
Semantic Data Extraction for B2B Integration

Bruno Silva, Jorge Cardoso

Department of Mathematics and Engineering

 University of Madeira

9050-390 Funchal, Portugal

bmpsilva@hotmail.com, jcardoso@uma.pt

Abstract

Business-to-business (B2B) data exchange and

integration is a common daily operation in today’s

organizations. These operations are crucial since they

affect organizations’ capability to compete in today’s

marketplace. Data exchange and integration has been

proven to be a challenge due to the heterogeneity of

the information systems involved."This paper

described a Syntactic-to-Semantic (S2S) middleware

which, when based on a single query, integrates data

residing in different data sources possibly with

different formats, structures, schema, and semantics.

The middleware uses an ontology-based multi-source

data extractor/wrapper approach to transform

syntactic data into semantic knowledge.

1. Introduction

As organizations grow and change, their needs to

manage and access information increases

exponentially. In many situations, “data supporting

architectures have shifted from a centralized to a

distributed approach due to the advantages in the cost

and flexibility“. While these trends have resulted in

many advantages for organizations, they have also

introduced a large gap in the ability to integrate data

between applications and organizations.

A middleware for data integration should allow

users to focus on ‘what’ information is needed and

leave the details on ‘how’ to obtain and integrate

information hidden from users. Thus, in general, data

integration systems must provide mechanisms to

communicate with an autonomous data source, handle

queries across heterogeneous data sources, and

combine the results in an interoperable format.

Therefore, the key problem is to bridge syntactic,

schematic and semantic gaps between data sources,

thereby solving data source heterogeneity.

At least three types of data heterogeneity may occur

when integrating information from heterogeneous,

autonomous, and distributed data sources: syntactic

heterogeneity: the technology supporting the data

sources differs (e.g. databases, Web pages, XML

streams, etc); schematic heterogeneity: data sources

schema have different structures; and semantic

heterogeneity: data sources use different meanings,

nomenclatures, vocabulary or units for concept.

Our approach uses a Syntactic-to-Semantic (S2S)

middleware approach to resolve data source

heterogeneity problems and offers the advantages of

using a common shared structured format represented

with an ontology. Thus, by the interpretation of a query

(single point of entry), S2S generates ontology

instances that permits having the retrieved data in a

conceptual representation. This way, besides offering a

solution for B2B integration issues (through

standardised business models), it enables semantic

knowledge processing.

2. S2S Middleware Architecture

Approaches to the problems of semantic

heterogeneity should equip heterogeneous,

autonomous, and distributed software systems with the

ability to share and exchange information in a

semantically consistent way [1]. A suitable solution to

the problem of semantic heterogeneity is to rely on the

technological foundations of the semantic Web; or

more precisely, to semantically define the meaning of

the terminology of each distributed system data using

the concepts present in a shared ontology to make clear

the relationships and differences between concepts.

The S2S approach introduces the ability to extract

data from various data source types (unstructured,

semi-structured, and structured) and wrap the result in

OWL (Web Ontology Language) format [2], providing

a homogenous access to a heterogeneous set of

information sources.

The decision to adopt OWL as the ontology

language is based on the fact that this is the World

Silva, B., Cardoso, J., “Semantic Data Extraction for B2B Integration”, International Workshop on Dynamic Distributed Systems (IWDDS), In
conjunction with the ICDCS 2006, The 26th International Conference on Distributed Computing Systems July 4-7, 2006 - Lisboa, Portugal. IEEE
Computer Society. ISBN: 0-7695-2541-5, ISSN: 1545-0678.

Wide Web Consortium (W3C) recommendation for

building ontologies.

Figure 1 presents a high level illustration of the S2S

architecture. Two key areas can be identified. The first

concerns the extractor (Extractor Manager) used to

connect to the different data sources registered in the

system and to extract data form them. The extracted

data fragments are then compiled in order to generate

ontology instances. The second key area is the mapping

result between an ontology schema and the data

sources (Mapping Module). This information is

produced when the ontology attributes and classes are

intersected with the data sources forming an extraction

schema used by the extractor to retrieve data from the

sources.

Other areas also play an important role in the

architecture. This is the case of the Query Handler,

which handles the queries to the data sources, the

Instance Generator, which is responsible for providing

information about any error that has occurred during

the extraction process or in the query, and finally the

Ontology Schema that plays a major role in data

mapping.

2.1 Data sources

The data sources define the scope of the integration

system, thus data source diversity provides a wider

integration range and data visibility. S2S middleware

can connect to B2B traditional data source formats,

such as structured (e.g. relational databases), semi-

structured (e.g. XML) and unstructured (e.g. Web

pages and plain text files). The supported data source

types can easily be increased to support other formats.

2.2 Ontology schema

To conceptualize a domain in a machine readable

format an ontology is necessary. In B2B applications,

ontologies play an important role in order to promote

and facilitate interoperability among systems, enable

intelligent processing, and to share and reuse

knowledge. From a data integration point of view,

ontologies provide a shared common understanding of

a domain.

S2S middleware represents ontologies using the

Web Ontology Language (OWL), a semantic markup

language for publishing and sharing ontologies on the

World Wide Web. Other alternative formal languages

can also be used to express ontologies, for instance

CycL [3], KIF [4] and RDF [5].

Since the ontology schema defines the structure and

the semantics of data (Figure 2) it is understandable

that there is a need for the schema in the extraction

process. The ontology is used to create mappings

between data sources and the schema. Another

important role of the ontology schema is to define the

query specification process.

Figure 1 – Syntactic to Semantic architecture

Figure 2 –Ontology schema example

2.3 Mapping Module

To enable the extraction from distributed and

heterogeneous sources it is necessary to formally

denote the notion of mapping between remote data and

the local ontology. The mapping is the result of

information crossing between the ontology schema and

the data sources in order to provide information about

ontology’s attributes in the extraction process.

Depending on data source characteristics, two data

extraction scenarios may emerge. This is because data

sources might have ‘one’ data record (for instance a

Web page describing a watch) or might have ‘n’ data

records (for instance a database of watches). The data

source scenario defines how the mapping is made and

how data is extracted (in order to support the existence

of an infinite number of records).

According to our approach, the mapping procedures

are carried out manually. This task is time consuming

but offers the highest degree of data extraction

accuracy and domain consistency. This fact is very

important when integrating data since the integrity and

correlation between the sources and the ontology must

be very accurate so that the “meaning” of the data is

not lost. Although time consuming, the mapping should

not need substantial maintenance after being created.

Data sources do not normally change their structures

(except perhaps Web pages), so few mapping updates

should be necessary.

2.3.1 Attribute registration. In order to register an

attribute we need information about the ontology

schema and how to extract the information from a

specific data source. The objective is to have a

mapping specification that relates information about

attributes, data sources and extraction rules.

Figure 3 illustrates the attribute registration process.

In the example the data source is a Web page, so the

extraction rules were set using a Web extraction

language. The attribute registration process requires a

set of steps to be completed in order to achieve a

correct mapping. The first step is to name the

attributes. The second step is to define the extraction

rules. The last step maps the attribute with the

extraction rule.

Figure 3 – Attribute Registration

Step 1 – Attribute Naming

The mapping information is supported by attributes;

therefore the ontology (Figure 2) must have a

corresponding extraction rule for all of its attributes.

The mapping is based on ontology attributes rather than

classes. The mapping system first selects a unique

identifier for each attribute as shown in Figure 4.

Figure 4 – Attribute naming

Besides having a unique ID to each attribute (since

an attribute name may occur in more than one class), it

is possible to have a path to the attributes (through the

ontology classes) keeping a notion of the ontology

hierarchy. We will see that this information is very

important to instantiate the ontology with the extracted

data.

Step 2 – Extraction Rules

Each attribute is associated to an extraction rule.

Extraction rules are basically a segment of code that

allows taking out the necessary data from the data

source and filling a given attribute. These rules are

written according to the data source type. For XML

data sources, XPath and XQuery can be used. For

databases, the clear option is to use SQL. In the

attribute registration example from Figure 3, the data

source was a Web page so the extraction rules were

defined in a Web extraction language (WebL [6]).

Other languages or wrappers (e.g. W4F [7], Caméléon

[8]) can be used.

In the example, in Figure 3, the data source is a Web

page structured with HTML tags with the following

information:
…
<p>
Seiko Men's Automatic Dive Watch
</p>
…

The following segment of code illustrates an

extraction rule written in WebL for extracting of the

watch brand from the HTML data source. The code

connects to the Web site using its URL, retrieves the

page and using a set of regular expressions, extracts the

watch brand.

var P = GetURL("www.amazon.com/watches...");
var pText = Text(P);
var regexpr = "<p>" + `[0-9a-zA-Z']+`;
var St = Str_Search(pText, regexpr);
var spliter = Str_Split(St[0][0],"<>");
var brand = Select(spliter[2],0,6);

Step 3 – Attribute Mapping

Finally the mapping is completed by adding the

mapping information in the attribute repository. This is

done by associating the attribute ID with the extraction

rule code or module. For example,

thing.product.brand = “watch.webl, wpage_81”

The attribute ID (thing.product.brand) is associated

with the WebL file (watch.webl) containing the

extraction rules and a data source identifier

(wpage_81). This identifier is vital to inform the

extractor manager which extractor to use and how to

connect to it.

As another example, suppose that the attribute case

(thing.product.watch.case) were extracted from a

database, then the mapping information would have to

be set in SQL query language and would be associated

with the data source identifier to DB_ID_45. The

mapping entry would have the following characteristic:

thing.product.watch.case =
 ”SELECT aAtribute
 FROM aTable
 WHERE aAttribute=aValue, DB_ID_45”

At this stage the mapping module has information

about how to connect to data sources (in the data

sources repository) and how to extract data from them

(in the attribute repository). Therefore all mapping

requisites are fulfilled, now data extraction may take

place

2.3.2 Register data sources. Data sources often need

specific connection information. Data source

connection information must be specified to every data

source used in S2S middleware. The information varies

by data source type. For example, Web pages require

URLs, files require paths, and databases require

location, login, password, and driver type. Registering

data sources separately from the extraction rules is

useful to create a centralized connection information

store, allowing reuse and preventing information

redundancy.

2.4 Extractor Manager

This component handles data sources for retrieving

the raw data to accomplish query requirements. The

extraction method varies by data source so the

extractor must support several extraction methods. The

extractor and mapping architecture were designed in

order to be easily extended to support other extraction

methods and languages.

This is the main section of the S2S middleware and

it is implemented by three tasks, Obtain Extraction

Schema, Obtain Data Source Definition and Data

Extraction.

2.4.1 Obtain Extraction Schema. After processing the

query, the system must retrieve data in order to answer

the query. The extraction is based on attributes, so this

area retrieves extraction schemas of the required

attributes, thus indicating to the extractor how the

extraction is executed.

2.4.2 Obtain Data Source Definition Attributes are

associated with data sources and data sources have

connection characteristics. Therefore, extractors need

to know how to connect to each data source. After

retrieving an extraction schema, the extractor fetches

the associated data source definition to enable its

access. Now extraction can take place.

 2.4.3 Data Extraction. This is the hot point in the

extraction mechanism. It is supported by a mediator

and a set of wrappers/extractors (details will be given

in the subsequent sections). The extraction process is

carried out in four steps as illustrated in Figure 5.

Step 1 – Know what data to extract

The extracting process starts by identifying what

data needs to be extracted. The extraction data must be

a set of attributes. This information is determined by

the query handler that bases the required attribute list

on a query it generates, in order to suit the query.

Step 2 – Obtain extraction schema (rules)

After knowing what attributes need to be extracted,

the extractor needs to know how to extract data for

them. The Attribute Repository has the attribute list and

related extraction rules. Thus, based on the attribute

list, this element retrieves the information and forwards

it to the extractor.

Figure 5 – Extraction process

Step 3 – Obtain data source information

After having the extraction rules, the extractor needs

to know how to connect to the data sources. As shown

in the attribute registering process, registered attributes

have a reference in the Data Source Repository that

expresses data source connection information. In this

step, all references to the Data Source Repository

entries from each attribute are listed and the respective

connection information is retrieved. After completing

this phase, all requisites to extract data are fulfilled.

Step 4 – Extract data (Data Extractor)

 Now data extraction mechanisms begin to gather

data. First, the extraction manager delegates a specific

extractor for each extraction method depending on the

data source type. For Web pages, the extraction rules

are delegated to a Web wrapper, for databases to a

database extractor, and so on. The extractor executes

the extractions rules in the data sources and obtains

chunks of data. These data fragments of raw data are

then sent to the Instance Generator to be compiled in

to an ontology instance.

2.5 Query handler

A query is the event that sets the S2S extraction

middleware in action. The input is based on a higher

level semantic query language. This query is then

transformed to represent requests based on ontology

classes. The Syntactic-to-Semantic Query Language

(S2SQL) is the query language based on SQL

supported by the extraction module. It is a simpler

version of SQL since data location is transparent from

the query point of view. Thus the FROM and related

operators have no use in S2SQL and are thus not

supported. This way, queries are created only with the

indication of which data is required. It is not necessary

to supply information about data location, data format,

extraction method, etc. The syntax of S2SQL is the

following,

SELECT <ontology class>
WHERE <attribute><operator><constraint>
AND <attribute><operator><constraint>…

An example of a query would be,

SELECT product WHERE brand=”Seiko”
AND case = “stainless-steel”

The output is based on the ontology schema, more

precisely ontology classes. The result of the previous

example is all products with the brand Seiko and case

stainless-steel, i.e., product classes that have brand

Seiko and case stainless-steel. Thus the query output

will have all their associated classes, i.e. all products

have a Provider (Figure 2), and therefore the output

classes will be Product, watch, and Provider.

2.6 Instance generator

This module serializes the output data format and

handles the errors from the queries and from the

extraction phases. The S2S middleware supports the

output format OWL, but other outputs can easily be

adapted to export plain text to XML, , and so on, being

either structured, semi structured or unstructured

formats.

The ontology population process (OWL instance

generation) is executed in an automatic way. This is

because the extracted information (used to map the

ontology to the data sources) respects the ontology

schema (classes and relationships). Therefore,

transforming the unique identifiers of the ontology

attributes in a XML format is done naturally. This way

it is easier to visualize data hierarchy and how the

direct mapping works. Direct mapping is done by

transforming the XML structure into the ontology

structure. Data semantics is set in the ontology schema

and maintained in the output since the whole extraction

process is based on the same ontology schema. This

approach has the advantage of providing an ontology-

independent system.

4. Related work

There are several research projects which target the

same objectives as the S2S middleware. The main

differences are that we use semantics and ontologies to

achieve a higher degree of integration and

interoperability. The World Wide Web Wrapper

Factory (W4F) [7] toolkit is a good framework to

develop Web wrapper/extractor. It allows the user to

create Web wrappers and deploy them as modules in a

bigger application.W4F extracts exclusively from Web

pages and the output may be in an XML file or a Java

interface. The Caméléon Web Wrapper Engine [8] is

capable of extracting from both text and binary

formats. The engine provides output in XML.

Artequakt [9] is an Automatic Ontology-Based

Knowledge Extraction from Web documents that

automatically extracts knowledge from an artistic

ontology and generates personalized biographies. The

major drawback of this system is that it is customized

to a specific domain. The Architecture for Semantic

Data Access to Heterogeneous Information Sources

[10] allows heterogeneous data sources to have

uniform access through a common query interface

based on Semantic Data Model.

5. Conclusion

Creating B2B processes for integrating various

organizations are difficult to compose since

organization data sources and systems are

heterogeneous. One way to increase the degree of

integration of B2B links between partners is to use

middleware technology. Nevertheless, most current

middleware only covers syntactical integration and it

has been recognized that semantics are an

indispensable approach to support and enhance

integration. Therefore, in this paper we have presented

middleware architecture for semantic B2B integration.

The main goal of the architecture is to offer a common

understanding of a domain and assimilate

heterogeneous systems (using semantic Web

technology). All this is supported by structured data

(Ontology schema) thus offering semantic data

representation benefits that allow data to be shared and

processed by automated tools as well as by people.

We believe that the solution outlined above

provides a useful tool for taking better advantage of the

future capabilities and benefits of semantic data models

and the semantic Web.

7. References

[1]. Sheth, A., Changing Focus on Interoperability in

Information Systems: From System, Syntax, Structure to

Semantics, in Interoperating Geographic Information

Systems, M.F. Goodchild, et al., Editors. 1998, Kluwer,

Academic Publishers. p. 5-30.

[2]. OWL, OWL Web Ontology Language Reference, W3C

Recommendation. 2004, World Wide Web Consortium,

http://www.w3.org/TR/owl-ref/.

[3]. Cycorp, Cyc KNowledge Base - http://www.cyc.com/.

2006.

[4]. Genesereth, M., Knowledge Interchange Format (KIF) -

http://logic.stanford.edu/kif/dpans.html. 2006.

[5]. Lassila, O. and R. Swick, Resource Description

Framework (RDF) model and syntax specification. 1999,

W3C Working Draft WD-rdf-syntax-19981008.

http://www.w3.org/TR/WD-rdf-syntax.

[6]. Kistler, T. and H. Marais, WebL - a programming

language for the web. Computer Networks and ISDN

Systems, 1998.

[7]. Sahuguet, A. and F. Azavant. Building Intelligent Web

Applications Using Lightweight Wrappers. in 25th

International Conference on Very Large Data Bases. 1999.

Edinburgh, Scotland, UK.

[8]. Firat, A., S. Madnick, and M. Siegel. The Caméléon Web

Wrapper Engine. in Workshop on Technologies for E-

Services (TES 2000). 2000. Cairo, Egypt.

[9]. Alani, H., et al., Automatic Ontology-Based Knowledge

Extraction from Web Documents. IEEE Intelligent Systems,

2003. 18(1): p. 14-21.

[10]. Rishe, N., et al. The Architecture for Semantic Data

Access to Heterogeneous Information Sources. in 15th

International Conference on Computer and Their

Applications (ISCA 2000). 2000. New Orleans, Louisiana,

USA.

