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Abstract

Organizations are increasingly faced with the challenge of managing business processes, workflows, and 
recently, Web processes. One important aspect of business processes that has been overlooked is their 
complexity. High complexity in processes may result in poor understandability, errors, defects, and excep-
tions, leading processes to need more time to develop, test, and maintain. Therefore, excessive complexity 
should be avoided. Business process measurement is the task of empirically and objectively assigning 
numbers to the properties of business processes in such a way so as to describe them. Desirable attributes 
to study and measure include complexity, cost, maintainability, and reliability. In our work, we will focus on 
investigating process complexity. We present and describe a metric to analyze the control-flow complexity 
of business processes. The metric is evaluated in terms of Weyuker’s properties in order to guarantee that 
it qualifies as good and comprehensive. To test the validity of the metric, we describe the experiment we 
have carried out for empirically validating the metric. 

Keywords:	 business processes, complexity metrics, Web processes, workflows, software engineering. 

Introduction
Business process management systems (BPMS) 
(Smith & Fingar, 2003) provide a fundamental 
infrastructure to define and manage business 
processes. BPMS, such as Workflow Manage-
ment Systems (WfMS) (Cardoso, Bostrom & 
Sheth, 2004), have become a serious competitive 
factor for many organizations that are increas-
ingly faced with the challenge of managing e-
business applications, workflows, Web services, 
and Web processes. Business processes, such as 
Web processes (WS-BEPL, 2005) promise to 

ease several current infrastructure challenges, 
such as data, application, and process integra-
tion. With the emergence of Web services, a 
workflow management system becomes es-
sential to support, manage, and enact processes, 
both among enterprises and within the enterprise 
(Sheth, van der Aalst & Arpinar, 1999).

A vast amount of work done so far in 
the business process field has targeted the 
development of WfMS, including models 
(e.g., Petri nets), modeling languages (BPML, 
2004; BPMN, 2005; Leymann, 2001; Menzel, 
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Mayer, & Edwards, 1994; Singh, 1995; van 
der Aalst, 1998; van der Aalst & Hofstede, 
2003), and execution environments (Alonso, 
Mohan, Guenthoer, Agrawal, El Abbadi, & 
Kamath, 1994; Canós, Penadés, & Carsí, 1999; 
Jablonski, 1994; Kochut, Sheth, & Miller, 
1999; Miller, Palaniswami, Sheth, Kochut, & 
Singh, 1998; Wodtke, Weissenfels, Weikum, 
& Dittrich, 1996). Work has also been carried 
out to develop methods to analyze processes 
in order to verify their correctness, testing the 
existence of livelocks and deadlocks (van der 
Aalst, 1998).

Recently, a new field of research for pro-
cesses has emerged. This new field—termed 
process measurement—presents a set of 
approaches to the quantification of specific 
properties of processes. Important properties to 
analyze include the estimation of complexity, 
defects, process size, effort of testing, effort of 
maintenance, understandability, time, resources, 
and quality of service. Process measurement is 
still in its infancy, and much work has yet to 
be undertaken.

The effective management of any process 
requires modeling, measurement, and quan-
tification. Process measurement is concerned 
with deriving a numeric value for attributes of 
processes. Measures, such as Quality of Service 
measures (Cardoso, Miller, Sheth, Arnold, & 
Kochut, 2004), can be used to improve process 
productivity and quality.

 Designing and improving processes is a 
key aspect in order for businesses to stay com-
petitive in today’s marketplace. Organizations 
have been forced to improve their business 
processes because customers are demanding 
better products and services. When an organiza-
tion adopts a process management philosophy, 
process improvement can take place. Indepen-
dently of the approach taken, which can be a 
Continuous Process Improvement (Harrington, 
1993), a Business Process Redesign (Wastell, 
White, & Kawalek, 1994), or a Business Process 
Reengineering (Ould, 1995) approach, methods 
need to be available to analyze the processes 
undergoing improvements. To achieve an ef-
fective management, one fundamental area of 

research that needs to be explored is the com-
plexity analysis of processes.

 A business process is composed of a set 
of activities, tasks, or services put together to 
achieve a final goal. As the complexity of a 
process increases, it can lead to poor quality and 
be difficult to reengineer. High complexity in a 
process may result in limited understandability 
and more errors, defects, and exceptions, leading 
processes to need more time to develop, test, and 
maintain. For example, in software engineer-
ing, it has been found that program modules 
with high-complexity indices have a higher 
frequency of failures (Lanning & Khoshgoftaar, 
1994). Therefore, excessive complexity should 
be avoided. For instance, critical processes in 
which failure can result in the loss of human 
life require a unique approach to development, 
implementation, and management. For these 
types of processes, typically found in healthcare 
applications (Anyanwu, Sheth, Cardoso, Miller, 
& Kochut, 2003), the consequences of failure 
are severe. The ability to produce processes of 
higher quality and less complexity is a matter 
of endurance.

Surprisingly, in spite of the fact that there 
is a vast amount of literature on software 
measurement of complexity (Zuse, 1997), no 
significant research on process measurement of 
complexity has yet been carried out. Analyzing 
the complexity at all stages of process design and 
development helps avoid the drawbacks associ-
ated with high-complexity processes. Currently, 
organizations have not adopted complexity 
metrics as part of their process management 
projects. As a result, simple processes may be 
designed in a complex way.

This article integrates and expands our 
previous work (Cardoso, 2005c; 2005d; 2005f) 
and discusses the complexity of processes. In the 
first main section, we present the Control-Flow 
Complexity (CFC) metric (Cardoso, 2005d) 
in order to measure the degree of complex-
ity of business processes from a control-flow 
perspective. As Lord William Thomson Kelvin 
(1824–1907) said, “If you cannot measure it, 
you cannot improve it.” The use of the CFC 
metric allows designers to improve processes, 
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thus reducing the time spent reading and under-
standing processes in order to remove faults or 
adapt them to changed requirements. The CFC 
metric can be used to analyze the complexity of 
business processes, as well as workflows and 
Web processes. In the second main section, we 
evaluate the Control-Flow Complexity metric in 
terms of Weyuker’s properties (Weyuker, 1988). 
Weyuker’s properties give an important basis to 
classify a complexity measure in order to deter-
mine if it can be categorized as good, structured, 
and comprehensive (Cardoso, 2005c). Finally, 
the last main section describes the experiment 
that we have carried out for empirically validat-
ing the proposed metric (Cardoso, 2006). Such 
an experiment plays a fundamental role in our 
work, since the experimentation is a crucial 
part of the evaluation of new metrics and is 
critical for the success of any measurement 
activity (Zelkowitz & Wallace, 1998). Through 
empirical validation, we demonstrate with real 
evidence that the measure we proposed serves 
the purpose for which it was defined. 

Motivation
In this section, we describe a scenario in order 
to explain and illustrate the need for Control-
Flow Complexity (CFC) analysis during the 
design and aging of a process. A major bank 
has realized that in order to be competitive 
and efficient, it must adopt a new, modern 
information system infrastructure. Therefore, 
a first step was taken in that direction with the 
adoption of a workflow management system to 
support its business processes. Since the bank 
supplies several services to its customers, the 
adoption of a WfMS has enabled the logic of 
bank processes to be captured in schema. As a 
result, part of the services available to customers 

is stored and executed under the supervision of 
the workflow system. One of the services sup-
plied by the bank is the loan process depicted 
in Figure 1. 

This very simple process is composed of 
only four activities. The Fill Loan Request ac-
tivity allows clients to request a loan from the 
bank. In this step, the client is asked to fill out 
an electronic form with personal information 
and data describing the loan being requested. 
The second activity, Check Educational Loan, 
determines if the loan request should be accepted 
or rejected. When the result of a loan application 
is known, it is e-mailed to the client using the 
Notify Educational Loan Client activity. Finally, 
the Archive Application activity creates a report 
and stores the loan application data in a database 
record. A complete description of this process 
is described in Cardoso (2005e).

This first workflow application gains ac-
ceptance within the bank since it improves 
service to customers at several levels, allows 
significant cost savings, and improves com-
munication among employees; the managers 
of the bank decide to add more services to be 
supported by the loan process. It was decided 
to support not only educational loans but also 
home and car loans.

Before making any changes to the process, 
a control-flow complexity analysis is carried out. 
The outcome of the analysis indicates that the 
process has a very low complexity. Processes 
with a low complexity have the capability to 
quickly change to accommodate new products 
or services in order to meet the changing needs 
of customers and business partners. Based on 
the complexity analysis results, the process was 
changed, having now the structure illustrated 
in Figure 2.

The new process (version 2) is composed 
of nine activities. Because complexity was a 
concern during the development of the new 
process, it still maintains a complexity that is 
within an acceptable range.

For the twelve months that followed the 
design and implementation of the second ver-
sion of the process, several small changes were 
introduced to the process. Unfortunately, since 

Figure 1. The loan process (version 1)
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the changes were done incrementally and each 
one had a small impact on the structure of the 
process, complexity analysis was not carried 
out during the process redesign. As a result, the 
process structure is the following (Figure 3).

The process has evolved over time by modi-
fication and may have become fragile with age. 
Therefore, it is necessary to use techniques such 
as complexity analysis to assess the system’s 
condition. A high complexity may be the sign 
of a brittle, nonflexible, or high-risk process. If 
high complexity is identified, the process may 
need to be redesigned to reduce its complexity. 
Redesign may involve breaking the process 
into subprocesses or simplifying the way the 
business process is carried out. 

Let us consider again the process from 
Figure 3. Imagine that the designers are study-
ing alternatives to extend the process to handle 
exceptions. The designers have identified three 
ways to implement an exception-handling 
mechanism, and they are undecided about 
which one to select. In such a scenario, the 
CFC measure can be effectively used to help the 
designers in their decision. A “what-if analysis” 
can be carried out. For each alternative, the 
CFC can be analyzed, and the alternative that 

entails a lower complexity for the process can 
be selected and implemented.

Analyzing the complexity at all stages of 
process design and development helps avoid 
the drawbacks associated with high-complexity 
processes. Currently, organizations have not 
implemented complexity limits as part of their 
business process management projects. The use 
of complexity analysis will aid in constructing 
and deploying processes and workflows that are 
more simple, reliable, and robust.

Processes are not static applications. They 
are constantly undergoing revision, adaptation, 
change, and modification to meet end users’ 
needs. The complexity of these processes and 
their continuous evolution make it very difficult 
to assure their stability and reliability. In-depth 
analysis is required for fixing defects in portions 
of processes of high complexity (Figure 4.).

Process Complexity
Several definitions have been given to describe 
the meaning of software complexity. For ex-
ample, Curtis (1980) states that complexity is 
a characteristic of the software interface that 
influences the resources another system will 
expend or commit while interacting with the 
software. Card and Agresti (1988) define rela-

Figure 2. The loan process (version 2)
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tive system complexity as the sum of structural 
complexity and data complexity divided by the 
number of modules changed. Fenton (1991) 
defines complexity as the amount of resources 
required for a problem’s solution.

After analyzing the characteristics and 
specific aspects of business processes and 
workflows, we believe that the definition that is 
better suited to describe processes complexity 
can be derived from IEEE (1992). Therefore, 
we define process complexity as the degree to 
which a process is difficult to analyze, under-

stand, or explain. It may be characterized by 
the number and intricacy of activity interfaces, 
transitions, conditional and parallel branches, 
the existence of loops, roles, activity categories, 
the types of data structures, and other process 
characteristics.

Process Complexity Measurement 
Requirements
The development of a model and theory to cal-
culate the complexity associated with a process 
or workflow needs to conform to a set of basic 

Figure 3. The loan process (version 3)

Figure 4. Process complexity analysis and process reengineering
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but important properties. The metric should 
be easy to learn, computable, consistent, and 
objective. Additionally, the following properties 
are highly desirable (Tsai, Lopex, Rodriguez, 
& Volovik, 1986; Zuse, 1990):

•	 Simplicity. The metric should be easily 
understood by its end users (i.e., process 
analysts and designers).

•	 Consistency. The metric should always 
yield the same value when two independent 
users apply the measurement to the same 
process (i.e., they should arrive at the same 
result).

•	 Automation. It must be possible to auto-
mate the measurement of processes.

•	 Measures must be additive. If two inde-
pendent structures are put into sequence, 
then the total complexity of the combined 
structures is at least the sum of the com-
plexities of the independent structures. 

•	 Measures must be interoperable. Due to 
the large number of existing specification 
languages both in academia and industry, 
the measurements should be independent of 
the process specification language. A par-
ticular complexity value should mean the 
same thing whether it was calculated from 
a process written in BPEL (BPEL4WS, 
2002), WSFL (Leymann, 2001), BPML 
(BPML, 2004), YAWL (van der Aalst & 
Hofstede, 2003), or some other specifica-
tion language. The objective is to be able 
to set complexity standards and interpret 
the resultant numbers uniformly across 
specification languages.

Perspectives on Process 
Complexity
There is no single metric that can be used to 
measure the complexity of a process. Four 
main complexity perspectives can be identified 
(Figure 5): activity complexity, control-flow 
complexity, data-flow complexity, and resource 
complexity. While in this article we will focus 
on control-flow complexity, we present the main 
ideas behind each complexity perspective.

Activity complexity. This view on 
complexity simply calculates the number of 
activities a process has. While this complexity 
metric is very simple, it is very important to 
complement other forms of complexity. The 
control-flow complexity of a process can be 
very low, while its activity complexity can be 
very high. For example, a sequential process 
that has a thousand activities has a control-flow 
complexity of 0, whereas its activity complexity 
is 100. This metric was inspired by lines-of-code 
(LOC) metric used with a significant success 
rate in software engineering (Jones, 1986). 

Control-flow complexity. The control-
flow behavior of a process is affected by con-
structs such as splits, joins, loops, and ending and 
starting points (Cardoso, 2005d). Splits allow 
defining the possible control paths that exist in a 
process. Joins have a different role; they express 
the type of synchronization that should be made 
at a specific point in the process. A control-flow 
complexity model needs to take into account 
the existence of XOR-split/join, OR-split/join, 
AND-split/join, loops, and so forth. 

Data-flow complexity. The data-flow 
complexity of a process increases with the 
complexity of its data structures, the number 
of formal parameters of activities, and the 
mappings between activities’ data (Reijers & 
Vanderfeesten, 2004). A data-flow complexity 
metric can be composed of several submetrics, 
which include: data complexity, interface com-
plexity, and interface integration complexity 
(Cardoso, 2005b). While the first two submetrics 
are related to static data aspects (data declara-
tion), the third metric is more dynamic in nature 
and focuses on data dependencies between the 
various activities of a process.

Resource complexity. Activities in a pro-
cess need to access resources during their execu-
tions. A resource is defined as any entity (e.g., 
human resources, IS resources, IT resources) 
required by an activity for its execution, such 
as a document, a database, a printer, an external 
application, or role (Du, Davis, Huang, & Shan, 
1999; zur Mühlen, 1999). Resources such as ac-
tors and roles can be structured into the context 
of an organization. The structure that is used to 
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shape the various types of resources can be ana-
lyzed to determine its complexity. This analysis 
can help managers lower administrative costs 
and better optimize resource utilization.

Business Process 
Control-Flow Complexity 
Metric
The graphical representation of most process 
specification languages provides the user with 
the capability to recognize complex areas of 
processes. Thus, it is important to develop 
methods and measurements to automatically 
identify complex processes and complex ar-
eas of processes. Afterward, these processes 
can be redesigned to reduce the complexity of 
related activities. One key to the redesign is 
the availability of a metric that characterizes 
complexity and provides guidance for restruc-
turing processes.

Overview of McCabe’s Cyclomatic 
Complexity
Our work borrows some techniques from the 
branch of software engineering known as 
software metrics; namely, McCabe’s cyclo-
matic complexity (MCC) (McCabe, 1976). A 
judicious adaptation and usage of this metric 

during development and maintenance of process 
applications can result in a better quality and 
maintainability. Based on MCC, we propose a 
control-flow complexity metric to be used dur-
ing the design of processes. Process control-flow 
complexity is a design-time metric. 

Since our work to evaluate process com-
plexity borrows some ideas from MCC (Mc-
Cabe, 1976) in order to analyze software com-
plexity, we start by describing the importance 
of MCC and illustrate its usage. This metric 
was chosen for its reliability as a complexity 
indicator and its suitability for our research.

Since its development, MCC has been one 
of the most widely accepted software metrics 
and has been applied to tens of millions of lines 
of code in both the Department of Defense 
(DoD) and commercial applications. The result-
ing base of empirical knowledge has allowed 
software developers to calibrate measurements 
of their own software and arrive at some un-
derstanding of its complexity.

Software metrics often are used to give 
a quantitative indication of a program’s com-
plexity. However, it is not to be confused with 
algorithmic complexity measures (e.g., Big-Oh 
“O”-Notation), whose aim is to compare the 
performance of algorithms. Software metrics 
have been found to be useful in reducing soft-

Figure 5. Types of complexity analyses 
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ware maintenance costs by assigning a numeric 
value to reflect the ease or difficulty with which 
a program module may be understood.

MCC is a measure of the number of linearly 
independent paths in a program. It is intended 
to be independent of language and language 
format (McCabe & Watson, 1994). MCC is an 
indication of a program module’s control flow 
complexity. Derived from a module’s control 
graph representation, MCC has been found to 
be a reliable indicator of complexity in large 
software projects (Ward, 1989). This metric 
is based on the assumption that a program’s 
complexity is related to the number of control 
paths through the program. For example, a 10-
line program with 10 assignment statements 
is easier to understand than a 10-line program 
with 10 if-then statements.

MCC is defined for each module as e - n + 
2, where e and n are the number of edges and 
nodes in the control flow graph, respectively. 
Control flow graphs describe the logic struc-
ture of software modules. The nodes represent 
computational statements or expressions, 
and the edges represent transfer of control 
between nodes. Each possible execution path 
of a software module has a corresponding path 
from the entry to the exit node of the module’s 

control flow graph. For example, in Figure 6., 
the MCC of the control flow graph for the Java 
code described is 14-11+2=5.

Our major objective is to develop a metric 
that could be used in the same way as the MCC 
metric, but to evaluate process complexity. One 
of the first important observations that can be 
made from an MCC control flow graph (Figure 
6.) is that this graph is extremely similar to 
processes and workflows. One major difference 
is that the nodes of an MCC control flow graph 
have identical semantics, while process nodes 
(i.e., activities, tasks, Web services) can have 
different semantics (e.g., AND-splits, XOR-
splits, OR-joins, etc.).

 Our approach uses the idea introduced by 
McCabe and tackles the semantic difference 
of nodes. Numerous studies and experience in 
software projects have shown that the MCC 
measure correlates very closely with errors in 
software modules. The more complex a module 
is, the more likely it is to contain errors. Our goal 
is to adapt McCabe’s cyclomatic complexity to 
be applied to processes. 

Control-Flow Graphs
Control flow graphs can be used to describe 
the logic structure of processes. A process is 

Figure 6. Example of a Java program and its corresponding flow graph
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composed of activities and transitions. Activities 
are represented using circles, and transitions are 
represented using arrows. Transitions express 
dependencies between activities. An activity 
with more than one outgoing transition can be 
classified as an AND-split, OR-split, or XOR-
split. Control flow graphs with activities that 
can have three types of output logic are called 
tri-logic workflows (Cardoso & Cravo, 2006). 
AND-split activities enable all their outgoing 
transitions after completing their execution. 
OR-split activities enable one or more outgo-
ing transitions after completing their execution. 
XOR-split activities enable only one outgoing 
transition after completing their execution. 
AND-split activities are represented with a ‘•’, 
OR-split with an ‘O’, and XOR-split activities 
with a ‘⊕’. An activity with more than one 
incoming transition can be classified as an AND-
join, OR-join, or XOR-join. AND-join activities 
start their execution when all their incoming 
transitions are enabled. OR-join activities start 
their execution when a subset of their incoming 
transitions is enabled. XOR-join activities are 
executed as soon as one of the incoming transi-
tions is enabled. As with AND-split, OR-split, 
and XOR-split activities, AND-join, OR-join, 
and XOR-join activities are represented with 
the symbols ‘•’, ‘O’, and ‘⊕’, respectively. Van 
der Aalst, Hofstede, Kiepuszewski, and Barros 
(2003) show that most workflow patterns can 
be constructed using the basic building blocks 
AND-split, OR-split, and XOR-split. Only OR 
and XOR-splits introduce nondeterminism. 
On the other hand, AND-splits and joins are 

deterministic.
An example of a process is shown in Fig-

ure 7. The process has been developed by the 
Fungal Genome Resource (FGR) laboratory 
in an effort to improve the efficiency of their 
processes (Cardoso, Miller, Sheth, Arnold, 
& Kochut, 2004). One of the reengineered 
processes was the DNA sequencing workflow, 
since it was considered to be beneficial for the 
laboratory’s daily activities.

Definition and Measurement of 
Control-flow Complexity
The control-flow behavior of a process is af-
fected by constructs such as splits and joins. 
Splits allow defining the possible control paths 
that exist through the process. Joins have a 
different role; they express the type of syn-
chronization that should be made at a specific 
point in the process.

Since we are interested in calculating the 
complexity of processes’ control-flow, the 
formulae that we will present evaluate the 
complexity of XOR-split, OR-split, and AND-
split constructs. We call this measurement of 
complexity Control-flow Complexity (CFC). 
Each formula computes the number of states 
that can be reached from one of the three split 
constructs. The measure is based on the relation-
ships between mental discriminations needed 
to understand a split construct and its effects. 
This type of complexity has been referred to as 
psychological complexity. Therefore, the more 
possible states follow a split, the more difficulty 
the designer or business process engineer has 

Figure 7. The DNA sequencing workflow
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to understand the section of a processes and, 
thus, the process itself.

In processes, the MCC cannot be used suc-
cessfully since the metric ignores the semantics 
associated with nodes of the graph. While the 
nodes (i.e., activities) of processes have distinct 
semantics associated, the nodes of a program’s 
flow graph are undifferentiated.

We now introduce several definitions that 
will constitute the basis for CFC measure-
ment.

Definition 1 (Process): A process is a collec-
tion of activities that takes one or more kinds 
of input and creates an output that is of value 
to the customer (Hammer & Champy, 1993). 
A process is a specific ordering of activities 
across time and place, with a beginning, an 
end, and clearly identified inputs and outputs 
(Davenport, 1993).

Definition 2 (Process Property): A property 
is a feature, characteristic, or attribute of a 
process such as complexity, maintainability, 
cost, reliability, and so forth. Process properties 
can be evaluated and quantified using suitable 
models, methods, and algorithms.

Definition 3 (Process Measure): A process 
measure is an empirical assignment of num-
bers (or symbols) to processes in order to 
characterize a specific property. Let P be a set 
of processes. Let N be a set of formal objects, 
such as numbers. A measure m is defined to be a 
mapping, m: P→N. This guarantees that every 
process has a measure, and every process has 
only one measure. However, it does not require 
that every number (in set N) be the measure of 
some process in set P.

Definition 4 (Process Metric): Process metric 
is any type of measurement related to a process. 
Process metrics allows attributes of processes 
to be quantified.

Definition 5 (Activity Fan-out): Fan-out is the 
number of transitions going out of an activity. 

The fan-out is computed using function fan-
out(a), where a is an activity.

Definition 6 (Control-flow-induced Mental 
State): A mental state is a state that has to be 
considered when a designer is developing a 
process. Splits introduce the notion of mental 
states in processes. When a split (XOR, OR, or 
AND) is introduced in a process, the business 
process designer has to mentally create a map 
or structure that accounts for the number of 
states that can be reached from the split.

The notion of mental state is important 
since there are certain theories (Miller, 1956) 
that prove that complexity beyond a certain point 
defeats the human mind’s ability to perform 
accurate symbolic manipulations and, hence, 
results in error.

Definition 7 (XOR-split Control-flow Com-
plexity): XOR-split control-flow complexity 
is determined by the number of mental states 
that are introduced with this type of split. The 
function CFCXOR-split(a), where a is an activity, 
computes the control-flow complexity of the 
XOR-split a. For XOR-splits, the control-flow 
complexity is simply the fan-out of the split.

CFCXOR-split(a)= fan-out(a)

In this particular case, the complexity is 
directly proportional to the number of activities 
that follow an XOR-split and that a process de-
signer needs to consider, analyze, and assimilate. 
The idea is to associate the complexity of an 
XOR-split with the number of states (e.g., activi-
ties, tasks, Web services) that follow the split. 
This rationale is illustrated in Figure 8. Please 
note that in this first case, the computation and 
result bear a strong similarity to the MCC.

Definition 8 (OR-split Control-flow Complex-
ity): OR-split control-flow complexity is also 
determined by the number of mental states that 
are introduced with the split. For OR-splits, the 
control-flow complexity is 2n-1, where n is the 
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fan-out of the split. This rationale is illustrated 
in Figure 9.

CFCOR-split(a)= 2fan-out(a)-1

This means that when a designer is con-
structing a process, he or she needs to consider 
and analyze 2n-1 states that may arise from the 
execution of an OR-split construct.

Mathematically, it would appear more 
obvious that 2n states can be reached after the 
execution of an OR-split. But since a process 
that has started its execution has to finish, it can-
not be the case where, after the execution of an 
OR-split, no transition is activated (i.e., no Web 
service or workflow task is executed. Therefore, 
this situation or state cannot happen.

Definition 9 (AND-split Control-flow Com-
plexity): For an AND-split, the complexity is 
simply 1.

CFCAND-split(a)= 1

The designer constructing a process needs 
only to consider and analyze one state that 
may arise from the execution of an AND-split 
construct, since it is assumed that all the outgo-
ing transitions are selected and followed. This 
rationale is illustrated in Figure 10.

The higher the value of CFCXOR-split(a), CF-
COR-split(a), and CFCAND-split(a), the more complex 
is a process’s design, since developers have 
to handle all the states between control-flow 
constructs (splits) and their associated outgo-
ing transitions and activities. Each formula to 
calculate the complexity of a split construct is 

Figure 8. XOR-split control-flow complexity

Figure 9. OR-split control-flow complexity
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based on the number of states that follow the 
construct.

Control-Flow Complexity of 
Business Processes
Mathematically, control-flow complexity metric 
is additive. Thus, it is very easy to calculate the 
complexity of a process simply by adding the 
CFC of all split constructs. The absolute con-
trol-flow complexity is calculated as follows, 
where P is a business process. 

(XOR-splits of P)

(OR-splits of P)

(AND-splits of P)

( )
         ( )

         ( )

         ( )

abs

XOR split
i

OR split
j

AND split
k

CFC P
CFC i

CFC j

CFC k

−
∈

−
∈

−
∈

=

+

+

+

∑

∑

∑

The relative control-flow complexity for 
process P is calculated as follows, where |P| 
is the number of activities of process P (see 
Box 1).

The greater the value of the CFCabs(P) and 
CFCrel(P), the greater the overall architectural 
complexity of a process. CFC analysis seeks to 

evaluate complexity without direct execution 
of processes. The function of CFC is computed 
based on the individual control-flow complex-
ity of XOR, OR, and AND –splits. Unless 
otherwise stated, CFC(P) denotes the absolute 
control-flow complexity.

Example of CFC Calculation
As an example, let us take the process shown 
in Figure 3 and calculate its CFC. The process 
is composed of 21 activities, 29 transitions, 
three XOR-splits (Check Loan Type, Check 
Home Loan, Check Car Loan), one OR-split 
(Archive Application), and one AND-split 
(Check Education Loan).

It was decided that before placing the 
process in a production environment, a process 
complexity analysis was required to evaluate the 
risk involved with the reengineering effort. The 
results of the control-flow complexity analysis 
carried out are shown in Table 1.

From these values, the control-flow com-
plexity can be calculated easily. It is sufficient 
to mathematically add the CFC of each split. 
Thus, the resulting absolute CFC value is 16 
(i.e., 3+3+2+23-1+1). The relative CFC is 
16/5=3,2.

Figure 10. AND-split control-flow complexity

Box 1.

( )
( )

| {XOR-splits of p} {OR-splits of p} {AND-splits of p} |
abs

rel
CFC P

CFC P =
∪ ∪
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Since the results of the CFC analysis gave 
a value considered to be low, it was determined 
that the process has a low complexity, and 
therefore, its implementation presented a low 
risk for the bank. Therefore, the process was 
deployed and implemented in a production 
environment. As further research is conducted 
in this area, it will become clear that in many 
cases, it is necessary to limit CFC of process 
applications.

 It should be noticed that in order to cor-
rectly analyze the complexity of a business 
process, the CFC metric should not be used in 
isolation. A useful and simple metric that can 
be used in conjunction with the CFC metric is 

the activity complexity metric. This is because 
the CFC metric only analyzes a process from 
the control-flow point of view. As a result, it 
may happen that two processes with a different 
number of activities have the same control-flow 
structure and, therefore, the same CFC. The use 
of the activity complexity metric allows deriv-
ing additional information about the complexity 
of a process.

One important question that needs to be 
investigated and answered is what are both the 
meaning of a given metric (e.g., what is the 
significance of the CFC of 16 and 3,2 obtained 
in our example) and the precise number to use 
as a CFC limit in a process development. This 
answer will be given from empirical results 
only when organizations have successfully 
implemented complexity limits as part of their 
process development projects. For example, 
when using McCabe complexity metrics, the 
original limit of 10 indicates a simple program 
without much risk; a complexity metric between 
11 and 20 designates a more complex program 
with moderate risk, and a metric between 21 
and 50 denotes a complex program with high 
risk. Finally, a complexity metric greater than 
50 denotes an untestable program with a very 
high risk. We expect that limits for CFC will 

Figure 11. The loan application process

Split CFC

CFCXOR-split(Check Loan Type) 3

CFCXOR-split(Check Home Loan) 3

CFCXOR-split(Check Car Loan) 2

CFCOR-split(Archive Application) 23-1

CFCAND-split(Check Education Loan) 1

CFCabs(Loan Application) =16

CFCrel(Loan Application) =3,2

Table 2. CFC metrics for the process from 
Figure 3
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be obtained and set in the same way, using 
empirical and practical results from research 
and from real-world implementation.

Control-flow Complexity 
and Weyuker’s 
Properties
In the area of software measurement, the 
methods and theory developed have had a 
reduced industrial acceptance. According to 
some research, one reason is that there is a lack 
of serious validation of proposed metrics and, 
thus, a lack of confidence in the measurements. 
To overcome this difficulty, we will study 
nine desirable properties (necessary but not 
sufficient) suggested by Weyuker (1988) that 
should be satisfied by any good “complexity 
measure.”

 Weyuker properties have been applied to 
software engineering and have been seriously 
discussed in the literature (Fenton, 1994; Kitch-
enham, Pfleeger, & Fenton, 1996; Morasca, 
Briand, Weyuker, & Zelkowitz, 1997; Zuse, 
1997) Although these properties also have 
been criticized (Cherniavsky & Smith, 1991), 
currently they are still subject to debate and 
refinement. Nevertheless, Weyuker properties 
are a widely known formal analytical approach 
and were therefore chosen for our analysis since 
they do provide a basis for some validation of 
complexity metrics. As shown by Weyuker, 
with such properties, it is possible to filter out 
measurements with undesirable properties.

The majority of these properties are formu-
lated in a clear way. This is an advantage because 
we are able to discuss them. We will concentrate 
and study each property individually.

Summary of Weyuker’s Properties 
Weyuker’s first property states that a metric 
cannot measure all software programs as being 
equally complex. The second property states 
that there is only a finite number of programs 
of the same complexity. The third property 
states that each program may be complex. 
The fourth property states that the complexity 
of a program depends on its implementation 

and that even if two programs solve the same 
problem, they can have different complexi-
ties. Weyuker’s fifth property states that the 
complexity of two programs joined together is 
greater than the complexity of either program 
considered separately. The sixth property 
states that a program of a given complexity 
when joined to two other programs does not 
necessarily mean the resulting program will 
be of equal complexity, even if the two added 
programs are of equal complexity. Weyuker’s 
seventh property states that a permuted version 
of a program can have a different complexity, 
so the order of statements matters. The eighth 
property states that if a program is a straight 
renaming of another program, its complexity 
should be the same as the original program. 
The final property states the complexity of two 
programs joined together may be greater than 
the sum of their individual complexities. The 
properties are summarized in Table 3.

Concatenation Operations on Pro-
cesses
Weyuker introduces the concatenation operation 
(P1;P2) of program blocks. Weyuker defines the 
concatenation operation in the following way: 
a program can be uniquely decomposed into a 
set of disjointed blocks of ordered statements 
having the property whenever the first statement 
in the block is executed; the other statements 
are executed in the given order.

In our approach and since we are dealing 
with processes, four concatenation operations 
exist. Processes can be concatenated either 
sequentially using an AND, an OR, or an XOR. 
These last three concatenation operations use 
splits and joins. Every AND/OR/XOR split has 
also a corresponding AND/OR/XOR join, and 
the different splits do not overlap each other. We 
have decided to only allow the construction of 
well-structured processes (van der Aalst, 1998) 
that are based on a set of predefined building 
blocks. This protects users from designing 
invalid processes. Van der Aalst (1998) has 
shown that processes that are not well-structured 
contain design errors, such as nontermination, 
deadlocks, and splitting of instances. We use 
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Weyuker’s properties to evaluate the CFC 
metric, assuming that the processes are well-
structured for simplicity reasons. The CFC 
metric can be applied to well-structured and 
unstructured processes.

In the list of following properties, P, Q, and 
R represent processes, and the complexity of P 
computed by our complexity measure CFC(P) 
is represented by |P|.

1.	 When process P is concatenated sequen-
tially with process Q, we depict the resulting 
process as P-Q. This type of concatenation 
is illustrated in Figure 12.

2.	 When process P is concatenated with pro-
cess Q using an AND-split and an AND-
join, we depict the resulting process as P•Q. 
This type of concatenation is illustrated in 
Figure 13.

3.	 When process P is concatenated with pro-
cess Q using an OR-split and an OR-join, 
we depict the resulting process as PoQ. 
This type of concatenation has the same 
illustration as the one in Figure 13, except 
that the AND-split and the AND-join shown 
are replaced with an OR-split and an OR-
join, respectively.

Property Description

1 A metric cannot measure all software programs as being equally complex. 

2 There is only a finite number of programs of the same complexity. 

3 Each program may be complex. 

4 If two programs solve the same problem, they can have different complexities. 

5 The complexity of two programs joined together is greater than the complexity of either 
program considered separately. 

6
A program of a given complexity when joined to two other programs does not necessarily 
mean the resulting program will be of equal complexity, even if the two added programs are 
of equal complexity. 

7 A permuted version of a program can have a different complexity. 

8 If a program is a renaming of another program, its complexity should be the same. 

9 The complexity of two programs joined together may be greater than the sum of their indi-
vidual complexities.

Table 3. Weyuker’s properties

Figure 12. Sequential concatenation

QP

P-Q
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4.	 When process P is concatenated with pro-
cess Q using a XOR-split and a XOR-join, 
we depict the resulting process as P⊕Q. 
This type of concatenation has also the 
same illustration as the one in Figure 13, 
except that the AND-split and the AND-join 
shown are replaced with an XOR-split and 
an XOR-join, respectively.

Evaluating the CFC Metric
The nine criteria proposed by Weyuker give 
a framework to evaluate software metrics’ 
properties using a formal theoretical basis. The 
properties are intended to evaluate complexity 
measures on source code metrics. Since there is 
a strong similarity of source code flow graphs 
and processes (Cardoso, 2005d), we will use 
Weyuker’s properties to validate our CFC 
measure. This widely used criterion will be 
presented, adapted, and applied to processes 
in the following paragraphs.

Property 1:
There are processes P and Q such that the 

complexity of P is not equal to the complex-
ity of Q. The property requires that a measure 
should not produce the same complexity value 
for every process.

(∃P)(∃Q)(|P| ≠ |Q|).

This property is an essential requirement 
for measures and process measurement. It says 
that a measure should distinguish between at 

least two processes. The property stresses that 
a measure in which all processes are equally 
complex is not really a measure.

With our measure, we can always come up 
with two processes with two different control-
flow complexity values. We can always design 
a process P that has the same number of split 
types but with a higher fan-out from those in 
process Q. As another example, let us take 
two processes, P and Q, containing only XOR 
splits. Let us assume that P=Q (the processes 
are exactly equal). Let us replace the XOR 
splits of process P with OR splits. For correct-
ness reasons (van der Aalst, 2000), let us also 
replace the XOR joins with OR joins). Since 
CFCXOR-split(a)= fan-out(a) and CFCOR-split(a)= 
2fan-out(a)-1, where a is an activity, then |P|>|Q|. 
Therefore, Property 1 is satisfied.

Property 2:
A measure has to be sufficiently sensitive. A 

measure is not sensitive enough if it divides all 
processes into just a few complexity classes.

Let c be a nonnegative number. Then there 
are only finite processes for which |P| = c.

Our CFC measure does not follow this 
property. Therefore, it makes no provision for 
distinguishing between processes that have a 
small number of activities (possibly performing 
very little computation) and those that have a 
large number of activities (possibly performing 
a substantial amount of computation), provided 
that they have the same decision structure. 

Nevertheless, Zuse (1997) points out that a 
measure is a homomorphic mapping. It depends 
on the result of experiments, the user-view, or 
the viewpoint that a user wants to measure. 
Therefore, not following this property is not 
a disadvantage.

Property 3:
We have processes that have different 

degrees of perceived complexity but map into 
the same complexity measurement value. 

Figure 13. AND concatenation

P

Q

P•Q

AND-split AND-join
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There are distinct processes P and Q such 
that |P|=|Q|.

A measure that assigns a distinct value 
to every process is not much of a measure. It 
would go against the principle of measurements, 
which requires that the number of objects that 
can be measured be greater than the range of 
the values of the measure.

Our measure clearly satisfies this property. 
Let us take two processes, P and Q. Let us as-
sume that P has an AND-split at activity a with 
a fan-out(a) of two. Let us construct process Q 
exactly in the same way as process P, but with 
a fan-out(a) of four at the AND-split activity 
a. Since CFCAND-split(a)= 1, the complexity of P 
is equal to the complexity of Q (i.e., |P|=|Q|), 
but the processes are distinct.

Property 4:
There exist processes P and Q such that P 

is equivalent to Q, but the complexity of P is 
not equal to the complexity of Q.

(∃P)(∃Q)(P ≡ Q|P| ≠ |Q|).

Even though two processes may have 
the same functionality, it is the details of the 
design that determine the process’s complex-
ity. There are different process designs for the 
same functionality. For example, let us take a 
business process that makes the backup of a file 
system composed of four activities that save files 
at various locations. Two designs (processes 
P and Q) with the same functionality of the 
business process can be constructed. Process P 
carries out the four activities sequentially, while 
process Q uses an AND-split and an AND-join 
to reduce the time it takes to complete a file 
system backup. As a result, |P|=0, and |Q| =1 
(i.e., |P|≠|Q|). Therefore, this property is satis-
fied by our metric. 

Property 5:
For any processes P and Q, the complex-

ity of P*Q, *∈{−, , •, ⊕}, is greater than or 
equal to the original complexity of P (weak 
positivity).

Case 1 (-):

(∀P)(∀Q)(|P - Q| ≥ |P|)

For the concatenation operation ‘–’, the 
weak positivity holds. For any two processes 
P and Q, |P-Q|=|P|+|Q|, thus |P-Q| ≥ |P|. 

Case 2 (o): 

(∀P)(∀Q)(|P  Q| > |P|)

For the concatenation operation ‘’, the 
weak positivity holds. For any two processes 
P and Q, |PQ|=|P|+|Q|+22-1, thus |PQ| ≥ |P|. 
Furthermore, for the concatenation operation 
‘’, the positivity also holds since |PQ| > |P|.

Case 3 (•): 

(∀P)(∀Q)(|P • Q| > |P|)

For the concatenation operation ‘•’, the 
weak positivity holds. For any two processes 
P and Q, |P•Q|=|P|+|Q|+1, thus |P•Q| ≥ |P|. Fur-
thermore, for the concatenation operation ‘•’, 
the positivity also holds since |P•Q| > |P|.

Case 4 (⊕): 

(∀P)(∀Q)(|P ⊕ Q| > |P|)

For the concatenation operation ‘⊕’, the 
weak positivity holds. For any two processes P 
and Q, |P⊕Q|=|P|+|Q|+2, thus |P⊕Q| ≥ |P|. Fur-
thermore, for the concatenation operation ‘⊕’, 
the positivity also holds since |P⊕Q| > |P|.

Property 6:
There exist processes P, Q, and R, such 

that |P|=|Q| and |P*R|≠|Q*R|, where *∈{−, , 
•, ⊕}. 

 = ≠
( )( )( )

{ }
 and  * * 

and * , , ,

P Q P R Q R
P Q R∃ ∃ ∃   ∈ − • ⊕ 
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As with property 5, this property has four 
distinct cases.

Case 1 (-): |P-R|=|P|+|R| and |Q-R|=|Q|+|R|, 
since |P|=|Q|, it holds that |P-R|= |Q|+|R|, 
thus |P-R| = |Q-R|.

Case 2 ( ) :  |PoR|=|P|+|R|+22-1 and 
|QR|=|Q|+|R|+22-1, since |P|=|Q|, it 
holds that |PR|= |Q|+|R|+22-1, thus |PR| 
= |QR|.

Case 3 (•): |P•R|=|P|+|R|+1 and |Q•R|=|Q|+|R|+1, 
since |P|=|Q|, it holds that |P•R|= |Q|+|R|+1, 
thus |P•R| = |Q•R|.

Case  4  (⊕ ) :  |P⊕R|= |P |+ |R |+2  and 
|Q⊕R|=|Q|+|R|+2, since |P|=|Q|, it holds that 
|P⊕R|= |Q|+|R|+2, thus |P⊕R| = |Q⊕R|.

As a result, it is clear that our measurement 
does not follow Weyuker’s property 6 in any 
of the cases presented.

Property 7:
There are processes P and Q such that Q is 

formed by permuting the order of the activities 
of P, and |P| is not equal to |Q|.

(∃P)(∃Q) If Q is formed by permuting the 
order of the activities of P, then |P| ≠ |Q|.

This property requires that permutation of 
elements within a process change the metric 
value. The intent is to ensure that the possibil-
ity exists for metric values to change due to 
permutation of process activities. 

Let us assume that we have a process P 
that contains an AND-split and an OR-split 
for the activities a1 and a2, respectively. Each 
split has a different fan-out. Activity a1 has a 
fan-out of two, while activity a2 has a fan-out 
of three. Therefore,

|P| = CFCAND-split (a1)+ CFCOR-split (a2)
	 = 1 + 23 -1 = 8

Let us assume that Q is a permutation of 
the activities of process P. More precisely, the 
activities a1 and a2 are exchanged. As a result, 
activity a1 has now a fan-out of three, while 
activity a2 has a fan-out of two. The complexity 
of Q becomes 

|Q| = CFCAND-split (a1) + CFCOR-split (a2) 
= 1+22 -1 = 4

Since |P| ≠ |Q| (i.e. 8 ≠ 4), it happens that 
our measurement follows this property.

Property 8:
This property states that uniformly chang-

ing activity names should not affect a process 
complexity.

If P is a renaming of Q, then |P| = |Q|.

This property requires that when the name 
of the activities or processes changes, the metric 
should remain unchanged. As the metric being 
considered in this research does not depend on 
the name of activities or processes, it satisfies 
this property.

Property 9:
The complexity of a process formed by 

concatenating two processes can be greater 
than the sum of their individual complexities 
(wholeness property). This property states that 
the whole must be at least as great as the sum 
of the parts. The idea behind wholeness is that 
the whole is more complex than the sum of its 
components.

(∃P)(∃Q)(|P*Q|>|P|+|Q|, and *∈{−, , •, ⊕})

This property states that, at least in some 
cases, the complexity of a process formed by 
concatenating two processes is greater than 
the sum of their complexities. This reflects the 
fact that there may be interactions between the 
concatenated processes.

As with previous properties, this property 
has four distinct cases.
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Case 1 (-): |P-Q|=|P|+|Q|, thus |P-Q| ≥ |P|+|Q|.

Case 2 (o): |PoQ|=|P|+|Q|+22-1, thus |PoQ| > 
|P|+|Q|.

Case 3 (•): |P•Q|=|P|+|Q|+1, thus |P•Q| > 
|P|+|Q|.

Case 4 (⊕): |P⊕Q|=|P|+|Q|+2, thus |P⊕Q| > 
|P|+|Q|.

As a result, our measurement follows 
property 9 for case 2, 3, and 4. Case 1 follows 
a variation of the wholeness property, called 
the weak wholeness property.

(∃P)(∃Q)(|P - Q| ≥ | P |+|Q|)

Interoperability Property
Due to the large number of existing specifica-
tion languages both in academia and industry, 
the measurements should be independent of 
the process specification language. A particular 
complexity value should mean the same thing 
whether it was calculated from a process written 
in BPEL (BPEL4WS, 2002), BPML (BPML, 
2004), YAWL (van der Aalst & Hofstede, 2003), 
or some other specification language. The objec-
tive is to be able to set complexity standards 
and interpret the resultant numbers uniformly 
across specification languages.

This new property that we propose is not 
part of the properties proposed by Weyuker. 
Nevertheless, in the area of business processes 
and process modeling, we believe that it has an 
applicable importance.

Property 10:
Measures must be interoperable (i.e., 

independent of the process specification lan-
guage).

If P=Q, possibly specified with different lan-
guages (i.e., P∈ Lp and Q∈ Lq, where Lp and 
Lq are process modeling languages), then |P| 
= |Q|.

As our metric only requires the existence of 
AND, OR, or XOR splits, and since most speci-
fication languages include these constructs, we 
conclude that our metric satisfies this property 
for a broad spectrum of modeling languages.

At first glance, it may seem that properties 8 
and 10 have some relationship, since the naming 
of an activity (property 8) can be understood as 
a representation in a process modeling language 
that differs, although the underlying process is 
the same. However, the interoperability prop-
erty considers the expressiveness of a process 
modeling language. For example, a modeling 
language Lp may be able to express only AND 
and XOR splits, while another language, Lq, 
also may be able to express OR splits. In this 
case, control-flow complexity metrics that only 
allow to express AND and XOR splits is not 
interoperable with language Lq since OR splits 
cannot be represented. On the other hand, if a 
metric considers the complexity based on AND 
and XOR splits, then it is interoperable across 
language Lp and Lq.

Conclusion
Since our CFC measure happens to fully sat-
isfy seven of the Weyuker’s nine properties 
and partially satisfies one property, it can be 
considered to have passed a significant part of 
the theoretically validation process. Therefore, 
it can be categorized as good, structured, and 
comprehensive.

Metric Validation
In this section, we describe the experiment 
we have carried out for empirically validating 
the CFC metric. This empirical study is an ex-
periment that compares what we believe with 
what we observe. Such an experiment plays a 
fundamental role in our work. Zelkowitz and 
Wallace (1998) stress the importance of using 
experimental models for validating metrics. The 
authors suggest experimentation as a crucial 
part of the evaluation of new metrics.

For the experiment to be successful, it 
needs to be wisely constructed and executed. 
Therefore, we have followed some suggestions 
provided by Perry, Porter & Votta (2000) about 



68    International Journal of Web Services Research, 5(2), 49-76, April-June 2008

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of  IGI Global
is prohibited.

the structure and the components of a suitable 
empirical study. To perform an experiment, 
several steps have to be taken in a certain 
order. An experiment can be divided into the 
following main activities (Perry et al., 2000): 
research context, hypotheses, experimental 
design, threats to validity, data analysis and 
presentation, results and conclusions.

In the remainder of this section, we explain 
how we have performed each of the activities 
described previously.

Research Context
In this section, the terminology is explained, the 
problem is defined, and a brief research review 
is undertaken to provide the historical context 
surrounding the problem.

Terminology and problem definition. 
Process complexity can be defined as the degree 
to which a business process is difficult to ana-
lyze, understand, or explain. The control-flow 
complexity refers to the degree of complexity 
of a process from a control-flow perspective.

The CFC metric can be used to automati-
cally measure the control-flow complexity of a 
process based on its structure. It allows designers 
to create less complex processes, thus reduc-
ing the time spent reading and understanding 
processes in order to remove faults or adapt the 
process to changed requirements.

Our goal is to analyze the CFC metric for 
the purpose of evaluating and validating the 
proposed metric. For a set of processes, we wish 
to determine the correlation between the output 
of the CFC metric and the perceived control-flow 
complexity from the point of view of process 
designers. In our experiments, process design-
ers (subjects) were Master students from the 
Department of Mathematics and Engineering 
at the University of Madeira (Portugal).

Research Review. In Cardoso (2005d), 
we have presented the CFC metric to analyze 
the degree of complexity of business processes. 
Nowadays, complexity analysis has an increased 
importance since the emergence of processes 
that span both between and within enterprises 
(Sheth, van der Aalst, & Arpinar, 1999) have 
an inherent complexity. Therefore, methods 

should be used to support the design, improve-
ment, and redesign of processes to reduce their 
complexity. The CFC can be used to analyze 
the complexity of business processes, as well 
as workflow and processes.

Hypotheses Formulation
An important aspect of experiments is to know 
and state in a clear and formal way what we 
intend to evaluate. Hypotheses are essential, as 
they state the research questions we are asking. 
We present two hypotheses: an abstract and a 
concrete hypothesis.

Abstract Hypothesis. “The CFC metric 
is a good and accurate metric to evaluate 
and establish the control-flow complexity of 
processes.”

Concrete Hypothesis. “There is a signifi-
cant correlation between the CFC metric and the 
subject’s rating of the control-flow complexity 
of processes.”

Study Design
After the research context and the hypotheses 
formulation, the design of the study took place. 
A study’s design is a detailed plan for collecting 
the data that will be used to test the hypotheses. 
This phase also explains how the experiment 
was conducted and has several components.

Variable selection. One component is a 
set of variables that links causes and effects. 
Typically, there are two kinds of variables: 
dependent and independent.

The independent variable is the control-
flow structure of processes. 

The dependent variable is the control-flow 
complexity of processes, which varies when the 
control-flow structure of processes changes.

Subjects selection. Our subjects were 
students of the Department of Mathematics 
and Engineering enrolled in the first year of 
a Master’s program in Computer Science at 
the University of Madeira, Portugal. Nineteen 
subjects were selected. Most of the students had 
industrial experience in several areas, but none 
had experience with business process manage-
ment systems and methodologies. By the time 
the experiment was done, all the students had 
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taken a 50-hour course in Business Process 
Management (BPM) and, therefore, gained 
experience in the design and development of 
business processes. 

Experiment design. The objects to be rated 
were business processes graphically designed 
with the process language used by METEOR 
workflow management system (Kochut, 1999). 
An example of the processes analyzed and 
rated by the subjects is illustrated in Fig. 14. 
The independent variable was measured using 
the CFC metric. The dependent variable was 
measured according to a subject’s ratings. All 
the tests were solved by the same group of 
subjects.

We prepared the material to give to the 
subjects. The material consisted of 22 profes-
sionally designed, error-free, processes (objects) 
of the same universe of discourse related to 
bank loan applications. The subjects were told 
how to carry out the experiment. Each subject 
carried out the experiment alone in class and 
could use unlimited time to solve it. We col-
lected all the data, including subjects’ ratings 
and the measurements automatically calculated 
by means of the CFC metric. All tests were 
considered valid because all of the subjects 

had at least medium experience in designing 
and analyzing business processes. 

Threats to Validity
Threats to validity are influences that may limit 
our ability to interpret or draw conclusions from 
the study’s data. We will discuss the empirical 
study’s various threats to validity (construct, 
internal, and external validity) and the way we 
attempted to alleviate them.

Construct validity. All the measurements 
of the dependent variable were subjective and 
based on the perception of the subjects. As 
the subjects involved in this experiment had 
medium experience in BPM design, we think 
their ratings can be considered significant. The 
independent variable that measures the con-
trol-flow complexity of processes also can be 
considered constructively valid, because from 
a complexity theory point of view, a system is 
called complex if it is composed of many dif-
ferent types of elements.

Internal validity. We have considered the 
different aspects that could threaten the internal 
validity of the study, such as differences among 
subjects, precision of subjects’ ratings, learning 
effects, fatigue effects, and subject incentive. 

Figure 14. Example of an object rated by the subjects
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Subjects were knowledgeable concerning the 
evaluation issues. Analyzing the results of the 
experiment, we can empirically observe the ex-
istence of a correlation between the independent 
and the dependent variable.

External validity. One threat to external 
validity has been identified: subject selection. 
This threat can limit the ability to generalize the 
results to settings outside the study. The subjects 
were Master students that had recently taken a 
50-hour course on BPM, gaining an in-depth 
experience in the design and development of 
business processes. In order to extract a final 
conclusion that can be generalized, it is neces-
sary to replicate this experiment with a more 
diversified number of subjects, including prac-
titioners and designers with less experience.

Data Analysis and Presentation
Two main approaches to presenting and 
analyzing data can be chosen: quantitative and 
qualitative analysis. Since our subjects rated 
processes using a numerical scale from 0 to 
100, we have selected a quantitative analysis 
to draw conclusions from our data. The quali-
tative analysis was done in conjunction with a 
statistical analysis.

As we have said previously, our goal is 
to determine if any correlation exists between 
subjects’ ratings and the CFC metric proposed 
in Cardoso (2005d) and briefly described in 
Section 3. Since the data collected in the experi-
ment is distribution-free, the Spearman Rank-
Difference Correlation Coefficient (Siegel & 
Castellan, 1988), rS, was used to determine 
the correlation of the data collected in the ex-
periment. The Spearman rS is a nonparametric 
statistic used to show the relationship between 
two variables that are expressed as ranks (the 
ordinal level of measurement). The correlation 
coefficient is a measure of the ability of one 
variable to predict the value of another variable. 
Using Spearman’s correlation coefficient, the 
CFC metric was correlated separately to the dif-
ferent subject’s rates of control-flow complexity. 
In our experiment, the null hypothesis was: 

H0: “there is no correlation between the CFC 
metric and the subject’s rating of control-
flow complexity.”

The probability that the null hypothesis 
would be erroneously rejected was controlled 
with two confidence levels: α1=0.005 and 
α2=0.05. The decision rules for rejecting the 
null hypothesis were: 

For α1: reject H0 if rS >= 0.586; For α2: reject 
H0 if rS >= 0.425

Results and Conclusion
The analysis performed on the collected data 
led to some interesting results.  shows summary 
statistics describing the Spearman rank-differ-
ence correlation coefficient between subjects’ 
ratings and the values given by the CFC metric. 
For each subject, the correlation coefficient rS 
is given.

Based on data from  and taking into consid-
eration α1, the values of rS are greater than 0.586 
for 84% of the subjects; therefore, we reject 
the null hypothesis. Taking into consideration 
α2, all the values of rS are greater than 0.425; 
therefore, we also reject the null hypothesis. 
For α1, our confidence level is 95%, and for 
α2, our confidence level is 99.5%.

After analyzing the data we gathered, we 
concluded that the obtained results reveal that 
there exists a high correlation between the CFC 
metric and the subject’s rating of control-flow 
complexity. This leads us back to our original 
goal, which was to demonstrate that the CFC 
metric serves the purpose for which it was de-
fined: to measure the control-flow complexity of 
processes. The results obtained are believable, 
and there are no ambiguities in our interpreta-
tion. We also believe that no external elements 
have influenced our results. The diffusion of 
the experimental results and the way they are 
presented are relevant so that they are really put 
into use. Therefore, we published our findings in 
this article, and we also are planning to develop 
a Web-based system to allow other researchers 
to replicate our experiment.
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Our results recommend the use of the CFC 
metric in order to create less complex processes, 
thus reducing the time spent reading and under-
standing processes in order to remove faults or 
adapt the processes to changed requirements. 
The complexity measurement enables process 
managers and administrators to calculate the 
complexity of processes generated by others. 
Process designers can analyze the complexity 
of a particular process in development. Process 
consultants can contribute with new process 
components needing methods to analyze the 
complexity of the proposed solutions. End-users 
can inquire about the complexity of processes 
before starting process instances.

Related Work
While a significant amount of research on the 
complexity of software programs has been done 
in the area of software engineering, the work 

found in the literature on complexity analysis 
for business processes is almost nonexistent. 
Since the research on process complexity is 
almost nonexistent, in this section we will dis-
cuss the progress made in the area of software 
complexity.

The last 30 years has seen a large amount 
of research aimed at determining measurable 
properties to capture the notions of software 
complexity. The earliest measures were based 
on analysis of software code, the most funda-
mental being a basic count of the number of 
Lines of Code (LOC). Despite being widely 
criticized as a measure of complexity, it con-
tinues to have widespread popularity, mainly 
due to its simplicity (Azuma & Mole, 1994). 
Research in software engineering has produced 
other important measurements for software. 
Among others are Halstead’s measure (Halstead, 
1977), McCabe’s measure (McCabe, 1977), 
the COCOMO model (Boehm, 1981), and the 

Table 5. Correlation coefficients
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Function-Point method (Garmus & Herron, 
2000). There is a vast amount of literature on 
software metrics, which represents the result 
of the measurement of the development, op-
eration, and maintenance of software in order 
to supply meaningful and timely management 
information. Zuse (1997) has found hundreds 
of different software metrics proposed and 
described for software measurement.

Misra and Misra (2004) have evaluated 
cognitive complexity measures in terms of 
Weyuker properties and have found that most 
of Weyuker’s properties have been satisfied by 
the cognitive weight software complexity mea-
sure and established the cognitive complexity 
as a well-structured one. In Lakshmanan, Jay-
aprakash, and Sinha (1991), the authors attempt 
to formalize some properties that any reasonable 
control-flow complexity measure must satisfy. 
Their approach is directed at large software 
programs that often are built by sequencing 
and nesting of simpler constructs. The authors 
explore how control-flow complexity measures 
behave under such compositions. Please note 
that these last two fields of research have been 
carried out in the context of software engineer-
ing and not process management.

A recent area of research involving pro-
cesses, workflows, and Quality of Service 
also can be considered related to the work in 
this article. Organizations operating in modern 
markets, such as e-commerce activities and dis-
tributed Web services interactions, require QoS 
management. Appropriate quality control leads 
to the creation of quality products and services; 
these, in turn, fulfill customer expectations and 
achieve customer satisfaction. Quality of ser-
vice can be characterized according to various 
dimensions. For example, Cardoso, Sheth, and 
Miller (2002) have constructed a QoS model 
for processes composed of three dimensions: 
time, cost, and reliability. Another dimension 
that could be considered relevant under the 
QoS umbrella is the complexity of processes. 
Therefore, the complexity dimension could be 
added and integrated to the QoS model already 
developed (Cardoso et al., 2004).

 

The most important research on complexity 
analysis for business processes and workflows 
can be found in Cardoso (2005a; 2005b; 2005c; 
2005d; 2005f) and Reijers and Vanderfeesten 
(2004). Reijers and Vanderfeesten (2004) pro-
pose a cohesion and coupling metric developed 
to analyze workflows. While their work does 
not take the viewpoint of complexity analysis, it 
easily can be reformulated to make cohesion and 
coupling a specific complexity perspective.

Conclusion 
Our work presents an approach to carry out 
business process complexity analysis. The 
complexity of processes is intuitively connected 
to effects such as readability, effort, testability, 
reliability, and maintainability. Therefore, it is 
important to develop metrics in order to identify 
complex processes. Afterward, these processes 
can be reengineered, improved, or redesigned 
to reduce their complexity. The measure pre-
sented—the process control-flow complexity 
(CFC)—is a design-time measurement and can 
be used to evaluate the difficulty of producing 
a process design before implementation. When 
control-flow complexity analysis becomes 
part of the process development cycle, it has 
a considerable influence on the design phase 
of development, leading to further optimized 
processes. The control-flow complexity analysis 
also can be used in deciding whether to maintain 
or redesign a process. As known from software 
engineering, it is a fact that it is cost-effective 
to fix a defect earlier in the design lifecycle 
than later.

 We have given a clear definition of the 
terminology and objectives of the control-flow 
complexity measure, and we have evaluated 
the measure in terms of Weyuker’s properties. 
Weyuker’s properties must be satisfied by every 
complexity measure in order to qualify as good 
and comprehensive. We have demonstrated that 
seven of nine of Weyuker’s properties have been 
fully satisfied and one partially satisfied by the 
CFC measure and, hence, established the CFC as 
a well-structured one. We have introduced a new 
property—the interoperability property—that 
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has significant importance in the context of 
process complexity analysis.

In order to demonstrate that our CFC metric 
serves the purpose for which it was defined, 
we have carried out an empirical validation by 
means of a controlled experiment. Our experi-
ment involved 19 graduate students in Computer 
Science as part of a research project, and tested 
if the control-flow complexity of a set of 22 
business processes could be predicted using 
the CFC metric. Analyzing the collected data 
using statistical methods, we have concluded 
that the CFC metric is highly correlated with 
the control-flow complexity of processes. This 
metric, therefore, can be used by business pro-
cess analysts and process designers to analyze 
the complexity of processes and, if possible, 
develop simpler processes.
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