
 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 49

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Abstract

Organizations are increasingly faced with the challenge of managing business processes, workflows, and
recently, Web processes. One important aspect of business processes that has been overlooked is their
complexity. High complexity in processes may result in poor understandability, errors, defects, and excep-
tions, leading processes to need more time to develop, test, and maintain. Therefore, excessive complexity
should be avoided. Business process measurement is the task of empirically and objectively assigning
numbers to the properties of business processes in such a way so as to describe them. Desirable attributes
to study and measure include complexity, cost, maintainability, and reliability. In our work, we will focus on
investigating process complexity. We present and describe a metric to analyze the control-flow complexity
of business processes. The metric is evaluated in terms of Weyuker’s properties in order to guarantee that
it qualifies as good and comprehensive. To test the validity of the metric, we describe the experiment we
have carried out for empirically validating the metric.

Keywords:	 business processes, complexity metrics, Web processes, workflows, software engineering.

Introduction
Business process management systems (BPMS)
(Smith & Fingar, 2003) provide a fundamental
infrastructure to define and manage business
processes. BPMS, such as Workflow Manage-
ment Systems (WfMS) (Cardoso, Bostrom &
Sheth, 2004), have become a serious competitive
factor for many organizations that are increas-
ingly faced with the challenge of managing e-
business applications, workflows, Web services,
and Web processes. Business processes, such as
Web processes (WS-BEPL, 2005) promise to

ease several current infrastructure challenges,
such as data, application, and process integra-
tion. With the emergence of Web services, a
workflow management system becomes es-
sential to support, manage, and enact processes,
both among enterprises and within the enterprise
(Sheth, van der Aalst & Arpinar, 1999).

A vast amount of work done so far in
the business process field has targeted the
development of WfMS, including models
(e.g., Petri nets), modeling languages (BPML,
2004; BPMN, 2005; Leymann, 2001; Menzel,

Business Process Control-Flow
Complexity:

Metric, Evaluation, and Validation
Jorge Cardoso, University of Madeira, Portugal

50 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Mayer, & Edwards, 1994; Singh, 1995; van
der Aalst, 1998; van der Aalst & Hofstede,
2003), and execution environments (Alonso,
Mohan, Guenthoer, Agrawal, El Abbadi, &
Kamath, 1994; Canós, Penadés, & Carsí, 1999;
Jablonski, 1994; Kochut, Sheth, & Miller,
1999; Miller, Palaniswami, Sheth, Kochut, &
Singh, 1998; Wodtke, Weissenfels, Weikum,
& Dittrich, 1996). Work has also been carried
out to develop methods to analyze processes
in order to verify their correctness, testing the
existence of livelocks and deadlocks (van der
Aalst, 1998).

Recently, a new field of research for pro-
cesses has emerged. This new field—termed
process measurement—presents a set of
approaches to the quantification of specific
properties of processes. Important properties to
analyze include the estimation of complexity,
defects, process size, effort of testing, effort of
maintenance, understandability, time, resources,
and quality of service. Process measurement is
still in its infancy, and much work has yet to
be undertaken.

The effective management of any process
requires modeling, measurement, and quan-
tification. Process measurement is concerned
with deriving a numeric value for attributes of
processes. Measures, such as Quality of Service
measures (Cardoso, Miller, Sheth, Arnold, &
Kochut, 2004), can be used to improve process
productivity and quality.

 Designing and improving processes is a
key aspect in order for businesses to stay com-
petitive in today’s marketplace. Organizations
have been forced to improve their business
processes because customers are demanding
better products and services. When an organiza-
tion adopts a process management philosophy,
process improvement can take place. Indepen-
dently of the approach taken, which can be a
Continuous Process Improvement (Harrington,
1993), a Business Process Redesign (Wastell,
White, & Kawalek, 1994), or a Business Process
Reengineering (Ould, 1995) approach, methods
need to be available to analyze the processes
undergoing improvements. To achieve an ef-
fective management, one fundamental area of

research that needs to be explored is the com-
plexity analysis of processes.

 A business process is composed of a set
of activities, tasks, or services put together to
achieve a final goal. As the complexity of a
process increases, it can lead to poor quality and
be difficult to reengineer. High complexity in a
process may result in limited understandability
and more errors, defects, and exceptions, leading
processes to need more time to develop, test, and
maintain. For example, in software engineer-
ing, it has been found that program modules
with high-complexity indices have a higher
frequency of failures (Lanning & Khoshgoftaar,
1994). Therefore, excessive complexity should
be avoided. For instance, critical processes in
which failure can result in the loss of human
life require a unique approach to development,
implementation, and management. For these
types of processes, typically found in healthcare
applications (Anyanwu, Sheth, Cardoso, Miller,
& Kochut, 2003), the consequences of failure
are severe. The ability to produce processes of
higher quality and less complexity is a matter
of endurance.

Surprisingly, in spite of the fact that there
is a vast amount of literature on software
measurement of complexity (Zuse, 1997), no
significant research on process measurement of
complexity has yet been carried out. Analyzing
the complexity at all stages of process design and
development helps avoid the drawbacks associ-
ated with high-complexity processes. Currently,
organizations have not adopted complexity
metrics as part of their process management
projects. As a result, simple processes may be
designed in a complex way.

This article integrates and expands our
previous work (Cardoso, 2005c; 2005d; 2005f)
and discusses the complexity of processes. In the
first main section, we present the Control-Flow
Complexity (CFC) metric (Cardoso, 2005d)
in order to measure the degree of complex-
ity of business processes from a control-flow
perspective. As Lord William Thomson Kelvin
(1824–1907) said, “If you cannot measure it,
you cannot improve it.” The use of the CFC
metric allows designers to improve processes,

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 51

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

thus reducing the time spent reading and under-
standing processes in order to remove faults or
adapt them to changed requirements. The CFC
metric can be used to analyze the complexity of
business processes, as well as workflows and
Web processes. In the second main section, we
evaluate the Control-Flow Complexity metric in
terms of Weyuker’s properties (Weyuker, 1988).
Weyuker’s properties give an important basis to
classify a complexity measure in order to deter-
mine if it can be categorized as good, structured,
and comprehensive (Cardoso, 2005c). Finally,
the last main section describes the experiment
that we have carried out for empirically validat-
ing the proposed metric (Cardoso, 2006). Such
an experiment plays a fundamental role in our
work, since the experimentation is a crucial
part of the evaluation of new metrics and is
critical for the success of any measurement
activity (Zelkowitz & Wallace, 1998). Through
empirical validation, we demonstrate with real
evidence that the measure we proposed serves
the purpose for which it was defined.

Motivation
In this section, we describe a scenario in order
to explain and illustrate the need for Control-
Flow Complexity (CFC) analysis during the
design and aging of a process. A major bank
has realized that in order to be competitive
and efficient, it must adopt a new, modern
information system infrastructure. Therefore,
a first step was taken in that direction with the
adoption of a workflow management system to
support its business processes. Since the bank
supplies several services to its customers, the
adoption of a WfMS has enabled the logic of
bank processes to be captured in schema. As a
result, part of the services available to customers

is stored and executed under the supervision of
the workflow system. One of the services sup-
plied by the bank is the loan process depicted
in Figure 1.

This very simple process is composed of
only four activities. The Fill Loan Request ac-
tivity allows clients to request a loan from the
bank. In this step, the client is asked to fill out
an electronic form with personal information
and data describing the loan being requested.
The second activity, Check Educational Loan,
determines if the loan request should be accepted
or rejected. When the result of a loan application
is known, it is e-mailed to the client using the
Notify Educational Loan Client activity. Finally,
the Archive Application activity creates a report
and stores the loan application data in a database
record. A complete description of this process
is described in Cardoso (2005e).

This first workflow application gains ac-
ceptance within the bank since it improves
service to customers at several levels, allows
significant cost savings, and improves com-
munication among employees; the managers
of the bank decide to add more services to be
supported by the loan process. It was decided
to support not only educational loans but also
home and car loans.

Before making any changes to the process,
a control-flow complexity analysis is carried out.
The outcome of the analysis indicates that the
process has a very low complexity. Processes
with a low complexity have the capability to
quickly change to accommodate new products
or services in order to meet the changing needs
of customers and business partners. Based on
the complexity analysis results, the process was
changed, having now the structure illustrated
in Figure 2.

The new process (version 2) is composed
of nine activities. Because complexity was a
concern during the development of the new
process, it still maintains a complexity that is
within an acceptable range.

For the twelve months that followed the
design and implementation of the second ver-
sion of the process, several small changes were
introduced to the process. Unfortunately, since

Figure 1. The loan process (version 1)

Fill

Loan
Request

Check
Education Loan

Archive
Application

Notify
Education Loan

Client

52 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the changes were done incrementally and each
one had a small impact on the structure of the
process, complexity analysis was not carried
out during the process redesign. As a result, the
process structure is the following (Figure 3).

The process has evolved over time by modi-
fication and may have become fragile with age.
Therefore, it is necessary to use techniques such
as complexity analysis to assess the system’s
condition. A high complexity may be the sign
of a brittle, nonflexible, or high-risk process. If
high complexity is identified, the process may
need to be redesigned to reduce its complexity.
Redesign may involve breaking the process
into subprocesses or simplifying the way the
business process is carried out.

Let us consider again the process from
Figure 3. Imagine that the designers are study-
ing alternatives to extend the process to handle
exceptions. The designers have identified three
ways to implement an exception-handling
mechanism, and they are undecided about
which one to select. In such a scenario, the
CFC measure can be effectively used to help the
designers in their decision. A “what-if analysis”
can be carried out. For each alternative, the
CFC can be analyzed, and the alternative that

entails a lower complexity for the process can
be selected and implemented.

Analyzing the complexity at all stages of
process design and development helps avoid
the drawbacks associated with high-complexity
processes. Currently, organizations have not
implemented complexity limits as part of their
business process management projects. The use
of complexity analysis will aid in constructing
and deploying processes and workflows that are
more simple, reliable, and robust.

Processes are not static applications. They
are constantly undergoing revision, adaptation,
change, and modification to meet end users’
needs. The complexity of these processes and
their continuous evolution make it very difficult
to assure their stability and reliability. In-depth
analysis is required for fixing defects in portions
of processes of high complexity (Figure 4.).

Process Complexity
Several definitions have been given to describe
the meaning of software complexity. For ex-
ample, Curtis (1980) states that complexity is
a characteristic of the software interface that
influences the resources another system will
expend or commit while interacting with the
software. Card and Agresti (1988) define rela-

Figure 2. The loan process (version 2)

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 53

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

tive system complexity as the sum of structural
complexity and data complexity divided by the
number of modules changed. Fenton (1991)
defines complexity as the amount of resources
required for a problem’s solution.

After analyzing the characteristics and
specific aspects of business processes and
workflows, we believe that the definition that is
better suited to describe processes complexity
can be derived from IEEE (1992). Therefore,
we define process complexity as the degree to
which a process is difficult to analyze, under-

stand, or explain. It may be characterized by
the number and intricacy of activity interfaces,
transitions, conditional and parallel branches,
the existence of loops, roles, activity categories,
the types of data structures, and other process
characteristics.

Process Complexity Measurement
Requirements
The development of a model and theory to cal-
culate the complexity associated with a process
or workflow needs to conform to a set of basic

Figure 3. The loan process (version 3)

Figure 4. Process complexity analysis and process reengineering

 Process complexity Analysis and Process
reengineering

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29time

c
om

pl
ex

ity

Complexity Analysis and Process Reengineering

Process Adaptation and Modification

54 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

but important properties. The metric should
be easy to learn, computable, consistent, and
objective. Additionally, the following properties
are highly desirable (Tsai, Lopex, Rodriguez,
& Volovik, 1986; Zuse, 1990):

•	 Simplicity. The metric should be easily
understood by its end users (i.e., process
analysts and designers).

•	 Consistency. The metric should always
yield the same value when two independent
users apply the measurement to the same
process (i.e., they should arrive at the same
result).

•	 Automation. It must be possible to auto-
mate the measurement of processes.

•	 Measures must be additive. If two inde-
pendent structures are put into sequence,
then the total complexity of the combined
structures is at least the sum of the com-
plexities of the independent structures.

•	 Measures must be interoperable. Due to
the large number of existing specification
languages both in academia and industry,
the measurements should be independent of
the process specification language. A par-
ticular complexity value should mean the
same thing whether it was calculated from
a process written in BPEL (BPEL4WS,
2002), WSFL (Leymann, 2001), BPML
(BPML, 2004), YAWL (van der Aalst &
Hofstede, 2003), or some other specifica-
tion language. The objective is to be able
to set complexity standards and interpret
the resultant numbers uniformly across
specification languages.

Perspectives on Process
Complexity
There is no single metric that can be used to
measure the complexity of a process. Four
main complexity perspectives can be identified
(Figure 5): activity complexity, control-flow
complexity, data-flow complexity, and resource
complexity. While in this article we will focus
on control-flow complexity, we present the main
ideas behind each complexity perspective.

Activity complexity. This view on
complexity simply calculates the number of
activities a process has. While this complexity
metric is very simple, it is very important to
complement other forms of complexity. The
control-flow complexity of a process can be
very low, while its activity complexity can be
very high. For example, a sequential process
that has a thousand activities has a control-flow
complexity of 0, whereas its activity complexity
is 100. This metric was inspired by lines-of-code
(LOC) metric used with a significant success
rate in software engineering (Jones, 1986).

Control-flow complexity. The control-
flow behavior of a process is affected by con-
structs such as splits, joins, loops, and ending and
starting points (Cardoso, 2005d). Splits allow
defining the possible control paths that exist in a
process. Joins have a different role; they express
the type of synchronization that should be made
at a specific point in the process. A control-flow
complexity model needs to take into account
the existence of XOR-split/join, OR-split/join,
AND-split/join, loops, and so forth.

Data-flow complexity. The data-flow
complexity of a process increases with the
complexity of its data structures, the number
of formal parameters of activities, and the
mappings between activities’ data (Reijers &
Vanderfeesten, 2004). A data-flow complexity
metric can be composed of several submetrics,
which include: data complexity, interface com-
plexity, and interface integration complexity
(Cardoso, 2005b). While the first two submetrics
are related to static data aspects (data declara-
tion), the third metric is more dynamic in nature
and focuses on data dependencies between the
various activities of a process.

Resource complexity. Activities in a pro-
cess need to access resources during their execu-
tions. A resource is defined as any entity (e.g.,
human resources, IS resources, IT resources)
required by an activity for its execution, such
as a document, a database, a printer, an external
application, or role (Du, Davis, Huang, & Shan,
1999; zur Mühlen, 1999). Resources such as ac-
tors and roles can be structured into the context
of an organization. The structure that is used to

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 55

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

shape the various types of resources can be ana-
lyzed to determine its complexity. This analysis
can help managers lower administrative costs
and better optimize resource utilization.

Business Process
Control-Flow Complexity
Metric
The graphical representation of most process
specification languages provides the user with
the capability to recognize complex areas of
processes. Thus, it is important to develop
methods and measurements to automatically
identify complex processes and complex ar-
eas of processes. Afterward, these processes
can be redesigned to reduce the complexity of
related activities. One key to the redesign is
the availability of a metric that characterizes
complexity and provides guidance for restruc-
turing processes.

Overview of McCabe’s Cyclomatic
Complexity
Our work borrows some techniques from the
branch of software engineering known as
software metrics; namely, McCabe’s cyclo-
matic complexity (MCC) (McCabe, 1976). A
judicious adaptation and usage of this metric

during development and maintenance of process
applications can result in a better quality and
maintainability. Based on MCC, we propose a
control-flow complexity metric to be used dur-
ing the design of processes. Process control-flow
complexity is a design-time metric.

Since our work to evaluate process com-
plexity borrows some ideas from MCC (Mc-
Cabe, 1976) in order to analyze software com-
plexity, we start by describing the importance
of MCC and illustrate its usage. This metric
was chosen for its reliability as a complexity
indicator and its suitability for our research.

Since its development, MCC has been one
of the most widely accepted software metrics
and has been applied to tens of millions of lines
of code in both the Department of Defense
(DoD) and commercial applications. The result-
ing base of empirical knowledge has allowed
software developers to calibrate measurements
of their own software and arrive at some un-
derstanding of its complexity.

Software metrics often are used to give
a quantitative indication of a program’s com-
plexity. However, it is not to be confused with
algorithmic complexity measures (e.g., Big-Oh
“O”-Notation), whose aim is to compare the
performance of algorithms. Software metrics
have been found to be useful in reducing soft-

Figure 5. Types of complexity analyses

56 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

ware maintenance costs by assigning a numeric
value to reflect the ease or difficulty with which
a program module may be understood.

MCC is a measure of the number of linearly
independent paths in a program. It is intended
to be independent of language and language
format (McCabe & Watson, 1994). MCC is an
indication of a program module’s control flow
complexity. Derived from a module’s control
graph representation, MCC has been found to
be a reliable indicator of complexity in large
software projects (Ward, 1989). This metric
is based on the assumption that a program’s
complexity is related to the number of control
paths through the program. For example, a 10-
line program with 10 assignment statements
is easier to understand than a 10-line program
with 10 if-then statements.

MCC is defined for each module as e - n +
2, where e and n are the number of edges and
nodes in the control flow graph, respectively.
Control flow graphs describe the logic struc-
ture of software modules. The nodes represent
computational statements or expressions,
and the edges represent transfer of control
between nodes. Each possible execution path
of a software module has a corresponding path
from the entry to the exit node of the module’s

control flow graph. For example, in Figure 6.,
the MCC of the control flow graph for the Java
code described is 14-11+2=5.

Our major objective is to develop a metric
that could be used in the same way as the MCC
metric, but to evaluate process complexity. One
of the first important observations that can be
made from an MCC control flow graph (Figure
6.) is that this graph is extremely similar to
processes and workflows. One major difference
is that the nodes of an MCC control flow graph
have identical semantics, while process nodes
(i.e., activities, tasks, Web services) can have
different semantics (e.g., AND-splits, XOR-
splits, OR-joins, etc.).

 Our approach uses the idea introduced by
McCabe and tackles the semantic difference
of nodes. Numerous studies and experience in
software projects have shown that the MCC
measure correlates very closely with errors in
software modules. The more complex a module
is, the more likely it is to contain errors. Our goal
is to adapt McCabe’s cyclomatic complexity to
be applied to processes.

Control-Flow Graphs
Control flow graphs can be used to describe
the logic structure of processes. A process is

Figure 6. Example of a Java program and its corresponding flow graph

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 57

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

composed of activities and transitions. Activities
are represented using circles, and transitions are
represented using arrows. Transitions express
dependencies between activities. An activity
with more than one outgoing transition can be
classified as an AND-split, OR-split, or XOR-
split. Control flow graphs with activities that
can have three types of output logic are called
tri-logic workflows (Cardoso & Cravo, 2006).
AND-split activities enable all their outgoing
transitions after completing their execution.
OR-split activities enable one or more outgo-
ing transitions after completing their execution.
XOR-split activities enable only one outgoing
transition after completing their execution.
AND-split activities are represented with a ‘•’,
OR-split with an ‘O’, and XOR-split activities
with a ‘⊕’. An activity with more than one
incoming transition can be classified as an AND-
join, OR-join, or XOR-join. AND-join activities
start their execution when all their incoming
transitions are enabled. OR-join activities start
their execution when a subset of their incoming
transitions is enabled. XOR-join activities are
executed as soon as one of the incoming transi-
tions is enabled. As with AND-split, OR-split,
and XOR-split activities, AND-join, OR-join,
and XOR-join activities are represented with
the symbols ‘•’, ‘O’, and ‘⊕’, respectively. Van
der Aalst, Hofstede, Kiepuszewski, and Barros
(2003) show that most workflow patterns can
be constructed using the basic building blocks
AND-split, OR-split, and XOR-split. Only OR
and XOR-splits introduce nondeterminism.
On the other hand, AND-splits and joins are

deterministic.
An example of a process is shown in Fig-

ure 7. The process has been developed by the
Fungal Genome Resource (FGR) laboratory
in an effort to improve the efficiency of their
processes (Cardoso, Miller, Sheth, Arnold,
& Kochut, 2004). One of the reengineered
processes was the DNA sequencing workflow,
since it was considered to be beneficial for the
laboratory’s daily activities.

Definition and Measurement of
Control-flow Complexity
The control-flow behavior of a process is af-
fected by constructs such as splits and joins.
Splits allow defining the possible control paths
that exist through the process. Joins have a
different role; they express the type of syn-
chronization that should be made at a specific
point in the process.

Since we are interested in calculating the
complexity of processes’ control-flow, the
formulae that we will present evaluate the
complexity of XOR-split, OR-split, and AND-
split constructs. We call this measurement of
complexity Control-flow Complexity (CFC).
Each formula computes the number of states
that can be reached from one of the three split
constructs. The measure is based on the relation-
ships between mental discriminations needed
to understand a split construct and its effects.
This type of complexity has been referred to as
psychological complexity. Therefore, the more
possible states follow a split, the more difficulty
the designer or business process engineer has

Figure 7. The DNA sequencing workflow

58 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

to understand the section of a processes and,
thus, the process itself.

In processes, the MCC cannot be used suc-
cessfully since the metric ignores the semantics
associated with nodes of the graph. While the
nodes (i.e., activities) of processes have distinct
semantics associated, the nodes of a program’s
flow graph are undifferentiated.

We now introduce several definitions that
will constitute the basis for CFC measure-
ment.

Definition 1 (Process): A process is a collec-
tion of activities that takes one or more kinds
of input and creates an output that is of value
to the customer (Hammer & Champy, 1993).
A process is a specific ordering of activities
across time and place, with a beginning, an
end, and clearly identified inputs and outputs
(Davenport, 1993).

Definition 2 (Process Property): A property
is a feature, characteristic, or attribute of a
process such as complexity, maintainability,
cost, reliability, and so forth. Process properties
can be evaluated and quantified using suitable
models, methods, and algorithms.

Definition 3 (Process Measure): A process
measure is an empirical assignment of num-
bers (or symbols) to processes in order to
characterize a specific property. Let P be a set
of processes. Let N be a set of formal objects,
such as numbers. A measure m is defined to be a
mapping, m: P→N. This guarantees that every
process has a measure, and every process has
only one measure. However, it does not require
that every number (in set N) be the measure of
some process in set P.

Definition 4 (Process Metric): Process metric
is any type of measurement related to a process.
Process metrics allows attributes of processes
to be quantified.

Definition 5 (Activity Fan-out): Fan-out is the
number of transitions going out of an activity.

The fan-out is computed using function fan-
out(a), where a is an activity.

Definition 6 (Control-flow-induced Mental
State): A mental state is a state that has to be
considered when a designer is developing a
process. Splits introduce the notion of mental
states in processes. When a split (XOR, OR, or
AND) is introduced in a process, the business
process designer has to mentally create a map
or structure that accounts for the number of
states that can be reached from the split.

The notion of mental state is important
since there are certain theories (Miller, 1956)
that prove that complexity beyond a certain point
defeats the human mind’s ability to perform
accurate symbolic manipulations and, hence,
results in error.

Definition 7 (XOR-split Control-flow Com-
plexity): XOR-split control-flow complexity
is determined by the number of mental states
that are introduced with this type of split. The
function CFCXOR-split(a), where a is an activity,
computes the control-flow complexity of the
XOR-split a. For XOR-splits, the control-flow
complexity is simply the fan-out of the split.

CFCXOR-split(a)= fan-out(a)

In this particular case, the complexity is
directly proportional to the number of activities
that follow an XOR-split and that a process de-
signer needs to consider, analyze, and assimilate.
The idea is to associate the complexity of an
XOR-split with the number of states (e.g., activi-
ties, tasks, Web services) that follow the split.
This rationale is illustrated in Figure 8. Please
note that in this first case, the computation and
result bear a strong similarity to the MCC.

Definition 8 (OR-split Control-flow Complex-
ity): OR-split control-flow complexity is also
determined by the number of mental states that
are introduced with the split. For OR-splits, the
control-flow complexity is 2n-1, where n is the

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 59

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

fan-out of the split. This rationale is illustrated
in Figure 9.

CFCOR-split(a)= 2fan-out(a)-1

This means that when a designer is con-
structing a process, he or she needs to consider
and analyze 2n-1 states that may arise from the
execution of an OR-split construct.

Mathematically, it would appear more
obvious that 2n states can be reached after the
execution of an OR-split. But since a process
that has started its execution has to finish, it can-
not be the case where, after the execution of an
OR-split, no transition is activated (i.e., no Web
service or workflow task is executed. Therefore,
this situation or state cannot happen.

Definition 9 (AND-split Control-flow Com-
plexity): For an AND-split, the complexity is
simply 1.

CFCAND-split(a)= 1

The designer constructing a process needs
only to consider and analyze one state that
may arise from the execution of an AND-split
construct, since it is assumed that all the outgo-
ing transitions are selected and followed. This
rationale is illustrated in Figure 10.

The higher the value of CFCXOR-split(a), CF-
COR-split(a), and CFCAND-split(a), the more complex
is a process’s design, since developers have
to handle all the states between control-flow
constructs (splits) and their associated outgo-
ing transitions and activities. Each formula to
calculate the complexity of a split construct is

Figure 8. XOR-split control-flow complexity

Figure 9. OR-split control-flow complexity

60 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

based on the number of states that follow the
construct.

Control-Flow Complexity of
Business Processes
Mathematically, control-flow complexity metric
is additive. Thus, it is very easy to calculate the
complexity of a process simply by adding the
CFC of all split constructs. The absolute con-
trol-flow complexity is calculated as follows,
where P is a business process.

(XOR-splits of P)

(OR-splits of P)

(AND-splits of P)

()
 ()

 ()

 ()

abs

XOR split
i

OR split
j

AND split
k

CFC P
CFC i

CFC j

CFC k

−
∈

−
∈

−
∈

=

+

+

+

∑

∑

∑

The relative control-flow complexity for
process P is calculated as follows, where |P|
is the number of activities of process P (see
Box 1).

The greater the value of the CFCabs(P) and
CFCrel(P), the greater the overall architectural
complexity of a process. CFC analysis seeks to

evaluate complexity without direct execution
of processes. The function of CFC is computed
based on the individual control-flow complex-
ity of XOR, OR, and AND –splits. Unless
otherwise stated, CFC(P) denotes the absolute
control-flow complexity.

Example of CFC Calculation
As an example, let us take the process shown
in Figure 3 and calculate its CFC. The process
is composed of 21 activities, 29 transitions,
three XOR-splits (Check Loan Type, Check
Home Loan, Check Car Loan), one OR-split
(Archive Application), and one AND-split
(Check Education Loan).

It was decided that before placing the
process in a production environment, a process
complexity analysis was required to evaluate the
risk involved with the reengineering effort. The
results of the control-flow complexity analysis
carried out are shown in Table 1.

From these values, the control-flow com-
plexity can be calculated easily. It is sufficient
to mathematically add the CFC of each split.
Thus, the resulting absolute CFC value is 16
(i.e., 3+3+2+23-1+1). The relative CFC is
16/5=3,2.

Figure 10. AND-split control-flow complexity

Box 1.

()
()

| {XOR-splits of p} {OR-splits of p} {AND-splits of p} |
abs

rel
CFC P

CFC P =
∪ ∪

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 61

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Since the results of the CFC analysis gave
a value considered to be low, it was determined
that the process has a low complexity, and
therefore, its implementation presented a low
risk for the bank. Therefore, the process was
deployed and implemented in a production
environment. As further research is conducted
in this area, it will become clear that in many
cases, it is necessary to limit CFC of process
applications.

 It should be noticed that in order to cor-
rectly analyze the complexity of a business
process, the CFC metric should not be used in
isolation. A useful and simple metric that can
be used in conjunction with the CFC metric is

the activity complexity metric. This is because
the CFC metric only analyzes a process from
the control-flow point of view. As a result, it
may happen that two processes with a different
number of activities have the same control-flow
structure and, therefore, the same CFC. The use
of the activity complexity metric allows deriv-
ing additional information about the complexity
of a process.

One important question that needs to be
investigated and answered is what are both the
meaning of a given metric (e.g., what is the
significance of the CFC of 16 and 3,2 obtained
in our example) and the precise number to use
as a CFC limit in a process development. This
answer will be given from empirical results
only when organizations have successfully
implemented complexity limits as part of their
process development projects. For example,
when using McCabe complexity metrics, the
original limit of 10 indicates a simple program
without much risk; a complexity metric between
11 and 20 designates a more complex program
with moderate risk, and a metric between 21
and 50 denotes a complex program with high
risk. Finally, a complexity metric greater than
50 denotes an untestable program with a very
high risk. We expect that limits for CFC will

Figure 11. The loan application process

Split CFC

CFCXOR-split(Check Loan Type) 3

CFCXOR-split(Check Home Loan) 3

CFCXOR-split(Check Car Loan) 2

CFCOR-split(Archive Application) 23-1

CFCAND-split(Check Education Loan) 1

CFCabs(Loan Application) =16

CFCrel(Loan Application) =3,2

Table 2. CFC metrics for the process from
Figure 3

62 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

be obtained and set in the same way, using
empirical and practical results from research
and from real-world implementation.

Control-flow Complexity
and Weyuker’s
Properties
In the area of software measurement, the
methods and theory developed have had a
reduced industrial acceptance. According to
some research, one reason is that there is a lack
of serious validation of proposed metrics and,
thus, a lack of confidence in the measurements.
To overcome this difficulty, we will study
nine desirable properties (necessary but not
sufficient) suggested by Weyuker (1988) that
should be satisfied by any good “complexity
measure.”

 Weyuker properties have been applied to
software engineering and have been seriously
discussed in the literature (Fenton, 1994; Kitch-
enham, Pfleeger, & Fenton, 1996; Morasca,
Briand, Weyuker, & Zelkowitz, 1997; Zuse,
1997) Although these properties also have
been criticized (Cherniavsky & Smith, 1991),
currently they are still subject to debate and
refinement. Nevertheless, Weyuker properties
are a widely known formal analytical approach
and were therefore chosen for our analysis since
they do provide a basis for some validation of
complexity metrics. As shown by Weyuker,
with such properties, it is possible to filter out
measurements with undesirable properties.

The majority of these properties are formu-
lated in a clear way. This is an advantage because
we are able to discuss them. We will concentrate
and study each property individually.

Summary of Weyuker’s Properties
Weyuker’s first property states that a metric
cannot measure all software programs as being
equally complex. The second property states
that there is only a finite number of programs
of the same complexity. The third property
states that each program may be complex.
The fourth property states that the complexity
of a program depends on its implementation

and that even if two programs solve the same
problem, they can have different complexi-
ties. Weyuker’s fifth property states that the
complexity of two programs joined together is
greater than the complexity of either program
considered separately. The sixth property
states that a program of a given complexity
when joined to two other programs does not
necessarily mean the resulting program will
be of equal complexity, even if the two added
programs are of equal complexity. Weyuker’s
seventh property states that a permuted version
of a program can have a different complexity,
so the order of statements matters. The eighth
property states that if a program is a straight
renaming of another program, its complexity
should be the same as the original program.
The final property states the complexity of two
programs joined together may be greater than
the sum of their individual complexities. The
properties are summarized in Table 3.

Concatenation Operations on Pro-
cesses
Weyuker introduces the concatenation operation
(P1;P2) of program blocks. Weyuker defines the
concatenation operation in the following way:
a program can be uniquely decomposed into a
set of disjointed blocks of ordered statements
having the property whenever the first statement
in the block is executed; the other statements
are executed in the given order.

In our approach and since we are dealing
with processes, four concatenation operations
exist. Processes can be concatenated either
sequentially using an AND, an OR, or an XOR.
These last three concatenation operations use
splits and joins. Every AND/OR/XOR split has
also a corresponding AND/OR/XOR join, and
the different splits do not overlap each other. We
have decided to only allow the construction of
well-structured processes (van der Aalst, 1998)
that are based on a set of predefined building
blocks. This protects users from designing
invalid processes. Van der Aalst (1998) has
shown that processes that are not well-structured
contain design errors, such as nontermination,
deadlocks, and splitting of instances. We use

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 63

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Weyuker’s properties to evaluate the CFC
metric, assuming that the processes are well-
structured for simplicity reasons. The CFC
metric can be applied to well-structured and
unstructured processes.

In the list of following properties, P, Q, and
R represent processes, and the complexity of P
computed by our complexity measure CFC(P)
is represented by |P|.

1.	 When process P is concatenated sequen-
tially with process Q, we depict the resulting
process as P-Q. This type of concatenation
is illustrated in Figure 12.

2.	 When process P is concatenated with pro-
cess Q using an AND-split and an AND-
join, we depict the resulting process as P•Q.
This type of concatenation is illustrated in
Figure 13.

3.	 When process P is concatenated with pro-
cess Q using an OR-split and an OR-join,
we depict the resulting process as PoQ.
This type of concatenation has the same
illustration as the one in Figure 13, except
that the AND-split and the AND-join shown
are replaced with an OR-split and an OR-
join, respectively.

Property Description

1 A metric cannot measure all software programs as being equally complex.

2 There is only a finite number of programs of the same complexity.

3 Each program may be complex.

4 If two programs solve the same problem, they can have different complexities.

5 The complexity of two programs joined together is greater than the complexity of either
program considered separately.

6
A program of a given complexity when joined to two other programs does not necessarily
mean the resulting program will be of equal complexity, even if the two added programs are
of equal complexity.

7 A permuted version of a program can have a different complexity.

8 If a program is a renaming of another program, its complexity should be the same.

9 The complexity of two programs joined together may be greater than the sum of their indi-
vidual complexities.

Table 3. Weyuker’s properties

Figure 12. Sequential concatenation

QP

P-Q

64 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

4.	 When process P is concatenated with pro-
cess Q using a XOR-split and a XOR-join,
we depict the resulting process as P⊕Q.
This type of concatenation has also the
same illustration as the one in Figure 13,
except that the AND-split and the AND-join
shown are replaced with an XOR-split and
an XOR-join, respectively.

Evaluating the CFC Metric
The nine criteria proposed by Weyuker give
a framework to evaluate software metrics’
properties using a formal theoretical basis. The
properties are intended to evaluate complexity
measures on source code metrics. Since there is
a strong similarity of source code flow graphs
and processes (Cardoso, 2005d), we will use
Weyuker’s properties to validate our CFC
measure. This widely used criterion will be
presented, adapted, and applied to processes
in the following paragraphs.

Property 1:
There are processes P and Q such that the

complexity of P is not equal to the complex-
ity of Q. The property requires that a measure
should not produce the same complexity value
for every process.

(∃P)(∃Q)(|P| ≠ |Q|).

This property is an essential requirement
for measures and process measurement. It says
that a measure should distinguish between at

least two processes. The property stresses that
a measure in which all processes are equally
complex is not really a measure.

With our measure, we can always come up
with two processes with two different control-
flow complexity values. We can always design
a process P that has the same number of split
types but with a higher fan-out from those in
process Q. As another example, let us take
two processes, P and Q, containing only XOR
splits. Let us assume that P=Q (the processes
are exactly equal). Let us replace the XOR
splits of process P with OR splits. For correct-
ness reasons (van der Aalst, 2000), let us also
replace the XOR joins with OR joins). Since
CFCXOR-split(a)= fan-out(a) and CFCOR-split(a)=
2fan-out(a)-1, where a is an activity, then |P|>|Q|.
Therefore, Property 1 is satisfied.

Property 2:
A measure has to be sufficiently sensitive. A

measure is not sensitive enough if it divides all
processes into just a few complexity classes.

Let c be a nonnegative number. Then there
are only finite processes for which |P| = c.

Our CFC measure does not follow this
property. Therefore, it makes no provision for
distinguishing between processes that have a
small number of activities (possibly performing
very little computation) and those that have a
large number of activities (possibly performing
a substantial amount of computation), provided
that they have the same decision structure.

Nevertheless, Zuse (1997) points out that a
measure is a homomorphic mapping. It depends
on the result of experiments, the user-view, or
the viewpoint that a user wants to measure.
Therefore, not following this property is not
a disadvantage.

Property 3:
We have processes that have different

degrees of perceived complexity but map into
the same complexity measurement value.

Figure 13. AND concatenation

P

Q

P•Q

AND-split AND-join

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 65

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

There are distinct processes P and Q such
that |P|=|Q|.

A measure that assigns a distinct value
to every process is not much of a measure. It
would go against the principle of measurements,
which requires that the number of objects that
can be measured be greater than the range of
the values of the measure.

Our measure clearly satisfies this property.
Let us take two processes, P and Q. Let us as-
sume that P has an AND-split at activity a with
a fan-out(a) of two. Let us construct process Q
exactly in the same way as process P, but with
a fan-out(a) of four at the AND-split activity
a. Since CFCAND-split(a)= 1, the complexity of P
is equal to the complexity of Q (i.e., |P|=|Q|),
but the processes are distinct.

Property 4:
There exist processes P and Q such that P

is equivalent to Q, but the complexity of P is
not equal to the complexity of Q.

(∃P)(∃Q)(P ≡ Q|P| ≠ |Q|).

Even though two processes may have
the same functionality, it is the details of the
design that determine the process’s complex-
ity. There are different process designs for the
same functionality. For example, let us take a
business process that makes the backup of a file
system composed of four activities that save files
at various locations. Two designs (processes
P and Q) with the same functionality of the
business process can be constructed. Process P
carries out the four activities sequentially, while
process Q uses an AND-split and an AND-join
to reduce the time it takes to complete a file
system backup. As a result, |P|=0, and |Q| =1
(i.e., |P|≠|Q|). Therefore, this property is satis-
fied by our metric.

Property 5:
For any processes P and Q, the complex-

ity of P*Q, *∈{−, , •, ⊕}, is greater than or
equal to the original complexity of P (weak
positivity).

Case 1 (-):

(∀P)(∀Q)(|P - Q| ≥ |P|)

For the concatenation operation ‘–’, the
weak positivity holds. For any two processes
P and Q, |P-Q|=|P|+|Q|, thus |P-Q| ≥ |P|.

Case 2 (o):

(∀P)(∀Q)(|P  Q| > |P|)

For the concatenation operation ‘’, the
weak positivity holds. For any two processes
P and Q, |PQ|=|P|+|Q|+22-1, thus |PQ| ≥ |P|.
Furthermore, for the concatenation operation
‘’, the positivity also holds since |PQ| > |P|.

Case 3 (•):

(∀P)(∀Q)(|P • Q| > |P|)

For the concatenation operation ‘•’, the
weak positivity holds. For any two processes
P and Q, |P•Q|=|P|+|Q|+1, thus |P•Q| ≥ |P|. Fur-
thermore, for the concatenation operation ‘•’,
the positivity also holds since |P•Q| > |P|.

Case 4 (⊕):

(∀P)(∀Q)(|P ⊕ Q| > |P|)

For the concatenation operation ‘⊕’, the
weak positivity holds. For any two processes P
and Q, |P⊕Q|=|P|+|Q|+2, thus |P⊕Q| ≥ |P|. Fur-
thermore, for the concatenation operation ‘⊕’,
the positivity also holds since |P⊕Q| > |P|.

Property 6:
There exist processes P, Q, and R, such

that |P|=|Q| and |P*R|≠|Q*R|, where *∈{−, ,
•, ⊕}.

 = ≠
()()()

{ }
 and * *

and * , , ,

P Q P R Q R
P Q R∃ ∃ ∃   ∈ − • ⊕ 

66 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

As with property 5, this property has four
distinct cases.

Case 1 (-): |P-R|=|P|+|R| and |Q-R|=|Q|+|R|,
since |P|=|Q|, it holds that |P-R|= |Q|+|R|,
thus |P-R| = |Q-R|.

Case 2 () : |PoR|=|P|+|R|+22-1 and
|QR|=|Q|+|R|+22-1, since |P|=|Q|, it
holds that |PR|= |Q|+|R|+22-1, thus |PR|
= |QR|.

Case 3 (•): |P•R|=|P|+|R|+1 and |Q•R|=|Q|+|R|+1,
since |P|=|Q|, it holds that |P•R|= |Q|+|R|+1,
thus |P•R| = |Q•R|.

Case 4 (⊕) : |P⊕R|= |P |+ |R |+2 and
|Q⊕R|=|Q|+|R|+2, since |P|=|Q|, it holds that
|P⊕R|= |Q|+|R|+2, thus |P⊕R| = |Q⊕R|.

As a result, it is clear that our measurement
does not follow Weyuker’s property 6 in any
of the cases presented.

Property 7:
There are processes P and Q such that Q is

formed by permuting the order of the activities
of P, and |P| is not equal to |Q|.

(∃P)(∃Q) If Q is formed by permuting the
order of the activities of P, then |P| ≠ |Q|.

This property requires that permutation of
elements within a process change the metric
value. The intent is to ensure that the possibil-
ity exists for metric values to change due to
permutation of process activities.

Let us assume that we have a process P
that contains an AND-split and an OR-split
for the activities a1 and a2, respectively. Each
split has a different fan-out. Activity a1 has a
fan-out of two, while activity a2 has a fan-out
of three. Therefore,

|P| = CFCAND-split (a1)+ CFCOR-split (a2)
	 = 1 + 23 -1 = 8

Let us assume that Q is a permutation of
the activities of process P. More precisely, the
activities a1 and a2 are exchanged. As a result,
activity a1 has now a fan-out of three, while
activity a2 has a fan-out of two. The complexity
of Q becomes

|Q| = CFCAND-split (a1) + CFCOR-split (a2)
= 1+22 -1 = 4

Since |P| ≠ |Q| (i.e. 8 ≠ 4), it happens that
our measurement follows this property.

Property 8:
This property states that uniformly chang-

ing activity names should not affect a process
complexity.

If P is a renaming of Q, then |P| = |Q|.

This property requires that when the name
of the activities or processes changes, the metric
should remain unchanged. As the metric being
considered in this research does not depend on
the name of activities or processes, it satisfies
this property.

Property 9:
The complexity of a process formed by

concatenating two processes can be greater
than the sum of their individual complexities
(wholeness property). This property states that
the whole must be at least as great as the sum
of the parts. The idea behind wholeness is that
the whole is more complex than the sum of its
components.

(∃P)(∃Q)(|P*Q|>|P|+|Q|, and *∈{−, , •, ⊕})

This property states that, at least in some
cases, the complexity of a process formed by
concatenating two processes is greater than
the sum of their complexities. This reflects the
fact that there may be interactions between the
concatenated processes.

As with previous properties, this property
has four distinct cases.

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 67

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Case 1 (-): |P-Q|=|P|+|Q|, thus |P-Q| ≥ |P|+|Q|.

Case 2 (o): |PoQ|=|P|+|Q|+22-1, thus |PoQ| >
|P|+|Q|.

Case 3 (•): |P•Q|=|P|+|Q|+1, thus |P•Q| >
|P|+|Q|.

Case 4 (⊕): |P⊕Q|=|P|+|Q|+2, thus |P⊕Q| >
|P|+|Q|.

As a result, our measurement follows
property 9 for case 2, 3, and 4. Case 1 follows
a variation of the wholeness property, called
the weak wholeness property.

(∃P)(∃Q)(|P - Q| ≥ | P |+|Q|)

Interoperability Property
Due to the large number of existing specifica-
tion languages both in academia and industry,
the measurements should be independent of
the process specification language. A particular
complexity value should mean the same thing
whether it was calculated from a process written
in BPEL (BPEL4WS, 2002), BPML (BPML,
2004), YAWL (van der Aalst & Hofstede, 2003),
or some other specification language. The objec-
tive is to be able to set complexity standards
and interpret the resultant numbers uniformly
across specification languages.

This new property that we propose is not
part of the properties proposed by Weyuker.
Nevertheless, in the area of business processes
and process modeling, we believe that it has an
applicable importance.

Property 10:
Measures must be interoperable (i.e.,

independent of the process specification lan-
guage).

If P=Q, possibly specified with different lan-
guages (i.e., P∈ Lp and Q∈ Lq, where Lp and
Lq are process modeling languages), then |P|
= |Q|.

As our metric only requires the existence of
AND, OR, or XOR splits, and since most speci-
fication languages include these constructs, we
conclude that our metric satisfies this property
for a broad spectrum of modeling languages.

At first glance, it may seem that properties 8
and 10 have some relationship, since the naming
of an activity (property 8) can be understood as
a representation in a process modeling language
that differs, although the underlying process is
the same. However, the interoperability prop-
erty considers the expressiveness of a process
modeling language. For example, a modeling
language Lp may be able to express only AND
and XOR splits, while another language, Lq,
also may be able to express OR splits. In this
case, control-flow complexity metrics that only
allow to express AND and XOR splits is not
interoperable with language Lq since OR splits
cannot be represented. On the other hand, if a
metric considers the complexity based on AND
and XOR splits, then it is interoperable across
language Lp and Lq.

Conclusion
Since our CFC measure happens to fully sat-
isfy seven of the Weyuker’s nine properties
and partially satisfies one property, it can be
considered to have passed a significant part of
the theoretically validation process. Therefore,
it can be categorized as good, structured, and
comprehensive.

Metric Validation
In this section, we describe the experiment
we have carried out for empirically validating
the CFC metric. This empirical study is an ex-
periment that compares what we believe with
what we observe. Such an experiment plays a
fundamental role in our work. Zelkowitz and
Wallace (1998) stress the importance of using
experimental models for validating metrics. The
authors suggest experimentation as a crucial
part of the evaluation of new metrics.

For the experiment to be successful, it
needs to be wisely constructed and executed.
Therefore, we have followed some suggestions
provided by Perry, Porter & Votta (2000) about

68 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

the structure and the components of a suitable
empirical study. To perform an experiment,
several steps have to be taken in a certain
order. An experiment can be divided into the
following main activities (Perry et al., 2000):
research context, hypotheses, experimental
design, threats to validity, data analysis and
presentation, results and conclusions.

In the remainder of this section, we explain
how we have performed each of the activities
described previously.

Research Context
In this section, the terminology is explained, the
problem is defined, and a brief research review
is undertaken to provide the historical context
surrounding the problem.

Terminology and problem definition.
Process complexity can be defined as the degree
to which a business process is difficult to ana-
lyze, understand, or explain. The control-flow
complexity refers to the degree of complexity
of a process from a control-flow perspective.

The CFC metric can be used to automati-
cally measure the control-flow complexity of a
process based on its structure. It allows designers
to create less complex processes, thus reduc-
ing the time spent reading and understanding
processes in order to remove faults or adapt the
process to changed requirements.

Our goal is to analyze the CFC metric for
the purpose of evaluating and validating the
proposed metric. For a set of processes, we wish
to determine the correlation between the output
of the CFC metric and the perceived control-flow
complexity from the point of view of process
designers. In our experiments, process design-
ers (subjects) were Master students from the
Department of Mathematics and Engineering
at the University of Madeira (Portugal).

Research Review. In Cardoso (2005d),
we have presented the CFC metric to analyze
the degree of complexity of business processes.
Nowadays, complexity analysis has an increased
importance since the emergence of processes
that span both between and within enterprises
(Sheth, van der Aalst, & Arpinar, 1999) have
an inherent complexity. Therefore, methods

should be used to support the design, improve-
ment, and redesign of processes to reduce their
complexity. The CFC can be used to analyze
the complexity of business processes, as well
as workflow and processes.

Hypotheses Formulation
An important aspect of experiments is to know
and state in a clear and formal way what we
intend to evaluate. Hypotheses are essential, as
they state the research questions we are asking.
We present two hypotheses: an abstract and a
concrete hypothesis.

Abstract Hypothesis. “The CFC metric
is a good and accurate metric to evaluate
and establish the control-flow complexity of
processes.”

Concrete Hypothesis. “There is a signifi-
cant correlation between the CFC metric and the
subject’s rating of the control-flow complexity
of processes.”

Study Design
After the research context and the hypotheses
formulation, the design of the study took place.
A study’s design is a detailed plan for collecting
the data that will be used to test the hypotheses.
This phase also explains how the experiment
was conducted and has several components.

Variable selection. One component is a
set of variables that links causes and effects.
Typically, there are two kinds of variables:
dependent and independent.

The independent variable is the control-
flow structure of processes.

The dependent variable is the control-flow
complexity of processes, which varies when the
control-flow structure of processes changes.

Subjects selection. Our subjects were
students of the Department of Mathematics
and Engineering enrolled in the first year of
a Master’s program in Computer Science at
the University of Madeira, Portugal. Nineteen
subjects were selected. Most of the students had
industrial experience in several areas, but none
had experience with business process manage-
ment systems and methodologies. By the time
the experiment was done, all the students had

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 69

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

taken a 50-hour course in Business Process
Management (BPM) and, therefore, gained
experience in the design and development of
business processes.

Experiment design. The objects to be rated
were business processes graphically designed
with the process language used by METEOR
workflow management system (Kochut, 1999).
An example of the processes analyzed and
rated by the subjects is illustrated in Fig. 14.
The independent variable was measured using
the CFC metric. The dependent variable was
measured according to a subject’s ratings. All
the tests were solved by the same group of
subjects.

We prepared the material to give to the
subjects. The material consisted of 22 profes-
sionally designed, error-free, processes (objects)
of the same universe of discourse related to
bank loan applications. The subjects were told
how to carry out the experiment. Each subject
carried out the experiment alone in class and
could use unlimited time to solve it. We col-
lected all the data, including subjects’ ratings
and the measurements automatically calculated
by means of the CFC metric. All tests were
considered valid because all of the subjects

had at least medium experience in designing
and analyzing business processes.

Threats to Validity
Threats to validity are influences that may limit
our ability to interpret or draw conclusions from
the study’s data. We will discuss the empirical
study’s various threats to validity (construct,
internal, and external validity) and the way we
attempted to alleviate them.

Construct validity. All the measurements
of the dependent variable were subjective and
based on the perception of the subjects. As
the subjects involved in this experiment had
medium experience in BPM design, we think
their ratings can be considered significant. The
independent variable that measures the con-
trol-flow complexity of processes also can be
considered constructively valid, because from
a complexity theory point of view, a system is
called complex if it is composed of many dif-
ferent types of elements.

Internal validity. We have considered the
different aspects that could threaten the internal
validity of the study, such as differences among
subjects, precision of subjects’ ratings, learning
effects, fatigue effects, and subject incentive.

Figure 14. Example of an object rated by the subjects

70 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Subjects were knowledgeable concerning the
evaluation issues. Analyzing the results of the
experiment, we can empirically observe the ex-
istence of a correlation between the independent
and the dependent variable.

External validity. One threat to external
validity has been identified: subject selection.
This threat can limit the ability to generalize the
results to settings outside the study. The subjects
were Master students that had recently taken a
50-hour course on BPM, gaining an in-depth
experience in the design and development of
business processes. In order to extract a final
conclusion that can be generalized, it is neces-
sary to replicate this experiment with a more
diversified number of subjects, including prac-
titioners and designers with less experience.

Data Analysis and Presentation
Two main approaches to presenting and
analyzing data can be chosen: quantitative and
qualitative analysis. Since our subjects rated
processes using a numerical scale from 0 to
100, we have selected a quantitative analysis
to draw conclusions from our data. The quali-
tative analysis was done in conjunction with a
statistical analysis.

As we have said previously, our goal is
to determine if any correlation exists between
subjects’ ratings and the CFC metric proposed
in Cardoso (2005d) and briefly described in
Section 3. Since the data collected in the experi-
ment is distribution-free, the Spearman Rank-
Difference Correlation Coefficient (Siegel &
Castellan, 1988), rS, was used to determine
the correlation of the data collected in the ex-
periment. The Spearman rS is a nonparametric
statistic used to show the relationship between
two variables that are expressed as ranks (the
ordinal level of measurement). The correlation
coefficient is a measure of the ability of one
variable to predict the value of another variable.
Using Spearman’s correlation coefficient, the
CFC metric was correlated separately to the dif-
ferent subject’s rates of control-flow complexity.
In our experiment, the null hypothesis was:

H0: “there is no correlation between the CFC
metric and the subject’s rating of control-
flow complexity.”

The probability that the null hypothesis
would be erroneously rejected was controlled
with two confidence levels: α1=0.005 and
α2=0.05. The decision rules for rejecting the
null hypothesis were:

For α1: reject H0 if rS >= 0.586; For α2: reject
H0 if rS >= 0.425

Results and Conclusion
The analysis performed on the collected data
led to some interesting results. shows summary
statistics describing the Spearman rank-differ-
ence correlation coefficient between subjects’
ratings and the values given by the CFC metric.
For each subject, the correlation coefficient rS
is given.

Based on data from and taking into consid-
eration α1, the values of rS are greater than 0.586
for 84% of the subjects; therefore, we reject
the null hypothesis. Taking into consideration
α2, all the values of rS are greater than 0.425;
therefore, we also reject the null hypothesis.
For α1, our confidence level is 95%, and for
α2, our confidence level is 99.5%.

After analyzing the data we gathered, we
concluded that the obtained results reveal that
there exists a high correlation between the CFC
metric and the subject’s rating of control-flow
complexity. This leads us back to our original
goal, which was to demonstrate that the CFC
metric serves the purpose for which it was de-
fined: to measure the control-flow complexity of
processes. The results obtained are believable,
and there are no ambiguities in our interpreta-
tion. We also believe that no external elements
have influenced our results. The diffusion of
the experimental results and the way they are
presented are relevant so that they are really put
into use. Therefore, we published our findings in
this article, and we also are planning to develop
a Web-based system to allow other researchers
to replicate our experiment.

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 71

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Our results recommend the use of the CFC
metric in order to create less complex processes,
thus reducing the time spent reading and under-
standing processes in order to remove faults or
adapt the processes to changed requirements.
The complexity measurement enables process
managers and administrators to calculate the
complexity of processes generated by others.
Process designers can analyze the complexity
of a particular process in development. Process
consultants can contribute with new process
components needing methods to analyze the
complexity of the proposed solutions. End-users
can inquire about the complexity of processes
before starting process instances.

Related Work
While a significant amount of research on the
complexity of software programs has been done
in the area of software engineering, the work

found in the literature on complexity analysis
for business processes is almost nonexistent.
Since the research on process complexity is
almost nonexistent, in this section we will dis-
cuss the progress made in the area of software
complexity.

The last 30 years has seen a large amount
of research aimed at determining measurable
properties to capture the notions of software
complexity. The earliest measures were based
on analysis of software code, the most funda-
mental being a basic count of the number of
Lines of Code (LOC). Despite being widely
criticized as a measure of complexity, it con-
tinues to have widespread popularity, mainly
due to its simplicity (Azuma & Mole, 1994).
Research in software engineering has produced
other important measurements for software.
Among others are Halstead’s measure (Halstead,
1977), McCabe’s measure (McCabe, 1977),
the COCOMO model (Boehm, 1981), and the

Table 5. Correlation coefficients

72 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Function-Point method (Garmus & Herron,
2000). There is a vast amount of literature on
software metrics, which represents the result
of the measurement of the development, op-
eration, and maintenance of software in order
to supply meaningful and timely management
information. Zuse (1997) has found hundreds
of different software metrics proposed and
described for software measurement.

Misra and Misra (2004) have evaluated
cognitive complexity measures in terms of
Weyuker properties and have found that most
of Weyuker’s properties have been satisfied by
the cognitive weight software complexity mea-
sure and established the cognitive complexity
as a well-structured one. In Lakshmanan, Jay-
aprakash, and Sinha (1991), the authors attempt
to formalize some properties that any reasonable
control-flow complexity measure must satisfy.
Their approach is directed at large software
programs that often are built by sequencing
and nesting of simpler constructs. The authors
explore how control-flow complexity measures
behave under such compositions. Please note
that these last two fields of research have been
carried out in the context of software engineer-
ing and not process management.

A recent area of research involving pro-
cesses, workflows, and Quality of Service
also can be considered related to the work in
this article. Organizations operating in modern
markets, such as e-commerce activities and dis-
tributed Web services interactions, require QoS
management. Appropriate quality control leads
to the creation of quality products and services;
these, in turn, fulfill customer expectations and
achieve customer satisfaction. Quality of ser-
vice can be characterized according to various
dimensions. For example, Cardoso, Sheth, and
Miller (2002) have constructed a QoS model
for processes composed of three dimensions:
time, cost, and reliability. Another dimension
that could be considered relevant under the
QoS umbrella is the complexity of processes.
Therefore, the complexity dimension could be
added and integrated to the QoS model already
developed (Cardoso et al., 2004).

The most important research on complexity
analysis for business processes and workflows
can be found in Cardoso (2005a; 2005b; 2005c;
2005d; 2005f) and Reijers and Vanderfeesten
(2004). Reijers and Vanderfeesten (2004) pro-
pose a cohesion and coupling metric developed
to analyze workflows. While their work does
not take the viewpoint of complexity analysis, it
easily can be reformulated to make cohesion and
coupling a specific complexity perspective.

Conclusion
Our work presents an approach to carry out
business process complexity analysis. The
complexity of processes is intuitively connected
to effects such as readability, effort, testability,
reliability, and maintainability. Therefore, it is
important to develop metrics in order to identify
complex processes. Afterward, these processes
can be reengineered, improved, or redesigned
to reduce their complexity. The measure pre-
sented—the process control-flow complexity
(CFC)—is a design-time measurement and can
be used to evaluate the difficulty of producing
a process design before implementation. When
control-flow complexity analysis becomes
part of the process development cycle, it has
a considerable influence on the design phase
of development, leading to further optimized
processes. The control-flow complexity analysis
also can be used in deciding whether to maintain
or redesign a process. As known from software
engineering, it is a fact that it is cost-effective
to fix a defect earlier in the design lifecycle
than later.

 We have given a clear definition of the
terminology and objectives of the control-flow
complexity measure, and we have evaluated
the measure in terms of Weyuker’s properties.
Weyuker’s properties must be satisfied by every
complexity measure in order to qualify as good
and comprehensive. We have demonstrated that
seven of nine of Weyuker’s properties have been
fully satisfied and one partially satisfied by the
CFC measure and, hence, established the CFC as
a well-structured one. We have introduced a new
property—the interoperability property—that

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 73

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

has significant importance in the context of
process complexity analysis.

In order to demonstrate that our CFC metric
serves the purpose for which it was defined,
we have carried out an empirical validation by
means of a controlled experiment. Our experi-
ment involved 19 graduate students in Computer
Science as part of a research project, and tested
if the control-flow complexity of a set of 22
business processes could be predicted using
the CFC metric. Analyzing the collected data
using statistical methods, we have concluded
that the CFC metric is highly correlated with
the control-flow complexity of processes. This
metric, therefore, can be used by business pro-
cess analysts and process designers to analyze
the complexity of processes and, if possible,
develop simpler processes.

REFERENCES
 Alonso, G., Mohan, C., Guenthoer, R., Agrawal,
D., El Abbadi, A., & Kamath, M. (1994). Exotica/
FMQM: A persistent message-based architecture
for distributed workflow management. Proceedings
of the IFIP WG8.1 Working Conference on Infor-
mation Systems for Decentralized Organizations,
Trondheim, Norway.

Anyanwu, K., Sheth, A., Cardoso, J., Miller, J.A., &
Kochut, K.J. (2003). Healthcare enterprise process
development and integration. Journal of Research
and Practice in Information Technology, Special Issue
in Health Knowledge Management, 35(2), 83–98.

Azuma, M., & Mole, D. (1994). Software mana-
gement practice and metrics in the European com-
munity and Japan: Some results of a survey. Journal
of Systems and Software, 26(1), 5–18.

Boehm, B. (1981). Software engineering economics.
Englewood Cliffs, NJ: Prentice Hall.

BPEL4WS. (2002). Web services. Retrieved from
http://www-106.ibm.com/developerworks/web-
services/

BPML. (2004). Business process modeling language.
Retrieved from http://www.bpmi.org/

BPMN. (2005). Business process modeling notation.
Retrieved from http://www.bpmn.org/

Canós, J.H., Penadés, M.C., & Carsí, J.Á. (1999).
From software process to workflow process: the
workflow lifecycle. Proceedings of the International
Process Technology Workshop, Grenoble, France.

Card, D., & Agresti, W. (1988). Measuring software
design complexity. Journal of Systems and Software,
8, 185–197.

Cardoso, J. (2005a). About the complexity of team-
work and collaboration processes. Proceedings of
the IEEE International Symposium on Applications
and the Internet (SAINT 2005), Trento, Italy.

Cardoso, J. (2005b). About the data-flow complexity
of Web processes. Proceedings of the 6th International
Workshop on Business Process Modeling, Develop-
ment, and Support: Business Processes and Support
Systems: Design for Flexibility, Porto, Portugal.

Cardoso, J. (2005c). Control-flow complexity
measurement of processes and Weyuker’s properties
(accepted for publication). Proceedings of the 6th
International Enformatika Conference (IEC 2005),
Budapest, Hungary.

Cardoso, J. (2005d). Evaluating workflows and Web
process complexity. In L. Fischer (Ed.), Workflow
handbook 2005 (pp. 284–290). Lighthouse Point,
FL: Future Strategies Inc.

Cardoso, J. (2005e). Path mining in Web processes
using profiles. In J. Wang (Ed.), Encyclopedia of data
warehousing and mining (pp. 896–901). Hershey,
PA: Idea Group Inc.

Cardoso, J. (2005f). Process control-flow complexity
metric: An empirical validation (submitted). Pro-
ceedings of the 1st International Conference on
Management Systems for Process Improvement,
Karlsruhe, Germany.

Cardoso, J. (2006). Process control-flow complexity
metric: An empirical validation. Proceedings of the
IEEE International Conference on Services Compu-
ting (IEEE SCC 06), Chicago.

Cardoso, J., Bostrom, R.P., & Sheth, A. (2004).
Workflow management systems and ERP systems:
Differences, commonalities, and applications. In-
formation Technology and Management Journal.
Special issue on Workflow and E-Business, 5(3-4),
319–338.

Cardoso, J., & Cravo, C. (2006). Verifying the
logical termination of workflows. Proceedings of
the 5th Annual Hawaii International Conference on

74 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Statistics, Mathematics and Related Fields, Hono-
lulu, Hawaii.

Cardoso, J., Miller, J., Sheth, A., Arnold, J., & Kochut,
K. (2004). Modeling quality of service for workflows
and Web service processes. Web Semantics: Science,
Services and Agents on the World Wide Web Journal,
1(3), 281–308.

Cardoso, J., Sheth, A., & Miller, J. (2002). Workflow
quality of service. Proceedings of the International
Conference on Enterprise Integration and Modeling
Technology and International Enterprise Modeling
Conference (ICEIMT/IEMC’02), Valencia, Spain.

Cherniavsky, J.C., & Smith, C.H. (1991). On
Weyuker’s axioms for software complexity measu-
res. IEEE Transactions on Software Engineering,
17(6), 636–638.

Curtis, B. (1980). Measurement and experimentation
in software engineering. Proceedings of the IEEE,
68(9), 1144–1157.

Davenport, T. (1993). Process innovation: Reengine-
ering work through information technology. Harvard
Business School Press.

Du, W., Davis, J., Huang, Y., & Shan, M. (1999). En-
terprise workflow resource management. Proceedings
of the International Workshop on Research Issues in
Data Engineering, Sydney, Australia.

Fenton, N. (1991). Software metrics: A rigorous ap-
proach. London: Chapman & Hall, 1991.Garmus,
D., & Herron, D. (2000). Function point analysis:
Measurement practices for successful software
projects. Boston, MA: Addison Wesley.

Fenton, N. (1994). Software measurement: A neces-
sary scientific basis. IEEE Transactions on Software
Engineering, 20(3).

Halstead, M.H. (1977). Elements of software science,
operating, and programming systems series (Vol. 7).
New York: Elsevier.

Hammer, M., & Champy, J. (1993). Re-engineering
the corporation. A manifesto for business revolution.
New York: Harper Collins.

Harrington, H. (1993). Process breakthrough:
Business process improvement. Journal of Cost
Management (Fall), 30–43.

IEEE. (1992). IEEE 610, standard glossary of soft-
ware engineering terminology. New York: Institute
of Electrical and Electronic Engineers.

Jablonski, S. (1994). MOBILE: A modular work-
flow model and architecture. Proceedings of the
4th International Working Conference on Dynamic
Modelling and Information Systems, Noordwijker-
hout, Netherlands.

Jones, T.C. (1986). Programming productivity. New
York: McGraw-Hill.

Kitchenham, B., Pfleeger, S.L., & Fenton, N. (1996).
Toward a framework for measurement validation.
IEEE Transactions of Software Engineering, 21(12),
929–944.

Kochut, K.J. (1999). METEOR model version 3.
Athens, GA: Large Scale Distributed Information
Systems Lab, Department of Computer Science,
University of Georgia.

Kochut, K.J., Sheth, A.P., & Miller, J.A. (1999).
ORBWork: A CORBA-based fully distributed, sca-
lable and dynamic workflow enactment service for
METEOR. Athens, GA: Large Scale Distributed
Information Systems Lab, Department of Computer
Science, University of Georgia.

Lakshmanan, K.B., Jayaprakash, S., & Sinha, P.K.
(1991). Properties of control-flow complexity mea-
sures. IEEE Transactions on Software Engineering
Archive, 17(12), 1289–1295.

Lanning, D.L., & Khoshgoftaar, T.M. (1994).
Modeling the relationship between source code
complexity and maintenance difficulty. Computer,
27(9), 35–41.

Leymann, F. (2001). Web services flow language
(WSFL 1.0). Retrieved from http://www-4.ibm.com/
software/solutions/webservices/pdf/WSFL.pdf

McCabe, T. (1976). A complexity measure. IEEE
Transactions of Software Engineering, SE-2(4),
308–320.

McCabe, T.J. (1977). A complexity measure.
Transactions on Software Engineering, 13(10),
308–320.

McCabe, T.J., & Watson, A.H. (1994). Software
complexity. Crosstalk, Journal of Defense Software
Engineering, 7(12), 5–9.

Menzel, C., Mayer, R.J., & Edwards, D.D. (1994).
IDEF3 process descriptions and their semantics. In
C.H. Dagli & A. Kusiak (Eds.), Intelligent systems
in design and manufacturing (pp. 172-212). New
York: ASME.

 International Journal of Web Services Research, 5(2), 49-76, April-June 2008 75

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Miller, G. (1956). The magical number seven, plus or
minus two: Some limits on our capacity for processing
information. The Psychological Review.

Miller, J.A., Palaniswami, D., Sheth, A.P., Kochut,
K.J., & Singh, H. (1998). WebWork: METEOR2’s
Web-based workflow management system. Journal
of Intelligence Information Management Systems:
Integrating Artificial Intelligence and Database
Technologies (JIIS), 10(2), 185–215.

Misra, S., & Misra, A.K. (2004). Evaluating cog-
nitive complexity measure with Weyuker proper-
ties. Proceedings of the Third IEEE International
Conference on Cognitive Informatics (ICCI’04),
Victoria, Canada.

Morasca, S., Briand, L., Weyuker, E., & Zelkowitz,
M. (1997). Comments on ”towards a framework for
software measurement validation.”. IEEE Transac-
tions on Software Engineering, 23(3), 187–188.

Ould, M.A. (1995). Business processes: Modelling
and analysis for re-engineering and improvement.
Chichester, England: John Wiley & Sons.

Perry, D.E., Porter, A.A., & Votta, L.G. (2000).
Empirical studies of software engineering: A road-
map. In A. Finkelstein (Ed.), The future of software
engineering: ACM Press.

Reijers, H.A., & Vanderfeesten, I.T.P. (2004). Co-
hesion and coupling metrics for workflow process
design. In J. Desel, B. Pernici, & M. Weske (Eds.),
BPM 2004 (LNCS 3080) (Vol. LNCS 3080, pp.
290–305). Berlin: Springer-Verlag.

Sheth, A.P., van der Aalst, W., & Arpinar, I.B. (1999).
Processes driving the networked economy. IEEE
Concurrency, 7(3), 18–31.

Siegel, S., & Castellan, J. (1988). Nonparametric sta-
tistics for the behavioral sciences: McGraw-Hill.

Singh, M.P. (1995). Semantical considerations on
workflows: An algebra for intertask dependencies.
Proceedings of the Fifth International Workshop on
Database Programming Languages, Umbria, Italy.

Smith, H., & Fingar, P. (2003). Business process
management (BPM): The third wave. Meghan-Kif-
fer Press.

Tsai, W.T., Lopex, M.A., Rodriguez, V., & Volovik.,
D. (1986). An approach measuring data structure
complexity. Proceedings of the COMPSAC 86.

van der Aalst, W.M.P. (1998). The application of
petri nets to workflow management. The Journal of
Circuits, Systems and Computers, 8(1), 21–66.

van der Aalst, W.M.P. (2000). Workflow verification:
Finding control-flow errors using petri-net-based
techniques. In W.M.P. van der Aalst, J. Desel, & A.
Oberweis (Eds.), Business process management:
Models, techniques, and empirical studies (Vol. 1806,
pp. 161–183). Berlin: Springer-Verlag.

van der Aalst, W.M.P., & Hofstede, A.H.M. (2003).
YAWL: Yet another workflow language (revised ver-
sion). (QUT Technical report No. FIT-TR-2003-04).
Brisbane: Queensland University of Technology.

van der Aalst, W.M.P., Hofstede, A.H.M., Kiepus-
zewski, B., & Barros, A.P. (2003). Workflow patterns.
Distributed and Parallel Databases, 14(3), 5–51.

Ward, W. (1989). Software defect prevention using
McCabe’s complexity metric. Hewlett Packard
Journal, 40(2), 64–69.

Wastell, D., White, P., & Kawalek, P. (1994). A
methodology for business process re-design: Expe-
riences and issues. Journal of Strategic Information
Systems, 3(1), 23–40.

Weyuker, E.J. (1988). Evaluating software com-
plexity measures. IEEE Transactions on Software
Eng., 14(9), 1357–1365.

Wodtke, D., Weissenfels, J., Weikum, G., & Dittrich,
A.K. (1996). The MENTOR project: Steps towards
enterprise-wide workflow management. Proceedings
of the IEEE International Conference on Data Engi-
neering, New Orleans, LA.

WS-BEPL. (2005). Business process execution
language for Web services.

Zelkowitz, M.V., & Wallace, D.R. (1998). Expe-
rimental models for validating technology. IEEE
Computer, 31(5), 23–31.

zur Mühlen, M. (1999). Resource modeling in
workflow applications. Proceedings of the Workflow
Management Conference, Muenster, Germany.

Zuse, H. (1990). Software complexity measures and
models. New York: de Gruyter & Co.

Zuse, H. (1997). A framework of software measure-
ment. Berlin: Walter de Gruyter Inc.

76 International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

Sami Bhiri is a postdoctoral researcher at DERI - the National University of Ireland, Galway, where he
is involved in managing several EU projects. Before joining DERI, he was a research and teaching as-
sistant in the University of Nancy 1 and in the ECOO team of the LORIA-INRIA research laboratory. His
research interests are in the area of applying semantics to B2B integration, service oriented computing
and business process management.

Walid Gaaloul is a postdoctoral researcher at the National University of Ireland, Galway, where he is
involved in several EU projects. Before joining DERI, he was a research in the ECOO team of the LORIA-
INRIA research laboratory and teaching assistant in the University of Nancy 1. His research interests lie
in the area of business process management, process intelligence, process reliability, service oriented
computing and semantics for B2B integration.

Claude Godart is full time professor at Nancy University, France and scientific director of the INRIA
ECOO project. His centre of interest concentrates on the consistency maintenance of the data mediating
the cooperation between several partners. This encompasses advanced transaction models, user centric
workflow and web services composition models. He has been implicated in several transfer projects with
industries (France, Europe, and Japan) for a wide range of applications including e-commerce, software
processes and e-learning.

