
Efficient Failure Diagnosis
of OpenStack Using
Tempest

While cloud computing continues to be popular in the IT

world, companies offering cloud solutions are under

pressure to provide the most reliable solutions to users. In

this article, we describe an innovative approach to

diagnose service failures in an OpenStack-based cloud

using Tempest as a starting point.

SERVICE FAILURE DIAGNOSIS OF OPENSTACK:
EARLIERWORK
OpenStack1 is an open-source cloud-operating system for building public and private clouds. It can
manage large pools of compute, storage, and networking resources in data centers. It is a continuously
evolving system with a major release cycle every six months.

To reach high availability levels, the failures of OpenStack services need to be continuously
monitored. Avi�zienis et al.2 characterize a service failure as “an event that occurs when the delivered
service deviates from correct service. A service failure is a transition from correct service to incorrect
service, i.e., to not implementing the system function.”

The OpenStack community curates a Wiki page3 with over 50 different tools that can monitor and
diagnose failures.4 However, most of them are generic solutions. The ones specific to OpenStack
typically show usage metrics or monitor if a certain process is running or not. Other tools require users
to have expert knowledge of systems and to interpret large amounts of log information to diagnose
failures. DevOps can also use Rally, an OpenStack tool capable of managing complex workflows
which orchestrate benchmarking and evaluation experiments.

Over the years, several approaches have been proposed to detect anomalies in software systems. The
three most relevant techniques that have yield good results are log, performance, and trace analysis.

Ankur Bhatia
Michael Gerndt
Technical University of
Munich

Jorge Cardoso
Huawei Munich Research
Center
University of Coimbra

DEPARTMENT: View from the Cloud

IEEE Internet Computing
November/December 2018 61

Published by the IEEE Computer Society
1089-7801/18/$33.00 �2018 IEEE

� Log analysis5 uses clustering or heuristics, as well as templates to mine logs into events or
flows. Features/graphs are extracted to model the normal and abnormal behavior of systems.

� Performance analysis6 identifies resource consumption models (e.g., from CPU, memory,
disk I/O) to establish patterns of normality and abnormality.

� Trace analysis7 instruments code to enable the generation of traces (i.e., sequences of
correlated events) at run time to identify the normal and abnormal behavior of systems.

The main advantage of our approach is that it copes well with the periodic new releases of OpenStack
code base. There is no need to reparameterize algorithms (e.g., the k parameter of k-means clustering),
update heuristics, or rules as frequently needed by log analysis. For cloud platforms such as
Openstack, the variability of cloud workloads and multitenancy makes performance analysis and
resource modeling a difficult task. Finally, trace analysis also breaks when new instrumentation points
are added, removed, or changed in the code base.

CAN TEMPEST TESTS BE USED TO DIAGNOSE
FAILURES IN OPENSTACK?
The OpenStack community also developed a test suite named Tempest. It is used for the validation of
all the modules of OpenStack during the development cycle to guarantee that the code is error free. It is
the official integration test suite containing more than 1500 tests for API and scenarios validation. Due
to the value of this large set of tests, one interesting question is whether or not it would be possible to
also use it to diagnose service failures in OpenStack.

Although Tempest tests are extremely useful for the purpose of development and integration, their
use for service failure diagnosis presents a set of challenges. First, they do not provide any
information about the nonresponsive or failed services in cloud platforms. The execution of
Tempest tests generates a list of passed and failed tests. This list can help to locate software errors
or to find issues with individual modules of the code but cannot diagnose failures as there are no
relationships between Tempest tests and services running on OpenStack. Second, Tempest
contains more than 1500 tests. With every new release of OpenStack, the number of tests also
increases. Thus, it takes a considerable amount of time (3–4 h) to execute them. Thus, cloud
operators often develop custom tests to diagnose failures in OpenStack. However, as mentioned
previously, OpenStack is a continuously evolving cloud platform with a release cycle of six
months. Hence, the tests developed become outdated and there is a constant need to modify them.
Therefore, the approach is costly for cloud operators.

A different approach is, therefore, needed to diagnose service failures in OpenStack. The solution
should be efficient (fast) and should be able to establish relationships between Tempest tests and the
services they are capable of testing. The solution should also be able to cope up with the fast release
cycle of OpenStack.

FAILURE DIAGNOSIS OF OPENSTACK USING
TEMPEST TESTS
Diagnosing failures in OpenStack is not a simple task. Although there has been research in this
field,8–10 there is no solution that uses Tempest tests for the purpose of failure diagnosis. We have
already mentioned the challenges associated with using Tempest for failure diagnosis. However, there
are a few benefits of using Tempest as well. First, Tempest tests are developed along with OpenStack.
Hence, there is no additional cost of development involved. Second, they can be executed with
minimal effort as they are automated. Finally, with every new release, Tempest tests are updated.
Therefore, there is no need to modify the tests for a new release.

Having these benefits in mind, we developed a new method to diagnose service failures in OpenStack
using Tempest. The method has three main phases detailed in the following sections. The overall
achievement is that it can diagnose failures by running only 4–5% of the reduced Tempest tests.

IEEE INTERNET COMPUTING

November/December 2018 62 www.computer.org/internet

Phase 1: Tempest Test Suite Reduction
Phase 1 of the solution deals with Tempest test reduction. This task is handled by the Tempest test
manager. Figure 1 shows the architecture of this component. It consists of the following five
subsystems.

Identify Modules
The first task of this phase is to identify all the modules where the Tempest tests are implemented.
These modules are identified using a naming convention followed by OpenStack, for example,
tempest.api.compute.flavors.test_flavors.FlavorsV2TestJSON.test_get_flavor yields the following
information:

� path to the module: tempest.api.compute.flavors.test_flavors;
� class name: FlavorsV2TestJSON;
� test method: test_get_flavor.

Construct Abstract Syntax Tree (AST)
Every Tempest test has one test method defined in a module. The test methods make calls to other
methods that are known as support methods. These methods call various functionalities provided by
OpenStack. The main task of this subsystem is to perform code analysis to identify the test methods
and their support methods. This is done by constructing an AST11 to represent the source code in the
form of a tree. Each node of an AST represents a construct (module, class, test method, or a support
method) occurring in the source code, as shown in Figure 2(b).

Filter AST
In the previous step, we constructed ASTs to identify test methods and support methods. However,
there are some support methods that are not relevant. They are language specific and do not play a
direct role in testing any functionality of OpenStack. Therefore, these support methods have to be
eliminated. This is achieved using the inverse document frequency (IDF).12 This technique is based on
the notion that words with low IDF are present across multiple documents and are usually not
considered important. The same logic is used to determine if a support method is relevant or not. If a
support method is present across most of the modules, it is considered to be irrelevant. The IDF of a
support method is calculated by the following expression:

IDF(x) ¼ log (#modules / #modules with support method x).

Figure 1. Tempest test manager. This is the architectural diagram of the Tempest test manager that
consists of five modules explained in detail in the text.

VIEW FROM THE CLOUD

November/December 2018 63 www.computer.org/internet

Let us consider the example shown in Figure 3.
Module 1 calls 4 support methods: Assert, S1, S2, and S3. The IDF of these methods is calculated

as follows:
IDF (Assert) ¼ log (4 / 4) ¼ log (1) ¼ 0
IDF (S1) ¼ log (4 / 1) ¼ log (4) ¼ 2
IDF (S2) ¼ log (4 / 2) ¼ log (2) ¼ 1
IDF (S3) ¼ log (4 / 1) ¼ log (4) ¼ 2.

As mentioned, the support methods with low IDF are not relevant and hence are eliminated. From the
above example, Assert is labeled as irrelevant, while S1, S2, and S3 are relevant.

Support Method Deduplication
In the previous step, we eliminated the irrelevant support methods from modules. The next task is to
eliminate the redundant test methods from modules. The analysis of the code enabled us to discover
that in most cases a subset of the test methods calls all support methods in a module. Therefore, within
most modules, there are redundant test methods that can be eliminated.

This task is accomplished using the set cover algorithm.13 The algorithm selects the minimum
number of test methods from the module such that the selected test methods call all the support
methods present in the module. For example, in Figure 3, in Module 3, the subsets of test
methods {U7, U8} and {U7, U9} call all the support methods {S6, S7, S8} present in the
module. Hence, any one of these subsets can be selected to call all the support methods.
However, the algorithm selects the subset with a lower execution time. The following two
parameters are considered in the algorithm.

Figure 2. AST. The figure shows a simple ASTconstructed for a Python module.

Figure 3. IDF calculation. The figure shows the construction of ASTs for Python modules to calculate
the IDF of all the support methods in the module.

IEEE INTERNET COMPUTING

November/December 2018 64 www.computer.org/internet

� Time is the time taken for each Tempest test to execute. It is the parameter cost of the set
cover algorithm. This parameter enables to select the most time-efficient subset of the test
methods. If there are cases where more than one subset of the test methods calls all the
support methods, the subset with the lower execution time is selected.

� Coverage is the minimum coverage (in %) of the support methods to achieve. This
parameter is not present in the original set cover algorithm. It is introduced to give
users an option to select test methods based on the percentage of the support methods
to be considered. For example, in Figure 3, in Module 3, there are three support
methods {S6, S7, S8}. For a 100% coverage, the subsets {U7, U8} or {U7, U9} have
to be selected in order to cover all the support methods. For a 30% coverage, only
{U7} is sufficient as this requires only one out of the three support methods to be
called.

Cross Module Deduplication
The support method deduplication eliminates the redundant test methods within modules using
the set cover algorithm. However, through code analysis, we discovered that some test methods
are redundant also across modules. Hence, the reduction can be improved without losing the
coverage.

Let us consider Module 2 and Module 4 from Figure 4. The test method U5 calls the support methods
{S4, S5}. Similarly, Module 4 consists of test methods U10, U11, and U12, which call the set of
support methods {S4}, {S10, S4}, and {S12, S5}, respectively. The support method deduplication
subsystem guarantees that {S4, S5, S10, S12} are called by the subset of the test methods in Module 4.
This means that all the support methods called by U5 (i.e., {S4, S5}) are already covered in Module 4.
Hence, U5 is redundant and can be eliminated.

This approach is applied to all the test methods to eliminate the redundant test methods across the
modules. It is important to note that the test deduplication strategy developed was based on how
Tempest works. Before executing the tests, Tempest downloads and creates all the required resources
(e.g., OS resources, users, networks, etc.). Thus, users do not need to test the service with specific
parameters as Tempest handles them. Moreover, if two or more Tempest methods that have a common
support method, they always use the same parameter (e.g., VM image). Hence, eliminating one of
them has no effect on the coverage but reduces the number of test.

Our experiment with OpenStack enabled us to automatically reduce 1392 Tempest tests to 518 tests
with 100% coverage.

Phase 2: Relationship Establishment and Isomorphic Test
Elimination
One of the major challenges of using Tempest tests for failure diagnosis is the lack of relationships
between Tempest tests and OpenStack services. The execution of Tempest tests outputs a list of passed,
failed, and skipped tests. However, it is difficult to determine failed services based on this list. The

Figure 4. Relationship between Tempest tests and services.

VIEW FROM THE CLOUD

November/December 2018 65 www.computer.org/internet

second phase establishes relationships between Tempest tests and services. It further eliminates Tempest
tests by removing tests that establish the same relationships. These tests are called isomorphic tests.

Tempest Test and Service Mapping
The relationships between Tempest tests and OpenStack services are established based on the ability of
the tests to determine if a particular service is working properly or not. The following steps are
performed.

For s in services:

1. Disable service s to simulate a failure of a service in OpenStack.
2. Run the reduced set of Tempest tests. Tests that depend on s will fail. Tests that do not

depend on it will pass.
3. Restart service s.

Services are disabled one at a time. This is because if more than one service is disabled and a test fails,
it is not possible to determine which service caused the test to fail.

The procedure is repeated for all services critical to the functioning of OpenStack. Based on the results,
relationships between Tempest tests and services are established and are represented in a matrix, as
shown in Figure 4.

Each cell represents a relationship between a Tempest test and a service. Let us represent this
relationship with the expression R(Ui, servicej) where Ui is a Tempest test and servicej is a service.

R(Ui, servicej) ¼ 1 means that Ui depends on servicej.

R(Ui, servicej) ¼ 0 means that Ui does not depends on servicej.

Consider the matrix from Figure 4. If U5 fails, then based on the relationships service2, service3,
service4, and service5 could be down. However, if U5 passes, it means that service2, service3, service4,
and service5 are available.

Isomorphic Unit Test Elimination
As shown in Figure 4, each Tempest test can be represented with a binary string. For example, U1 is
represented as 10101, U2 as 00010, etc. Tempest tests that have the same string are called isomorphic
tests. They establish the same relationships with services and detect failures of same services.
Therefore, they are redundant. In order to eliminate them, all isomorphic tests are grouped together and
the one with the lower execution time is selected.

In our experiment, there were 18 services running and 518 Tempest tests after reduction from Phase 1.
At the end of Phase 2, the isomorphic test elimination procedure reduced the number of tests to 19.

Phase 3: Failure Detection
This phase analyzes the relationships established in Phase 2 by constructing a decision tree and using
the tree to detect failed service(s). Each internal node represents a Tempest test selected in Phase 2.
Each branch represents the result of the test and each leaf represents a service which is in failed state or
in some cases, it represents a set of failed services.

In our experiment, we used the sequential fault diagnosis14 to construct a decision tree. In this
approach, a test can split the state of a system into two subsets. Let A denote the set of candidate
system states when a test fails and B the set of candidate system states when the test passes. For a
symmetrical test: A \ B ¼ ;.
The test-sequencing problem has been defined by Pattipati and Alexandridis15 by tuple (S, p, T, c),
where

S ¼ {s0, s1,. . ., sm} finite set of system states with s0 denoting the fault free state of the system
and si (1 < ¼ i < ¼ m) specifying the different faulty states of the system;

IEEE INTERNET COMPUTING

November/December 2018 66 www.computer.org/internet

p ¼ [p(s0), p(s1),. . ., p(sm)] a priori probability vector of the system state;
T ¼ {t1,t2,. . ., tn} finite set of n available tests;
c ¼ [c1, c2,. . ., cn] vector of test costs measured in terms of time, manpower or other economic

factors;

test matrix D describing diagnostic capabilities of tests T. This is the relationship established in
Phase 2 (see Figure 4).

The test-sequencing problem falls under the category of a Markov decision problem. The Markov state
x denotes the suspect set of system state, which is a subset of S. Each state has a corresponding test to
further divide this state into two subsets of states. This is repeated till the state cannot be further
divided. Figure 5 shows the decision tree generated in our experiment.

A test corresponding to a Markov state is executed. The result of the test splits the Markov state
(also known as ambiguity set) into two subsets, thereby reducing the ambiguity. As per the
convention, the left branch corresponds to the passed test and the right branch corresponds to
the failed test. The root node represents the state of complete ambiguity and the leaf node
represents one of the failed states.

In Figure 5, the root node containing test t3 corresponds to the Markov state x containing all the states
of S. The execution of t3 divides the system into two Markov states xjp and xjf, thereby reducing the
ambiguity based on the result of t3. The Markov state xjp denotes the states {S0, S3, S5, S10, S11,
S12} and xjf denotes {S1, S2, S4, S6, S7, S8, S9, S13, S14, S15, S16, S17, S18}. These Markov
states are further divided till no more divisions are possible.

At each node, the test is selected based on the distinguishability heuristic defined by the following
expression [Eq. 1], which is given by Pattipati and Alexandridis15:

dc x; tj
� � ¼ p xjp

� �
:p xjf

� �
(1)

where xjp and xjf are the Markov states of the pass and fail outcomes of test tj such that
xjp [xjf ¼ x and p(xjp), p(xjf) are the conditional probabilities of the pass and fail outcomes of
test tj, respectively. Furthermore, p(xjp) [Eq. 2] and p(xjf) [Eq. 3] are expressed as follows,
which are given by Cui et al.11:

p xjp

� � ¼
X:

si 2x
1� dij
� �

:p sið Þ
h i

: p̂ xð Þ½ ��1 (2)

p xif

� � ¼ 1� p xjp

� �
; p̂ xð Þ ¼

X:

si 2x
p sið Þ: (3)

Figure 5. Decision tree. The figure shows the decision tree generated from the relationship derived in
Phase 2.

VIEW FROM THE CLOUD

November/December 2018 67 www.computer.org/internet

The test tj that maximizes dc(x,tj)/cost, where cost is the execution time of the test tj is selected.

Figure 5 shows the constructed decision tree. Let us diagnose a system with a defective service s13.
The diagnosis starts with the root node containing the test t3. If the test t3 fails, the right branch of the
tree is followed and the test t5 is executed. If the test t5 passes, the left branch is traversed and the test t8
is executed. Similarly, if t8 passes, the test t6 is executed. The execution of the test t6 would determine
the faulty service. If the test t6 passes, it would lead us to the leaf node containing the faulty service s13.

We had 19 Tempest tests after Phase 2 and 18 services running in our OpenStack cloud. In the worst
case, the solution was able to detect the faulty service after executing five Tempest tests.

EVALUATION
The evaluation of the method was carried out in OpenStack Mitaka with a multinode setup. In more
recent experiments, we rely on OpenStack Rally to schedule, orchestrate, and replicate failure
diagnosis experiments for evaluation in a controlled and deterministic manner. The OpenStack
configuration was the following.

� 1 Controller node (8 GB, Intel Xeon E5-2600, 4 cores).
� 1 Network node (4 GB, Intel Xeon E5-2600, 4 cores).
� 2 Compute nodes (8 GB, Intel Xeon E5-2600, 4 cores).

To evaluate Phase 1, eight modules from different components of the Tempest framework were
randomly chosen and the reduction of the tests was performed manually. The results were then
compared with the ones produced by the solution. The reduction performed automatically matched the
reduction performed manually.

To evaluate Phase 2, we ran the algorithm to establish relationships between Tempest tests and
services. We established the relationship between 518 tests and 18 services running. Isomorphic test
elimination reduced the number of tests to 19. The relationships were evaluated and were correct. An
important aspect to consider is that the establishment of relationships must be carried out in a valid
OpenStack setup. Tests can fail for various reasons, such as timeouts, network congestion, insufficient
memory, storage issues, etc. These problems can result in the establishment of incorrect relationships.
Hence, to eliminate false positives, tests were run multiple times to make sure that the relationships
were accurate. Therefore, the tests were run four times to establish accurate results.

To evaluate Phase 3, the decision tree was validated by conducting failure diagnosis in different
scenarios. Services were manually disabled to simulate failures in the production environment. The
method was able to predict all service failures.

In case a cloud platform is heavily loaded, displays insufficient capacity, and drops service requests
that cannot be handled, our approach will signal these requests as service failures. This design decision
reflects the fact that customers perceive a service to be unavailable as a failure.

There is another interesting practical evaluation worth discussing that highlights the usefulness of the
method proposed. One of our OpenStack cloud was deployed in a network shared with the other
deployments resulting in IP conflicts. The virtual machines created by OpenStack were configured
with an IP used by another deployment. The tools that are made available by the OpenStack
community were not helpful to diagnose the root cause of the problem as they showed that the Neutron
service was running without problems and there were enough IPs available. Moreover, Tempest tests
also did not prove to be helpful as many tests belonging to different components failed because of the
underlying problem. However, our method correctly diagnosed that the component responsible for the
problem was Neutron.

The cost of each of the phases is also very reasonable. As an example, for the models that we
have reconstructed for OpenStack releases, the total time taken to run all the 1392 Tempest tests
was approx. 175 min. After the first phase, the number of tests was reduced to 518, which took
approx. 75 min to execute. The application of the model needs only to execute five to six tests
to detect a service failure, which typically takes less than 2 min to complete.

IEEE INTERNET COMPUTING

November/December 2018 68 www.computer.org/internet

While our approach is intrusive, our experiments show that at most six tests out of the 19 tests left after
eliminating the isomorphic tests are needed to detect a service failure. The average latency of the 19
tests is 16.55 s (SD 7.59). Furthermore, if we pay attention to all the paths from the root to the leaves of
the decision tree to diagnose failures, the most expensive path takes approx. 80 s to run all the tests.
Thus, the cost is acceptable as well as the impact on the cloud platform.

CONCLUSION
This research demonstrated the use of a new method for using automated tests for service failure
diagnosis. The method assists cloud administrators to diagnose failures in OpenStack within 4–5 min.
Nevertheless, there is room for future research. The relationships between the tests and services were
established by completely disabling services, but it is worth looking into scenarios where services are
not completely disable but rather to simulate situations under which services are running with limited
bandwidth, memory, or storage capacity. Moreover, to further improve failure diagnosis, log and
control flow graph analysis techniques can be incorporated to reconstruct the underlying distributed
system topology to narrow the state-space search for services that have failed.

REFERENCES
1. (2016). [Online]. Available: https://www.openstack.org
2. A. Avi�zienis, J. C. Laprie, and B. Randell, “Dependability and its threats: A taxonomy,” in

Proc. Building Inf. Soc., Springer, vol. 22, 2004, pp. 91–120.
3. (2016). [Online]. Available: https://wiki.openstack.org/wiki/Operations/Tools
4. K. Srinivas and R. B. Michael “Methods for fault detection, diagnostics, and prognostics for

building systems—A review, part I,” HVAC&R Res., vol. 11, 2005.
5. T. Jia, P. Chen, L. Yang, Y. Li, F. Meng, and J. Xu, “An approach for anomaly diagnosis

based on hybrid graph model with logs for distributed services,” in Proc. IEEE Int. Conf.
Web Services, Honolulu, HI, USA, 2017, pp. 25–32.

6. M. Peiris, J. H. Hill, J. Thelin, S. Bykov, G. Kliot, and C. Konig, “PAD: Performance
anomaly detection in multi-server distributed systems,” in Proc. 7th Int. Conf. Cloud
Computing, 2014, pp. 769–776.

7. B. Sigelman et al., “Dapper, a large-scale distributed systems tracing infrastructure,”
Google, Mountain View, CA, USA, 2010.

8. P. Musavi, B. Adams, and F. Khomh, “Experience report: An empirical study of API failures
in OpenStack cloud environments,” in Proc. IEEE 27th Int. Symp. Softw. Rel. Eng., 2016,
pp. 424–434.

9. T. Yoshinobu and Y. Shigeru, “Practical reliability and maintainability analysis tool for an
open source cloud computing,” Qual. Rel. Eng. Int., vol. 32, pp. 909–920, 2016.

10. P. Cuong et al., “Failure diagnosis for distributed systems using targeted fault injection,”
IEEE Trans. Parallel Distrib. Syst., vol. 28, no. 60, pp. 503–516, Feb. 2017.

11. C. Baojiang et al., “Code comparison system based on abstract syntax tree,” in Proc. 3rd
IEEE Int. Conf. Broadband Netw. Multimedia Technol., 2010, pp. 668–673.

12. R. Juan, “Using TF-IDF to determine word relevance in document queries,” in Proc. 1st
Instructional Conf. Mach. Learn., section 2.1, p. 2, 2003.

13. P. Slavík, “A tight analysis of the greedy algorithm for set cover,” in Proc. 28th Annu. ACM
Symp. Theory Comput., 1996, pp. 435–441.

14. �Z. Alenka, A. Biasizzo, and F. Novak, “Sequential diagnosis tool,”Microprocessors
Microsyst., vol. 24, pp. 191–197, 2000.

15. K. R. Pattipati and M. G. Alexandridis, “Application of heuristic search and information
theory to sequential fault diagnosis,” IEEE Trans. Syst., Man, Cybern., vol. 20, no. 4,
pp. 872–887, Jul./Aug. 1990.

VIEW FROM THE CLOUD

November/December 2018 69 www.computer.org/internet

https://www.openstack.org
https://wiki.openstack.org/wiki/Operations/Tools

ABOUT THE AUTHORS

Ankur Bhatia is currently working toward the M.Sc. degree in informatics at the
Technical University of Munich, Munich, Germany. His research interests include
cloud computing and Internet of Things. He received the B.Tech degree in computer
science from the Manipal Institute of Technology, Manipal, India. Contact him at
ankur.bhatia@tum.de.

Jorge Cardoso is a chief architect for Cloud Operations and Analytics at Huawei’s
German Research Centre, Munich, Germany, and an associate professor at the
University of Coimbra, Coimbra, Portugal. His research interests include intelligent cloud
operations, cloud computing, distributed systems, and business process management.
He received the Ph.D. degree in computer science from the University of Georgia,
Athens, GA, USA. Contact him at jorge.cardoso@huawei.com.

Michael Gerndt has been a professor for parallel computer architecture at the Technical
University of Munich, Munich, Germany, since 2000. He is focusing of performance
analysis and tuning tools for HPC systems. Further research focuses on parallel
programming languages and Cloud systems. Contact him at gerndt@in.tum.de.

IEEE INTERNET COMPUTING

November/December 2018 70 www.computer.org/internet

mailto:
mailto:
mailto:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

