web services and JXTA peers take a

set of data inputs and produce a set of data outputs.

Web services and JXTA specifications use only

syntactic and structural details of the input/output data.

Each data schema is set up with its own structure and

vocabulary. To allow the integration of Web services

and JXTA peers to exchange data at the semantic level,

the semantics of the input/output data have to be taken

into account. Hence, we annotated the data of Web and

JXTA peer services using ontological concepts [9, 10].

The added semantics can be later used in matching the

semantics of the input/output of Web services and

JXTA peer services when exchanging data, which was

not possible when considering only syntactic

information.

2.3. Semantic Functional Integration

Web service and JXTA peer specifications only

defines syntactic characteristics. The signature of an

operation provides only the syntactic details of the

input data, output data, and operation’s name.

Technological solutions to integrate Web services and

JXTA peer networks using operations signatures are

not sufficient since services’ functionality cannot be

precisely expressed. As a step towards representing the

functionality of services, in Whisper, Web services and

JXTA peers are annotated with functional semantics.

2.4. Other Integration Issues

While our the Whisper system only deals with

semantic data integration and functional integration, an

other integration issue that can be considered and

explored is semantic QoS integration [11].

QoS Semantics. After discovering a JXTA peer

whose data and functional semantics match the

semantics of the required Web service, the next step is

to select the most suitable peer. Each peer can have

different quality aspect and hence selection involves

locating the peer that provides the best quality criteria

match. This demands management of QoS metrics for

peers. For organizations, being able to characterize

Web services and peers based on QoS has several

advantages. It allows organizations to translate their

vision into their business processes more efficiently,

since services can be designed according to QoS

metrics.

3. Semantic Web services and SWS-Proxies

3.1. Semantic Web services

To facilitate the understanding of Whisper

architecture we describe a running scenario which is

partially illustrated in Figure 2. The application shown

has the ‘Student Information’ Web service available to

clients. This service accepts as input a student ID,

connects to a relational database, retrieves the

information of the student, and returns a structure with

the information to the client. The actual

implementation of this service is not associated with

the Web service itself, but it is supplied by a JXTA

network of b-peers (see section 4.2.).

Traditional Web services are described using the

WSDL, which provide only syntactical information.

However, WSDL poses a problem during the automatic

discovery of peer groups to carry out the actual

execution of a Web service, since the use of syntactic

information alone originates a high recall and low

precision during the search [12].

Web service
Client

Student Information

Semantic Web
service

Web server

Student Information
SWS-Proxy

Service XYZ
Semantic Web

service

Service XYZ
SWS-Proxy

Figure 2. Semantic Web services and SWS-
proxies

Whisper supports the notion of semantic Web

services. Semantic Web services are the result of the

evolution of the syntactic definition of Web services

and the semantic Web. With the help of ontologies, the

semantics or the meaning of service data and

functionality can be explicated. As a result, integration

can be accomplished in an automated way and with a

superior degree of success.

In Whisper, Web service are semantically annotated

following the WSDL-S specification [9, 13]. JXTA

peer groups are also semantically annotated. The

semantic annotation of Web services and JXTA peer

groups allows their semantic integration at the data and

functional levels. WSDL-S establishes mapping

between WSDL descriptions and ontological concepts.

The idea of establishing mappings between service,

task, or activity descriptions and ontological concepts

was first presented in [10]. The following example

illustrates how a WSDL specification, from our initial

scenario, is mapped to ontological concepts.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name = "StudentManagement"
...

 xmlns:sm =

“http://.../jcardoso/StudentMng.owl#"
...
<interface name = "StudentManagementUMA" >
<operation name = "StudentInformation" ... >

 <action element = "sm:StudentInformation" />
 <input messageLabel=”ID”

 element="sm:StudentID"/>
 <output messageLabel=”student”

 element="sm:StudentInfo"/>
</operation>
</interface>
</definitions>

The WSDL-S specification indicates that the Web

service supplies the one operation

‘StudentInformation’. This operation uses ontological

concepts to annotate the input, output, and action. The

ontological concepts are expressed in the ontology

http://dme.uma.pt/jcardoso/StudentMng.owl#, which is

specified using OWL.

3.2. SWS-Proxies

When a Web service receives a request it forwards it

to the Semantic Web Service proxy (SWS-proxy).

Proxies contact the JXTA infrastructure and using the

Semantic Discovery Service (Figure 3) locates a

semantic group of peers that can satisfy the client’s

request. Once a suitable semantic group of peers is

found, the group is queried to find a b-peer that will

process the client’s request.

. . .

public class SWS-proxy {
. . .
 // reference to the semantic Web service
 SemanticWebService sws;
. . .
 // op is an operation
 public SemanticeAdv
 findSemanticPeerGroupAdv(String op) {
. . .
 e = discovery.getLocalAdvertisements(
 DiscoveryService.ADV,
 “action”,
 sws.get_Sem_action());
. . .
 while (e.hasMoreElements()) {
 SemanticeAdv sAdv = null;
 sAdv = (SemanticeAdv) e.nextElement();
 if (
 sAdv.getInput().equals(sws.get_Sem_input(op
)) &&
 sAdv.getOutput().equals(sws.get_Sem_ouput(o
p)) {
 // found a semantic peer group
advertisement
 // matching the Web service semantics
 return sAdv;
 }
 }
. . .

In the previous example, the SWS-proxy tries to

find JXTA semantic group advertisements based on the

semantic functionality (action) of its Web services.

When advertisements that have the same semantic

functionality (see section 2.3) of the semantic Web

service request are found, the SWS-proxy checks if the

b-peers inside the peer group discovered have also the

same data semantics (see section 2.2) of the semantic

Web service request. If they do, the advertisement is

returned to the SWS-proxy that will connect to a b-peer

of the semantic peer group found (this last phase is not

shown in this example.)

4. B-Peer Groups, B-Peers, and Semantic

Advertisements

Redundancy has long been used as a means of

increasing the availability of distributed systems, with

key components being replicated to protect against

failures. In Whisper, redundancy is achieved using the

replication of business process functionalities.

Typically, an application’s logic and data is distributed

on a cluster (group) of computer systems to ensure that

it can tolerate any single hardware or software fault

within the cluster. The redundancy mechanism of

Whisper makes possible to also address scalability

requirements through load-sharing, since peer services

can be replicated among different computers. We use

static redundancy which means that all replicas

implementing services are active at the same time. If

one replica fails another replica is elected (using the

Bully algorithm) and used immediately with little

impact on response time.

4.1. B-peer groups

Peers are self-organized into b-peer groups which

are logical rather than physical entities (Figure 3). Each

b-peer belongs to a semantic b-peer group. The b-peers

of the same semantic b-peer group implement the same

functionality service, but possibly in a different way.

When a Web service is invoked by a client, Whisper

dynamically tries to find a semantic b-peer group that

will be able to process the requested service.

Register Student

B-peer A

Register Student

B-peer B

Register Student

B-peer C

Register Student
B-peer D

Semantic

B-peer Group Service

Semantic

Advertisement

Ontology

B-peers implement

the Bully algorithm

Figure 3. Semantic b-peer groups and b-peers

For example, we may envision the following

scenario. In response to a Web service request, a peer

accesses student information from an operational

database and returns the results to the client. If the

operational database is unavailable, a semantically

equivalent peer can automatically and transparently

handle the service request by retrieving the same

information from a data warehouse.

4.2. B-peers

Once a suitable semantic group of peers is found,

the group is queried to find a b-peer that will process

the client’s request. B-peers are entities on a network

implementing one or more JXTA protocols. They

implement a specific functionality, such as accessing a

database to retrieve students’ data, and more

importantly they implement the Bully algorithm to

provide a fundamental mechanism to enable a good

fault-tolerance.

When a b-peer group requests a b-peer to carry out a

Web service request, the b-peer found may not be the

coordinator. Therefore, additional processing may need

to be done to find the current coordinator of the

semantic group. When the coordinator is identified, it

processes the request and sends the results of the

processing to the SWS-proxy. The proxy translates the

data received to a suitable format and sends the results

to the semantic Web service that will in turn send the

results back to the client that initially issued the

request.

B-peers exist independently and communicate with

other b-peers asynchronously. JXTA provides a

framework that allows developers to concentrate on

providing high level, business-oriented functionality,

rather than implementing the underlying infrastructure.

JXTA networks are inherently dynamic. By using a

number of protocols, b-peers may join or publish

advertisements at different times. For Whisper this

characteristic is important since it allows to

dynamically increasing the level of availability of a

Web service by having a higher number of peers

responsible for the processing of service requests.

4.3. Semantic Advertisements

In Whisper, b-peer groups semantically advertise to

other b-peers the services they provide to the network.

All resources in JXTA networks are represented by a

metadata XML document called an advertisement. B-

peers publish and discover advertisements representing

other resources such as b-peers and b-peer groups.

The default discovery supported by JXTA is

inefficient as b-peers retrieved may be inadequate due

to low precision (many b-peers you do not want) and

low recall (missed the b-peers you really need to

consider). The search has to be based, not only on

syntactic information, but also on data, and functional

semantics. Effectively locating relevant b-peers is

required to performing the search operation in a

scalable way. To meet this challenge, we use

‘extendable advertisements’ to create a new type of

advertisement that uses semantic information to

describe our semantic peer groups. This new type of

advertisements is called semantic advertisement.

5. Benchmarking

To validate Whisper we have carried out a

benchmark in order to assess the scalability and

performance of our architecture under system load. We

present the results that have been obtained when

implementing Whisper with JXTA infrastructure. We

have measured the scalability of the overall system, as

well as the latency of JXTA infrastructure and Web

services invocation latency. Since our infrastructure

implements a distributed algorithm to enable a high

degree of availability using message exchange, it is

important to analyze the variation of the number of

messages exchanged as the number of b-peers

increases.

Figure 4. Variation of the number of messages exchanged as the number of B-peers increases

Our distributed architecture consists of 9 identical

machines, each equipped with Intel P4 3.0 GHz

processors, 512 MB main memory, 40GB 7,800 RPM

IDE disks, Microsoft Windows XP home, Java SDK

1.4, and JXTA 2.3.2. The personal computers were

connected by a 100Mbit/s Ethernet LAN.

Figure 4 shows the number of messages exchanged

between a variable numbers of b-peers. The system

performance benchmarking exercise revealed that the

proposed solution was able to scale to meet desired

throughput and latency requirements. It can be

observed that the architecture exhibits a good linear

horizontal scalability – adding new b-peers to the

configuration results in a predictable linear increase in

the number of messages exchanged.

The results obtained are encouraging since JXTA is

inherently a heavy architecture and given that it

provides an abstract network transport capable of

transporting messages between peers, either directly, or

via relay peers capable of both enabling multi-hop

routing of messages, and traversing firewall or NAT

(network address translation) equipment that isolates

peers from public networks.

We have also analyzed the Round-Trip Time (RTT)

of messages to measure characteristics of the network,

such as the bandwidth and latency. RTT is defined as

the time interval from the moment at which a request

packet is time-stamped by the monitor to the moment at

which a reply packet is time-stamped. Our results

showed that the average latency is approximately 0.5

milliseconds. Nevertheless, in the worst case the RTT

can take several seconds. This low performance is

caused by two factors. On the one hand, in case of

coordinator failure, the time needed to elect a new

coordinator is considerably high. On the other hand,

the time to make a new binding between the SWS-

proxy and the elected b-peer is also high.

7. Conclusions

Since Web services (WSDL) do not provide any

mechanism to increase their availability, we have used

a P2P infrastructure (JXTA) to deploy a fault-tolerant

peer-to-peer back-end architecture. The integration and

interoperation of Web services and JXTA is a difficult

task due to the heterogeneity of the two technologies.

Our system, Whisper, uses semantic Web technology to

integrate centralized and decentralized systems and

share and exchange information in a semantically

consistent way. To validate Whisper we have carried

out a benchmark that has revealed that the system is

scalable and achieves a good performance under

system load.

8. References

[1].Curbera, F., W. Nagy, and S. Weerawarana. Web

Services: Why and How. in Workshop on Object-

Oriented Web Services - OOPSLA 2001. 2001.

Tampa, Florida, USA.

[2].V. Dialani, et al. Transparent fault tolerance for web

services based architectures. in Eighth

International Europar Conference (EUROPAR

'02). 2002. Padeborn, Germany: Springer-Verlag.

[3].Looker, N. and M. Munro, WS-FTM: A Fault Tolerance

Mechanism for Web Services.

http://www.dur.ac.uk/computer.science/research/te

chnical-

reports/2005/A%20Fault%20Tolerance%20Mecha

nism.pdf. 2002.

[4].Gong, L., Project JXTA: A Technology Overview -

http://www.jxta.org/docs/TechOverview.pdf. 2001.

[5].Kim, W. and J. Seo, Classifying schematic and data

heterogeinity in multidatabase systems. IEEE

Computer, 1991. 24(12): p. 12-18.

[6].Kashyap, V. and A. Sheth, Semantic heterogeneity in

global information systems: The role of metadata,

context and ontologies, in Cooperative Information

Systems: Current Trends and Applications, G.

Schlageter, Editor. 1996, Academic Press: London,

UK. p. 139-178.

[7].Sheth, A., Changing Focus on Interoperability in

Information Systems: From System, Syntax,

Structure to Semantics, in Interoperating

Geographic Information Systems, C.A. Kottman,

Editor. 1998, Kluwer, Academic Publishers. p. 5-

30.

[8].Ouskel, A.M. and A. Sheth, Semantic Interoperability in

Global Information Systems. A brief Introduction

to the Research Area and the Special Section.

SIGMOD Record, 1999. 28(1): p. 5-12.

[9].Patil, A., et al. MWSAF - METEOR-S Web Service

Annotation Framework. in 13th Conference on

World Wide Web. 2004. New York City, USA.

[10].Cardoso, J. and A. Sheth, Semantic e-Workflow

Composition. Journal of Intelligent Information

Systems (JIIS). 2003. 21(3): p. 191-225.

[11].Cardoso, J. and A.P. Sheth, Introduction to Semantic

Web Services and Web Process Composition, in

Semantic Web Services and Web Process

Composition, A.P. Sheth, Editor. 2005, Springer-

Verlag: Heidelberg, Germany. p. 1-13.

[12].Sivashanmugam, K., et al., Metadata and Semantics for

Web Services and Processes, in Datenbanken und

Informationssysteme (Databases and Information

Systems) Festschrift zum 60, R. Unland, Editor.

2003, Geburtstag von Gunter Schlageter: Hagen,

Germany. p. 245-271.

[13].Rajasekaran, P., et al., Enhancing Web Services

Description and Discovery to Facilitate

Composition, in Semantic Web Services and Web

Process Composition, A. Sheth, Editor. 2004,

Springer-Verlag: Heidelberg. p. 55-68.

