

Moving from Syntactic to Semantic
Organizations using JXML2OWL

Toni Rodrigues ¹, Pedro Rosa ², Jorge Cardoso ³ (Contact Author)

¹ SQLI
Immeuble le Pressensé

268 Avenue du Président Wilson
93210 La Plaine Saint-Denis

France
trodrigues@sqli.com

² Department of Mathematics and Engineering
 University of Madeira

 9050-390 Funchal
Portugal

pcosta@apus.uma.pt

³ SAP Research CEC Dresden – SAP AG
Chemnitzer Strasse 48

01187 Dresden, Germany
T +49 351 4811-6145
F +49 6227 78 50340

jorge.cardoso@sap.com

Abstract. Today’s enterprises face critical needs in integrating disparate information
spread over several data sources inside and even outside the organization. Most
organizations already rely on XML standard to define their data models. Unfortunately,
even when using XML to represent data, problems arise when it is necessary to integrate
different data sources. Emerging Semantic Web technologies, such as ontologies, RDF,
RDFS, and OWL, can play an important role in the semantic definition and integration of
data. The purpose of our study is to present a framework to assist organizations to move
from a syntactic data infrastructure defined in XML to a semantic data infrastructure using
OWL. The framework supports mappings and fully automated instance transformation
from syntactic data sources in XML format to a common shared global model defined by
an ontology using Semantic Web technologies. The presented framework, JXML2OWL,
allows organizations to automatically convert their XML data sources to a semantic model
defined in OWL.

Keywords: semantic web, ontologies, information systems integration, mapping,
transformation

 2

1 Introduction
The Semantic Web is a project and a vision of the World Wide Web Consortium

(W3C). It is an extension of the current Web in which “information is given a well-
defined meaning, better enabling computers and people to work in cooperation” [1].
While the current Web is only human-understandable, the Semantic Web vision intends
to represent Web content in such a form that it becomes machine-processable [2].
Toward this objective, several standards have emerged under the initiative of the W3C,
such as RDF, RDFS and OWL. Ontologies play an important role to realize this vision
allowing data to be defined and linked in a way that it enables its use for more effective
discovery, integration, re-use across various applications and machine processing [1].

According to TopQuadrant, a consulting firm that specializes in Semantic Web
technologies, the market for semantic technologies will grow at an annual growth rate
of between 60% and 70% until 2010. It will grow from its current size of US$2 billion
to US$63 billion [3]. Semantic Web technologies find one of their first commercial
users in organizations facing data integration needs [4] and always seeking for better
data integration solutions. Company mergers, integration of new software together with
legacy systems which need to share data, the necessity of a unique global view of all the
internal enterprise and external partner data sources, the need to be compliant with
emerging standards to enable and maintain B2B cooperation, are all forces driving the
need for data integration [5]. According to the InfoWorld’s 2002 Application
Integration Survey of IT leaders, integration costs consumed at that time an average of
24 percent of the yearly IT budget [6]. For midsize to large companies this represents
millions of dollars. The year 2005 also was a busy year for data integration and
nowadays companies are increasing their budget to better address data integration needs
and related difficulties [7].

Integrating data from various data sources is not an easy task. In fact, several
obstacles, mainly related with semantic heterogeneity, have been identified by
researchers, such as [8]:

• Syntactic obstacles: Different terminology can be used to refer to semantically
identical concepts. For example, a data source may use a table named client
while another data source uses a table named customer with the same meaning.

• Semantic obstacles: The semantics may differ for similar terms. For example,
the term customer can have different meanings. In one data source, it can
include only end-customers while in another data source it can combine end-
customers with dealers.

• Structural obstacles: The information may not only be structured differently but
may also use distinct data formats. For instance, one data source may be
available as a database using the relational model while another data source is
provided using the XML format.

Current data integration approaches heavily rely on knowing what data is where and
on the meaning of the data. Data description, or metadata, is essential to ease data
integration and discovery [9]. Enterprise metadata repositories based on standards can
be used as platforms for storing, accessing and managing metadata, as well as to locate
information across an organization [10]. Meta-data also allows efficient re-use of
integration efforts [10] and, in combination with semantic, it is possible to describe

 3

contextually relevant or domain-specific information about content based on a domain
metadata model [11]. This is what semantic metadata is.

With semantic metadata, a rich semantic domain model with concepts, attributes and
relationships can be built. Ontologies constitute a good candidate to represent this kind
of domain model. An Ontology is a formal, explicit specification of a shared
conceptualization [12]. Thus, ontologies are particularly suitable to play the role of a
central model. In fact, the conceptualization would be an abstract model of all the
enterprise domain concepts. These domain concepts are explicitly defined and related to
other concepts independently of the underlying applications. An ontology is not only
human understandable. Indeed, because an ontology is a formal specification, it makes
it also machine-processable. This formal specification also enables inference, that is,
logical reasoning about concepts. Consequently, it is possible to derive (potentially
new) knowledge from previously known facts. Ontologies, and therefore information,
can be shared between applications or business partners because they are essentially
domain specific. Products, such as Oracle 10g and Cerebra Server, which use ontologies
for metadata description, global domain model specification, or more generally for data
integration, are already available on the market.

The S2S (Syntactic-to-Semantic) middleware follows such a paradigm [13]. S2S
uses ontologies to provide a semantic layer and transparently integrates disparate data
assets of an organization hiding several details of the integrated data sources [14] . Such
hidden details include the distributed nature of enterprise data sources and their
structure, and semantic as well as syntactical heterogeneity. Figure 1 represents at a
very high level the architecture of the S2S middleware. One can notice the use of an
ontology, which provides a shared common understanding of a domain and enables
semantic data integration, and other important modules such as the Extractor, Mapper
and Instance Generator.

A typical scenario with this middleware essentially takes place as follows. When
applications perform queries, the extractor module is responsible to transparently extract
from the disparate assets the data needed to answer the query. This extracted data is
then automatically transformed at run-time into instances of the ontology (usually called
individuals) by the Instances Generator component according to the mapping previously
performed by the Mapper module between the heterogeneous data sources schema and
the ontology. Finally, inference can then be carried out over the knowledge base
(ontology and its populated individuals). According to the business rules and query
performed, appropriate results are returned to the applications. As enacted in this
scenario, besides the extractors, the Mapper and the Instance Generator are key
elements of such middleware, and more generally, of any system supporting semantic
data integration. This approach allows organizations to view their heterogeneous data
sources as one global ontology and brings all the discussed advantages such as: the
ability to discover new knowledge from known facts; the capacity to share the global
model between partners; and the capability to annotate data with metadata which can be
used to ease data integration and discovery.

Within the scope of this paper, we are particularly interested in the Mapper and
Instance Generator modules. We propose a semantic approach to cope with the data
integration problems defining the JXML2OWL framework which can be used to map
syntactic data in XML format to an ontology defined in OWL (Web Ontology
Language). This paper is organized as follows. Section 2 presents the JXML2OWL
project and then compares it to other related works. In Section 3, we propose a notation
to specify mappings between XML schema and OWL ontology and discuss important

 4

aspects regarding the instances generation. We call instances generation to the
transformation process of XML data (validating against the mapped XML schema) into
instances of the mapped ontology. Section 4 introduces the prototype we successfully
implemented. Finally, Section 5 presents our conclusions.

2 A Brief Overview of JXML2OWL
Java XML to OWL project is divided into two sub projects: JXML2OWL API and

JXML2OWL Mapper. The API is a generic and reusable open source library for
mapping XML schemas to OWL ontologies for the Java platform while the Mapper is
an application with a graphical user interface (GUI) developed in Java Swing that uses
the API and eases the mapping process.

The final objective of JXML2OWL project is to develop a user-friendly, interactive
and manual mapping tool that allows a user to map syntactic data in XML format to any
existing ontology defined in OWL language with the purpose of easing and automating
the semantic data integration process. More precisely, the developed mapping tool
supports mappings between any XML schema (XSD and DTD) to concepts (classes and
properties) of any OWL ontology. According to the mapping performed, the tool
generates mapping rules as an XSL document that allows the automatic transformation
of any XML data, that is, any XML document validating against the mapped schema,
into instances of the mapped ontology. XML documents were chosen as input because
today’s most commercial and scientific applications (such MS Excel, Apple iTunes or
Matlab) as well as databases (such as MS SQL Server) provide services for
automatically exporting their data or results into XML format. Additionally, XML has
become the de facto standard for B2B data exchange and cooperation [15]. Thus we
argue that XML can be considered as a standard representation of a wide variety of data
sources. As such, the third obstacle, the structure problem, mentioned in Section 1 of
this paper is partially addressed. Mapping to an ontology, which represents a shared
common understanding of a specific domain, solves the terminology incompatibility
problem. OWL was chosen as the ontology language because it is the W3C
recommendation for building ontologies. Generated mapping rules are wrapped in an
XSL document to easily support instances transformation. XSLT is the used standard to
transform XML documents. The XSL document generated by JXML2OWL can be used
by any XSLT processor to automatically transform instances of the mapped schema into
instances of the ontology. The XSLT choice gets even more obvious considering that
OWL is specified with XML syntax. This option towards XSLT standard allows us to
simultaneously address the Mapper and Instance Generator modules specified in the
S2S middleware architecture. As illustrated in Figure 2, the JXML2OWL API
represents the Mapper component while the XSLT processor represents the Instance
Generator module.

In the data integration context, the JXML2OWL API can be used ahead of query
time to manually map each XML data source schema to the ontology and to generate
the mapping rules wrapped in an XSL document. At run-time, that is, at query-time,
data is fetched from the XML data sources and is automatically transformed into
individuals using an XSLT processor and the generated rules over the fetched data.

 5

2.1 Related work

Since Semantic Web technologies, and more precisely the OWL recommendation,
are emerging concepts, not many applications using these technologies have been
developed in the industry. Besides OWL, researchers are also developing specification
to represent rules semantically [16, 17]. While specifications already exist for a few
years, there is a lack of prototypes that can demonstrate without a doubt that the
semantic Web is a solution for many of the problems that the industry faces. Moreover,
many vendors seem to be taking a “wait-and-see” approach while the emerging
standards converge. This position has already been discussed in [18] with respect to the
Semantic Web and Web services.

Nevertheless, due to the development pace of Semantic Web technologies, a fair
amount of applications that use OWL are available and result from academic research,
projects and theses. These OWL applications can be grouped into three main categories:

• Editors/Browsers – Applications that allow to create, edit, and browse OWL
ontologies

• Annotation tools – Applications that enable end users to annotate existent data
with semantic context

• Mapping tools – Tools that enable the creation of correspondences/ mappings
between two schemas. According to this mapping, instances of source schema
can be transformed into instances of target schema.

A large part of the applications related to the OWL W3C recommendation are
included in either Editor/Browser or Annotation categories. Mapping tools that involve
XML and OWL data models are scarce. In fact, during our research, we did not find any
tool supporting mappings from XML schemas to existing OWL ontologies. This fact
makes our project JXML2OWL a unique contribution to the pool of semantic Web
applications.

A considerable amount of mapping tools has the purpose of creating mappings
between two distinct ontologies such as FOAM (Framework for Ontology Alignment
and Mapping) [19]. Other works, which in some way are related with JXML2OWL,
include COMA++, XML2OWL and Lifting XML Schema to OWL. These projects are
discussed and compared to JXML2OWL in the next paragraphs.

COMA++ is a schema and ontology matching tool [20] developed at the University
of Leipzig. This tool mainly supports XML schema and OWL ontology documents as
data sources and enables a user to identify semantic correspondences between XML
schemas, OWL ontologies or even between an XML schema and an OWL ontology.
When mapping between XML schema elements and OWL concepts, it creates corres-
pondences between them. These correspondences attach meaning to syntactic data and
are expressed with simple pairs (XML schema element, OWL concept). The main
objective of COMA++ is to provide several automatic matching algorithms. For
example, it is possible to compare source elements and target schema taxonomies
running an algorithm which suggests mappings that the user can validate, edit or discard.
This ability of COMA++ is really interesting since it attenuates the problems related
with manual mapping processes, which have the advantage of being accurate (because
the mapping is performed by a human) but also have the inconvenience of being time-
consuming, tedious and error-prone (for the same reason). Although COMA++ is part
of the mapping group, it does not really intend to map XML schemas to ontologies with

 6

the purpose of facilitating the transformation of schema’s instances into individuals as
we do. Also, the resulting mapping is quite primitive, with lot of semantic loss (such as
relations between mapped concepts).

The major part of the other work done in this field intends to transform an XML
Schema to a new ontology capturing the implicit semantics available in the structure of
XML documents. Such an approach is used in [21]. The authors propose an approach to
narrow the gap between XML, RDF and OWL. Their work is split into two independent
parts: they describe automatic mappings from XML to RDF as well as from XML
schema to OWL. However, since the mappings are independent, the generated instances
may not respect the OWL model created from the XML schema. In [22] the authors
cope with this independency between the mappings. Their framework automatically
creates a partial mapping from an XML schema to an ontology using an XSLT
transformation. It basically converts an XML Schema into a newly created ontology that
captures the implicit semantics existent in the XML schema structure. It also transforms
XML instances documents into instances of the newly created ontology. These two
approaches are distinct from ours since both create a new ontology while JXML2OWL
maps XML schemas to an already existent ontology.

Another interesting, very similar and complete approach is the XML2OWL
framework. It is developed in XSLT and also transforms XML schema (XSD) into a
newly created ontology in OWL [23]. Additionally, an XSLT that transforms instances
of the XML schema into instances of the created ontology is also generated. This
framework is similar with, but more complete than the works discussed in the previous
paragraph since the generated instances respect the created OWL model and also
support the creation of the OWL model directly from XML instances even if no XML
schema is available. This project resembles the one we have developed but there are
several differences. In fact, this tool creates a new ontology from an XML schema
during which the user has no control over the process. That is, the user has no control
over the newly created ontology which captures the implicit semantics existent in the
XML schema structure. Our main objective is different. Our project, JXML2OWL,
allows a user to map XML schema to an existing ontology, which is usually richer than
the one created by XML2OWL framework, and appropriately generate an XSLT that
automatically transforms instances of the schema to instances of the mapped ontology.
In JXML2OWL, during the mapping, the user has an active role and controls the
process. As such, we argue that XML2OWL is not a mapping tool. Instead, it is more
appropriate to call it a converter or a transformer. In addition, the instances generation is
quite primitive because duplicate instances are created with distinct IDs while
JXML2OWL detects and filters duplicate instances, merging all the associated
properties as explained in Section 3.

In this Section, all the projects that we have described are in some way related to our
JXML2OWL project. However, none of them supports mappings and instances
transformation to an existing OWL ontology. This means that, in the context of data
integration, they do not support the incremental addition and mapping of new data
sources. This was the main reason that led us to the specification and development of
the JXML2OWL application.

 7

3 XML to OWL Mapping: Specification and Instances
Transformation

This section defines a notation to specify mappings between an XML schema to an
OWL schema ontology. Important aspects of instances transformation are also
discussed. When appropriate, several approaches are examined and then we indicate the
chosen one. One should note that a good knowledge of several W3C recommendations,
such as XML [24], OWL [25], and XPath [26], is necessary to better understand the
concepts discussed.

3.1 The structures of XML and OWL

In order to fully understand the transformation process of instances between XML
and OWL schema we have to understand the differences of these two data models.
XML’s data model [24] describes a node labeled tree (independently of using XML
Schema or DTD to define the model), while OWL’s data model is based upon the
subject-predicate-object triples from RDF [27]. RDF schema defines a vocabulary for
creating class hierarchies, attaching properties to classes and adding instance data.

Since the main characteristic of XML Schema and DTDs is to define a tree structure
for the data, the transformation of instances from one data model to the other consists to
simply map the XML tree structure to a class hierarchy. It should be noticed that
transforming XML to OWL is a simpler task than the inverse mapping, in other words,
mapping OWL to XML. This is because the elements and the expressiveness of XML
are a subset of the elements and the expressiveness of OWL. Therefore, when creating
mappings between elements of an XML schema and an OWL schema, we need to
consider, in the one hand, the tree structure of XML, and, in the other hand, the class
structure of an OWL ontology.

An XML DTD only provides basic cardinality constraints such as the Kleene
operators ? (0 or 1), * (0+), and + (1+). A DTD also allows defining enumerations.
Besides these basic cardinality constraints, the XML Schema also allows the
specification of data types. Since OWL allows specifying cardinality constraints,
enumeration, data types (OWL uses the same data types as XML Schema), it becomes
straightforward to map cardinality constraints and enumeration from a DTD/XML
Schema to OWL. It should be noticed that since the XML Schema and OWL use the
same data types, when establishing mappings there is not need to perform any
conversion or transformation. OWL only needs to reference the data types that were
referenced by the XML Schema.

The nodes of the tree structure can be easily identified and referenced using an
XPath expression. Since all the nodes have the same syntactic representation, no more
considerations need to be drawn with respect to XML. Dealing with OWL is more
involved, since depending on the semantics of an XML node it can be mapped to
different OWL elements. Having a particular XML node, we need to consider three
possible mapping scenarios to OWL:

• Map a XML node to an OWL concept;
• Map a XML node to an OWL datatype property
• Relate a XML node to an OWL object property

 8

XML element OWL element

Node Class

Node Datatype Property

Node Object Property

Table 1. Elements that need to be considered when mapping XML to OWL

The data model mapping decisions that need to be taken into account when
transforming XML to OWL are illustrated in Table 1. This table shows that the
mappings are established between XML elements (i.e., nodes) and OWL elements. The
challenge is to formally specify under which conditions a XML node need to be mapped
to an OWL class, datatype or object property. Our solution uses XPath expressions to
distinguish XML nodes with the same name but with different ancestors and permits to
map them to their corresponding OWL elements. Our approach references XML nodes
with XPath expressions while OWL classes are referenced with their URIs. The pair
(OWL class URI, XPath expression) identifies a mapping and means that an instance of
the OWL class identified by the URI reference is created for each XML node matching
the specified XPath expression. The following subsections discuss how the issue of
establishing mappings between XML nodes and OWL elements has been addressed.

3.2 Referencing XML nodes

To map an XML node (i.e., an XML element or an attribute) to an OWL class, it is
necessary to reference the XML node to be mapped. The first possible approach would
be to reference the node by its name. However we cannot forget that XML lacks
semantics. This means that XML nodes with the same name but with different parents
may have different semantics. The following example, an XML document describing
electronic products and technology, represents such a case.

<products>
 <electronics>
 <product>SONY LCD 28TV </product>
 <product>Philips Flat 32AB</product>
 <product>...</product>
 </electronics>
 <computers>
 <product>HP 720.us</product>
 <product>Dell P4-DC2 </product>
 <product>...</product>
 </computers>
</products>

The product elements have different semantics. For instance, the product elements
with the names SONY LCD 28TV and Philips Flat 32AB are part of the electronics
section while the product HP and Dell refer to computers. It is possible that those two
kinds of products are represented by different concepts on the ontology. Referencing
product nodes by their names simultaneously identifies electronics and computers and
thus they would be mapped to the same ontological concept. Therefore, referencing
XML nodes by their names is not a suitable solution.

A second approach, much more appropriate, is to identify the XML nodes with an
XPath expression. For instance, the XML nodes representing electronics are referenced

 9

with /products/electronics/product and can be mapped to the appropriate
concept defined by the ontology. Similarly, computers are addressed by
/products/computers/product and mapped to the corresponding ontological
concept.

XPath expressions have other advantages: XML attributes can be easily addressed
prefixing the attribute name with the '@' symbol. For instance,
/products/computers/product/@price could address the price of a
computer. Also, XPath predicates could be used to support conditional mappings.

Since this second approach using XPath expressions is more suitable, it was the
selected to overcome the lack of semantics of XML documents.

3.3 Referencing OWL resources

OWL resources are the classes and properties defined by an ontology. The W3C
OWL recommendation requires OWL resources to have unique identifiers. URI
references are used as unique identifiers in the Semantic Web context to reference
resources. URI references can be broken up in a namespace and a local name (or in a
URI and a fragment). The namespace is usually the URI of the whole ontology. The
local name uniquely identifies a resource within a namespace, that is, within an
ontology. A prefix can be associated with a namespace and can then be used to
reference a resource without writing the complete URI.

For example,
http://jxml2owl.sourceforge.net/ontologies/tourism.owl# is a
namespace (and a URI) that identifies the tourism ontology [28]. The concept
Accommodation is the local name (or fragment) of a resource defined by this
ontology.
http://jxml2owl.sourceforge.net/ontologies/tourism.owl#Acco
mmodation is the complete URI reference of this resource. The term
tourism:Accommodation is equivalent to the previous URI reference if the prefix
tourism is associated with the namespace identifying the ontology.

Since our objective is to map an XML schema to an ontology and knowing that a
local name is unique within an ontology, one could think that the local name is
appropriate to uniquely reference a resource defined by the mapped ontology. However,
the local name is not enough because the OWL recommendation permits an ontology to
import other ontologies. Therefore, to be able to address resources defined by the
imported ontology, resources must be referenced by their URI. However, because URIs
can be quite long, it is also possible to reference resources using a prefix and a local
name.

3.4 Mapping XML nodes to OWL classes

XML nodes are referenced with XPath expressions while OWL classes are
referenced with their URIs. The pair (OWL class URI, XPath expression)
identifies a mapping and means that an instance of the OWL class identified by the URI
reference is created for each XML node matching the specified XPath expression. Let
us consider an ontology which defines two classes: computerProduct and
electronicProduct. The term product is a prefix associated with the

 10

namespace of this ontology. Let us also consider the XML document introduced in
Section 3.1.

The following pair (product:eletronicsProduct,
/products/computers/product) indicates that an instance of
electronicsProduct is created for each XML nodes matching the XPath
expression /products/computers/product. Therefore, applying the mapping
rules to the considered XML document will generate two instances of the class
electronicProduct, one instance for product SONY LCD 28TV and the other one
for the product Philips Flat 32AB.

3.5 Mapping XML nodes to OWL properties

The W3C OWL recommendation defines two kinds of OWL properties: datatype
and object properties. Both properties have a domain and a range. The domain of a
property is not always a single class. For instance, it is possible to define the domain of
a property as the union of several classes. Consider the property displaySize and
the classes LCD-TV and Plasma-TV. Both a LCD television and a Plasma television
have a display size. Therefore, the domain of the property displaySize can be
specified as the union of the classes LCD-TV and Plasma-TV.

The range of a property varies according to the type of the property. Datatype
properties are properties for which the value is a data literal, such as xs:integer
(where xs is a prefix associated to the namespace
http://www.w3.org/2001/XMLSchema), while object properties take
individuals of a particular class as range.

3.5.1 Mapping XML nodes to OWL datatype properties
To create a datatype property mapping, the property as well as both its domain and

its range must be specified. The OWL datatype property, which is an OWL resource, is
addressed as we saw in Section 3.2 by its URI reference or by its prefix and local name.
The value of a datatype property range is a data literal such as xs:integer or
xs:string. Such a value can be specified with an XPath expression to indicate the
XML element, attribute or node containing the value used to fill the property value.

A discussion can arise to determine the best way to specify the domain of a mapped
property. How should it be referenced? Is it necessary to specify the domain to map a
property? In order to answer these questions, let us consider the following case. Let us
consider an ontology, identified by the prefix product, defining the concept
computerProduct as an OWL class which is the domain of two datatype properties:
name, whose range is a data literal xs:string, and price, whose range is
xs:integer. Let us consider as well the following XML document.

<products>
 <price value="2500">
 <computer>
 <product>
 <name>Philips Flat 32AB</name>
 </product>
 </computer>
 </price>
 <price value="2400">
 <computer>
 <product>

 11

 <name>SONY LCD 28TV</name>
 </product>
 </computer>
 </price>
</products>

Using the notation introduced in Section 3.3, the following mapping to an OWL

class is valid:
(product:computerProduct, /products/price/computer/product)

Given this scenario, the challenge is to discover a generic way to specify that we
intend to map the XML element name and the attribute @value to the OWL datatype
properties product:name and product:price and specify the domain of these
properties, which is product:computerProduct.

A pair such as (product:name,
/products/price/computer/product/name) would mean that the value
under /products/price/computer/product/name would be used as the
range of the OWL datatype property product:name. This approach is not suitable
because the domain is not specified. One could argue that the domain of the created
property could be easily found checking the OWL class to which the parent node of
/products/price/computer/product/name is mapped, namely
product:computerProduct. However, this is not a valid solution. In fact,
consider that we also want to map /products/price/@value to the datatype
property product:price. Looking at the parent node is not appropriate. We could
also check the child node of price, but it is not mapped. Even worse, it could be
mapped to another OWL class that could also be part of the domain of the mapped
OWL property! Clearly, this approach is not suitable. The domain must be specified.

The first approach to specify the domain is to use an XPath expression identifying
the XML nodes mapped to the OWL class which is the domain of the property. Once
again, we need to find another solution because an XML node can be simultaneously
mapped to several OWL classes and the domain of the property can be the union of
those several classes.

The best solution is to associate the datatype property mapping to a class mapping.
This can be achieved using a triplet like

(OWL datatype property URI, domain class mapping, range XPath expression)

to specify a datatype property mapping. Considering the previous XML document and
the following class mapping, cm:

cm = (product:computerProduct, /products/price/computer/product)

the following triplet (product:price, cm, /product/price/@value) is a
valid datatype property mapping. It means that for each instance created from the cm
class mapping, a datatype property product:price is also created and its value is
filled using the one under /products/price/@value. Considering the previous
XML document, the class mapping cm and the previous datatype property mapping, two
instances of the OWL class product:computerrProduct are created: one for the
product Philips Flat 32AB and the other one for SONY LCD 28TV (in fact one for each
XML node matching the XPath expression used in the class mapping cm). For each of
these instances, a datatype property product:price is created, whose value is found
with /products/price/@value. In reality the value is not exactly found under the
XPath expression used in the triplet identifying the mapping of the property. In order to

 12

get the value used as the range of a property, it is necessary to compute the relative path
from the XPath expression used in the class mapping to the XPath expression used in
the property mapping. For instance, for each XML node mapped to
product:computerProduct, the value of the property product:price is
found under the relative path ../../@value and the value of the property
product:name is found under the relative path name.

3.5.2 Mapping XML nodes to OWL object properties
Mapping OWL object properties is very similar to the mapping of datatype

properties. The difference occurs in the range of the property. While the range of
datatype properties takes literal values, the range of object properties takes instances of
OWL classes. The OWL object property is addressed like any other OWL resource (see
Section 3.2). The domain is specified like the domain of datatype properties. For the
same reasons of the domain of properties, the range of object properties is also
referenced with a class mapping. As such, object property mappings are also specified
with triplets:
(OWL object property URI, domain class mapping, range class mapping)

Let us consider an ontology with two OWL classes, tourism:Country and
tourism:City and an object property tourism:hasCity whose domain and
range are, respectively, tourism:Country and tourism:City. Let us also
consider its inverse property tourism:belongsToCountry as well as the
following XML document:

<locations>
 <location>
 <country name="Portugal"/>
 <city name="Funchal"/>
 </location>
 <location>
 <country name="France"/>
 <city name="Paris"/>
 </location>
</locations>

And the following mappings:
cm1 = (tourism:Country, /locations/location/country)
cm2 = (tourism:City, /locations/location/city)

The following triplets are valid object property mappings: (tourism:hasCity,
cm1, cm2) and (tourism:belongsToCountry, cm2, cm1). The first
object property mapping means that each OWL instance created from the class
mapping cm1 is the domain of an object property tourism:hasCity whose range is
an individual generated from the class mapping cm2. Again, in an identical way to the
datatype properties, it is necessary to compute the relative path, which is in the
example ../city, to obtain the exact individual used as range. Running the
instances’ transformation over the considered XML document, four individuals are
created: two instances of the OWL class tourism:Country, one for Portugal and
one for France, as well as two instances for the OWL class tourism:City, one for
Funchal and one for Paris. Four relationships between individuals (corresponding to the
two object property mappings) are also created: two that relate Portugal and Funchal,
and other two that relate France and Paris.

 13

3.6 A Solution to the semantic heterogeneity problem:
conditional mapping

In Section 2 we explained how the structural and syntactic problems of data
integration are solved by JXML2OWL. We are now going to address the semantic
obstacle in this subsection. The semantic heterogeneity problem was not completely
solved by JXML2OWL application. Semantic incompatibility can arise in two different
ways. The most simple semantic incompatibility situation happens when the same
terminology is used with different but unique meanings by distinct data sources. For
instance, a data source can use customer terminology with the meaning of end-
customers while another source can use the same terminology but with a different
meaning such as dealers. Since each data source uses the terminology with a unique and
clearly defined meaning, it is just a matter of mapping the elements from each data
source to the appropriate concept of the ontology. This situation is currently fully
supported by the JXML2OWL mapping tool.

The second case, more complex than the first situation, happens when a terminology
is used for more than one meaning in a data source. For example, this situation happens
when a data source uses customer terminology to include both end-customers and
dealers. To overcome this semantic problem, we propose two distinct solutions: pre-
processing the data source and enabling conditional mappings within the JXML2OWL
project. Considering the current state of JXML2OWL, it is necessary to pre-process the
XML source using one of the available mapping tools supporting conditional mappings
(such as Stylus Studio XML-to-XML Mapper) between two XML schemas to normalize
the semantics. Then JXML2OWL can be used to map from the semantically normalized
schema to an OWL ontology. Since the majority of XML mapping tools supports
conditional mappings, we decided to concentrate our resources to define and implement
a solution to map from XML to OWL, discarding the not so important conditional
mapping feature.

Conditional mappings are an elegant solution to solve this problem. JXML2OWL
was designed in such a way that it can easily be extended to support this kind of
mapping. The following example explains how conditional mappings can be used to
solve the semantic heterogeneity. Let us consider a product ontology with two
concepts: product:electronicProduct and product:computerProduct.
Let us also consider the following XML document.

<products>
 <product>

 <name>Philips Flat 32AB</name>
 <electronics>true</electronics>
 </product>

 <product>
 <name>SONY LCD 28TV</name>
 <computer>true</computer>
 </product>
 </products>

This XML document uses the same terminology, product, with different meanings:
electronic and computer product. The following class mappings solve this semantic
problem:
cm1 = (product:eletronicsProduct, /produtcs/product[electronics='true'])

 14

cm2 = (product:computerProduct, /produtcs/product [computer='true'])

Predicates are used in the XPath expressions to elegantly solve the semantic
heterogeneity problem.

3.7 Transforming XML instances to OWL instances

Two main problems need to be solved in order to successfully complete the
JXML2OWL tool. The first problem deals with schema manipulations and it is related
to the strategy that needs to be implemented to reference XML nodes and OWL
resources, and the strategy to create mappings between classes and properties. The
second problem that needs to be addressed concerns OWL instances generation. OWL
instances are generated from the mappings created between the XML schema and the
OWL ontology. This section addresses important aspects of the individual generation
and creation of properties.

3.7.1 Generating class instances
Instances of OWL classes are characterized by having unique identifiers. When

creating the OWL instances document, it must be ensured that unique identifiers are
generated for each individual. Another important task is to detect duplicate instances on
the XML document. With the support of many-to-one mappings, several XML nodes
identified by the different or even by the same XPath expressions may refer to the same
individual. Based on their unique identifier, duplicate instances (instances with the same
ID) must be detected and filtered so that only one instance is created.

Bearing in mind what was said in the previous paragraph, an important decision
must be taken with respect to how unique identifiers are created. JXML2OWL supports
two approaches. By default, the ID is generated by sequentially concatenating the
underscore symbol ‘_’ with the prefix of the mapped class, with its local name and with
the string-value [25] of the mapped XML node. Considering the following XML
document, an ontology with the class org:product and these two class mappings:
(org:product, /org/products/product) and (org:product,
/org/warehouses/warehouse/products/product), only two individuals
are created, one for the product Philips Flat 32AB and the other for SONY LCD 28TV.
The IDs of the two generated instances are _orgproductPF32AB2 and
_orgproductSONY28TV3. This happened because the string-values of the XML
nodes representing each product are the same.

<org>
 <products>
 <product>
 <name> Philips Flat 32AB</name>
 <price>2500</price>
 </product>
 <product>
 <name>SONY LCD 28TV</name>
 <age>2400</age>
 </product>
 </products>
 <warehouses>
 <warehouse>
 <name>SEED Fx</name>
 <products>

 15

 <product>
 <name>Philips Flat 32AB</name>
 <age>2500</age>
 </product>
 <product>
 <name>SONY LCD 28TV</name>
 <age>2400</age>
 </product>
 </products>
 </warehouse>
 </warehouses>
</org>

One can argue, and we agree, that XML documents with the previous structure are
rare since they are much too verbose and thus it could be quite impossible to detect
duplicate instances using this approach in a real scenario (such as a dump of a database
extracted in XML format). As such, we also propose an alternative solution where it is
possible to specify the XML node whose string-value is used to generate the ID. With
this alternative, the class mappings can also be specified with triplets:

(OWL class URI, XPath expression, ID XPath expression).

Considering now the following XML document, the same ontology with the class
org:product and these two class mappings:
cm1 = (org: product, /org/products/product, /org/products/product/name) and
cm2 = (org:product, /org/warehouses/warehouse/products/product,

/org/warehouses/warehouse/products/product/@name), only two
individual are created, one for the product Philips Flat 32AB and the other for SONY
LCD 28TV because the XML nodes selected as ID have the same string-value. Now the
IDs of the created instances are: _orgproductPF32AB and
_orgproductSONY28TV.

<org>
 <products>
 <product>
 <name> Philips Flat 32AB</name>
 <serial>333444555</serial>
 <price>25</price>
 </product>
 <product>
 <name> SONY LCD 28TV</name>
 <serial>666777888<</serial>
 <price>24</price>
 </product>
 </products>
 <warehouses>
 <warehouse>
 <name>SEED Lx </name>
 <products>
 <product name="Philips Flat 32AB">
 <serial>333444555</serial>
 <serial>333444555FX</serial>
 </product >
 <product name="SONY LCD 28TV"/>
 </products>
 </warehouse>
 </warehouses>
</org>

 16

One should note that using the string-value of an XML node to generate the IDs of
OWL instances is not a perfect solution because the string-value can contain several
symbols, such as ‘%’ and ‘;’, which are not valid within a unique identifier. However,
since it is possible to specify the XML node used to generate the ID, one that does not
contain such symbols can be chosen. Possible solutions to solve this problem consist of
encoding such symbols into valid ones to generate a valid ID (such a valid string is
called NCName [29] or use some kind of hash function to generate a valid ID from the
string resulting of the several concatenations.

3.7.2 Generating properties
The OWL recommendation also places several restrictions on properties. The most

important one when generating the properties of individuals is that OWL does not allow
the assignment of duplicates to property values. Special care must be taken because of
the support of many-to-one mappings. In fact, with this kind of mapping, not only
several XML nodes can be mapped to the same OWL class but also several XML nodes
or class mappings can respectively be used as the range of OWL datatype or object
properties. In such a case, it is necessary to filter and eliminate duplicates when creating
both the OWL instances and the properties. But this is not enough since it is also
necessary to perform the union of all the distinct property values mapped.

With the intention of better understanding this situation, let us consider again the
previous XML document, as well as the previous ontology with the same class
mappings where the nodes used as IDs are directly specified, mapping different XML
nodes to the same OWL class. Let us also consider that the ontology defines the
datatype property org:serial as well as the followings triplets representing property
mappings:

• (org:serial, cm1, /org/products/product/serial)

• (org:serial, cm2, /org/warehouses/warehouse/products/products/serial)

For the product Philips Flat 32AB, only one instance is created since the generated
IDs are the same. However, two org:serial properties must be created, one for
333444555 and one for 333444555FX because they are distinct. One should note that
one of the 333444555 serials was discarded because it is a duplicate one. We can state
that for each generated individual, it is necessary to perform the union of all the
properties related to this individual, to remove the duplicates and finally to create the
remaining properties. This process must be done to both datatype and object properties.

OWL recommendation also supports the definition of several restrictions such as
maximal and minimal cardinality restrictions of properties over classes. The generation
of OWL instances must support those kinds of restrictions. Maximal cardinality
restrictions can easily be supported since it is just a matter of ensuring that the
maximum number of allowed properties is not exceeded, discarding the remaining ones.
A complete support of minimal cardinality restriction is impossible, that is, it is
impossible to guarantee that this kind of restriction is always satisfied. However, there
are two distinct cases that must be supported. For each case, appropriate warnings and
comments need to be generated. The two distinct cases are:

• Properties on which minimal cardinality restrictions exist are not mapped.
Warnings and comments are generated both on the transformation rules and on
the OWL instances document.

 17

• The XML instances document does not contain enough instances to satisfy the
minimal cardinality restriction. Since this case can only be evaluated at run-time,
comments can only be generated in the OWL instances document.

3.8 Summary

This section presents a notation, displayed in Table 2, to map an XML schema to an
existing ontology defined in OWL and discussed important aspects regarding the
transformation of instances of the XML schema into instances of the ontology. It does
not constitute an exhaustive solution. Our purpose is to provide a solution that considers
the most important aspects narrowing the huge gap existing between XML and OWL
recommendations.

Mappings Notation

Class

(OWL Class URI, XPath expression)
(OWL Class URI, XPath expression, ID XPath expression)

Datatype Property

(OWL Datatype Property URI, Domain Class Mapping, XPath
Expression)

Object Property

(OWL Object Property URI, Domain Class Mapping, Range
Class Mapping)

Table 2. Mapping notation

4 How Organizations Can Use JXML2OWL?
Nowadays, an increasing number of organizations are operating in a global business

environment. This global environment requires an adequate B2B integration for them to
remain competitive. B2B integration is concerned essentially with the coordination of
data, information, and processes among businesses and their information systems.
Organizations need to avidly interact with suppliers, partners, and customers. However,
if this integration is done on a point-to-point basis, these companies end up spending up
to 35% to 40% of their software maintenance budgets simply on maintaining these
connections [30].

4.1 B2B integration

Integration in a B2B context is hard to achieve since organizations use different
vocabularies to describe their products, part numbers, invoices, and numbering purchase
orders. As depicted by Figure 3, in B2B settings, it is possible to find two types of
vocabularies: internal and external. Internal vocabularies are only visible inside
organizations. Typically, organizations use data dictionaries and taxonomies to make
their vocabulary explicit. Modern approaches would involve OWL, RDF, and RDFS in
addition to XML in order to describe internal vocabularies and taxonomies.

On the other hand, external vocabularies are defined to be used with partners to
exchange data and information. The most common way to describe an external
vocabulary is to use a standard, such as RosettaNet and ebXML. Various industries
have their own standards such as HL7 in the health care industry. In general, every

 18

industry develops a standard or set of standards in order for companies in these
industries to communicate with each other.

Organizations are starting to look for architectural solutions that allows their
participation in B2B transactions using syntactic protocols (i.e. XML) while
representing their internal vocabularies and documents semantically (using OWL).
Partners and suppliers can freely exchange syntactic documents. Once an organization
receives a syntactic document it is allowed to create a mapping between the elements
from the document and concepts of an ontology that describes the domain of discourse
of the organization (i.e., internal vocabulary). The organization that receives the
documents can create any number of mappings.

4.2 Achieving B2B integration with JXML2OWL

As we can see, one of the main challenges of B2B integration is to find a solution to
integrate internal and external vocabulary. This requires some expertise since these two
types of vocabularies are specified using languages with different expressiveness.
Nowadays, external vocabularies are usually specified using XML, while internal
vocabularies recently started to be specified using RDF(S) and will possibly be
specified using OWL in the near future.

While XML allows data exchange between distributed and heterogeneous
applications, it does not guarantee the interoperability of systems. XML only provides
syntax to structure the data exchanged in a B2B setting, since tags have no predefined
meaning. This is only one level of interoperability that must be met in B2B transactions.
Developers are still faced with the problem of semantic interoperability, i.e., the
difficulty to integrate resources that were developed using different vocabularies and
different perspectives on the data. When data is only defined syntactically, it is not
possible to enable the automatic or semi-automatic integration of B2B information
systems. These objectives can only be reached when considering the semantics of the
data exchanged between organizations.

In these scenarios and contexts, the JXML2OWL tool can be effectively used to
map external vocabularies to internal reference vocabularies (terminologies), and
monitor, evaluate and correct deficiencies in external messages coming from outside
suppliers, partners, and customers to conform to internal vocabularies. JXML2OWL
narrows the gap between XML and OWL specifications proposing a strategy to map
external vocabularies and documents represented with XML Schema to internal
vocabularies and documents represented with existing OWL ontologies and transform
XML data (instances of the mapped XML Schema) into instances of the ontology
according to the performed mapping.

4.3 JXML2OWL implementation

As defined in Section 2, the JXML2OWL API and the Mapper tool were
implemented in Java and the mapping rules are wrapped within an XSL document to
automatically support the transformation of XML instances into individuals. The
mappings process requires several steps. The first step consists of creating a new
mapping project and loading both the XML schema related file (XSD or DTD) and the
OWL ontology. If an XML schema is not available, it is possible to load an XML

 19

document. In this case, JXML2OWL extracts a possible schema. In the second step, the
user creates class mapping between elements of the loaded XML schema and concepts
of the ontology. Once these mappings are created, it is possible to relate them to each
other with the intent of creating object property mappings, or to relate them with
elements of the XML schema to create datatype property mappings. Finally, in the last
step, it is possible to export the transformation rules, generated according to the
mapping performed, as an XSL document. With this XSL document it is possible to
transform any XML document which validates against the mapped XML schema into
individuals of the mapped OWL ontology.

Obviously, both the API and the Mapper support all these steps. Regarding the
mappings, JXML2OWL supports one-to-one, many-to-one, one-to-many and many-to-
many mappings. This means that an element of the loaded XML schema can be mapped
to several OWL classes and several elements of the schema can correspond to the same
OWL class. These kinds of supported mappings allow the mapping between any XML
schema to any ontology. Other features are provided such as the ability to save a
mapping project state in an XML file to resume it later or the possibility to directly
transform XML instances document to OWL individuals using JXML2OWL Mapper.
The main methods provided by the API are directly derived from the notation proposed
on Section 3. The Mapper supports all the features of the API in a user-friendly way.
Figure 4 illustrates the JXML2OWL Mapper tool with several mappings created.

The JXML2OWL Mapper tool is divided into two main parts. On the left side, the
XML schema is represented, while on the right side the OWL classes defined by the
ontology are shown. In between we can see the mapping zone. It is possible to drag-
and-drop elements from the left to the right (and vice-versa) to create mappings. By
selecting a created mapping, it is possible to create datatype and object property
mappings. Under the mapping zone, the XML node used as ID for the select class
mapping is displayed as well as all the datatype and object property mappings created
and related to the selected class mapping. For example, the /lecturers/lecturer
node from the XML schema is mapped to the OWL class teacher:Teacher of the
ontology while /lecturers/lecturer/teaches/course is mapped to
teacher:Course. Those two class mappings are related with an object property
mapping (the selected item of the table). Datatype property mappings are also displayed
such as teacher:age and teacher:email.

To assess the performance of the instance transformation process, we have created a
mapping project with 9 class mappings, 14 datatype property mappings and also 14
object property mappings. We have transformed three XML documents with different
sizes, which validates against the mapped schema, using the generated XSL document.
The performance results are shown in Table 3.

Lines

(XML File)
Size In

(XML File)
Size Out

(OWL instance File)
Time

Processing
385 10.2 KB 28 KB 0.266s

3805 102 KB 254 KB 3.734s
38005 1068 KB 1943 KB 5m 14.609s

Table 3. Performance assessment

During our performance evaluation, we noticed that the processing time did not
scale very well with the size of the XML input document. This is mainly due to the
process of detecting and eliminating duplicate instances and properties. Such process

 20

requires several passes (the exact number depends on the quantity of many-to-one
mappings) through the XML instances document which is time-consuming.

4.4 Commercial applications already available

Commercial systems and tools that use RDF and OWL as a representation language
are emerging. This section illustrates only a few of the most promising solution already
available in the market to deploy semantic Web applications. These applications can be
sued in conjunction with JXML2OWL.

For example, Altova SemanticWorks™ 2007 (www.altova.com) is the ground-
breaking visual RDF/OWL editor. This tool allows the visual creation and editing of
RDF, RDF Schema, OWL Lite, OWL DL, and OWL Full documents using an intuitive,
visual interface and drag-and-drop functionality.

Oracle Spatial 10g (www-oracle.com) has introduced the industry’s first RDF
management platform. Based on a graph data model, RDF triples are persisted, indexed
and queried, similar to other object-relational data types and allow deploying scalable
and secure semantic applications. Oracle’s RDF Database (11g) will support native
OWL inferencing for an OWL subset that includes property characteristics, class
comparisons, proprety comparisons, individual comparisons and class expressions.
Metatomix (www.m3t4.com) has developed the Metatomix Semantic Toolkit, which is
a set of Eclipse plugins that allow developers to create and manage ontologies based on
the OWL standards.

TopQuadrant (www.topquadrant.com) has released its TopBraid Composer, a
professional development environment for W3C’s Semantic Web standards: RDF
Schema, OWL, SPARQL Query Language and the Semantic Web Rule Language
(SWRL).

5 Conclusions
Data storage technologies have evolved together with the needs of enterprises.

Initially stored in flat files in a proprietary format, data stored in tables managed by
RBDMS emerged in the 70’s with the need for better performances, while SQL query
language became a standard in the 80’s. With the advent of the internet and XML as a
de facto standard for B2B data exchange, traditional EDI (Electronic Data Interchange)
solutions (such as Edifact) are being substituted by XML based EDI (such as ebXML
and Rosettanet). To support these evolutions, mapping tools were developed to allow
the mapping between distinct technologies and schemas. For instance, tools enabling
mappings and data conversion from flat file do Relational Databases are available.
Similarly, with the emergence of XML, applications supporting mappings from flat file
to XML, and between Relational Databases and XML (through SQL) are getting more
common. Since a few years ago, to better enable data exchange and integration,
common database vendor enabled XML within their databases. MS SQL Server and
IBM DB2 are examples of such databases which are usually referred to as XML-
enabled databases. More recently, native XML databases emerged. They are document
centered and are particularly suited to store, manage and query XML documents usually
using XPath and / or XQuery language. XML technologies brought interoperability at a
syntactic level, but today’s organizations are again shifting (or it is expected of them to

 21

do so) from a syntactic operability level to a semantic one [31]. Semantic Web
technologies, such as RDF and OWL, play an important role in achieving this objective.
Currently, not only databases (such as Oracle 10g), but also applications (like Adobe
Creative Suite or Mozilla Firefox), are RDF-enabled. According to William Ruh of
CISCO, before the end of 2004, RDF was applied under the covers of well over 100
identified products and over 25 information service providers [32]. Again, mapping
applications were developed to support this evolution. For example, several XSL
stylesheets, such as xml2rdf.xsl [33], enable conversion from XML to RDF. At the top
of RDF stands OWL, a semantically richer and more expressive language. Since OWL
recommendation is very recent, applications using OWL are very scarce and mainly
related to academic projects. However, for its acceptance, tools supporting OWL
standard are necessary. Mapping tools to OWL specification are also needed to assist
enterprise migration from syntactic to semantic data structures.

In this paper we have presented an approach, which was successfully implemented
in JXML2OWL, for mapping XML schema to existing OWL ontologies and
transforming instances of the XML schema into individuals. This transformation is
fundamental for organizations that plan to move from a syntactic representation of data
(using XML) to a semantic one (using OWL). By using semantic domain models based
on ontologies, enterprises acquire several benefits, such as the ability to perform
inference on a knowledge base (ontology and its individuals) to derive potentially new
knowledge or the capacity to share their domain model to easily exchange and integrate
data.

JXML2OWL has been successfully employed in the context of a major project
called SEED (SEmantic E-tourism Dynamic packaging) whose purpose is to integrate
disparate and heterogeneous e-tourism data sources into a unique knowledge base. We
believe the presented framework is appropriate to integrate any XML data into semantic
information systems based on OWL ontologies. The JXML2OWL framework is ready-
to-use and available for download (http://jxml2owl.projects.semwebcentral.org/).

We hope the research done to bridge the gap between XML and OWL as well as the
successfully implemented prototype has demonstrated the need for semantic mapping
tools and will stimulate R&D departments of software companies, mainly the ones
developing mapping applications, to develop professional mapping tools supporting
mappings and instances transformation to OWL ontologies.

6 Acknowledgments
This work was partially funded by grants from the FCT, POCTI-219, and FEDER.

7 References
[1] Berners-Lee T, Miller E. The Semantic Web lifts off. Special Issue of ERCIM

News 2002; 51:9-11.
http://www.ercim.org/publication/Ercim_News/enw51/berners-lee.html.

[2] Cardoso J. Semantic Web Services: Theory, Tools and Applications. New York:
IGI Global; 2007.

 22

[3] Davis M. The Business Value of Semantic Technologies. A TopQuadrant Special
Report 2004. http://www.knowledgefoundations.com/pdf-
files/BusinessValue_v2.pdf

[4] Oracle. Semantic Data Integration for the Enterprise (White paper); 2007.
http://www.oracle.com/technology/tech/semantic_technologies/pdf/semantic11g_
dataint_twp.pdf

[5] Fensel D. Ontologies: Silver Bullet for Knowledge Management and Electronic
Commerce. 2nd ed. Berlin: Springer-Verlag; 2003.

[6] Yager T. The Future of Application Integration. InfoWorld; 2002.
http://www.infoworld.com/article/02/02/22/020225feintro_1.html.

[7] White C. Data Integration: Still a Barrier for Most Organizations. April 2006 Issue
of DM Review. http://www.dmreview.com/article_sub.cfm?articleId=1051163.

[8] Alexie V, Breu M, de Bruijn J, Fensel D, Lara D, Lausen H. Information
Integration with Ontologies: Experiences from an Industrial Showcase. John
Wiley & Sons; 2007.

[9] Roth M. A, Wolfson D. C, Kleeweln J. C, Nelin C. J. Information integration: A
new generation of information technology. IBM Systems Journal 2002; 41(4):563-
577.

[10] Gold-Bernstein B. Enterprise Information Integration – What was old is new again.
ebizQ, 2004. http://www.ebizq.net/topics/eii/features/4371.html?page=1.

[11] Sheth A. A Semantic Meta Data Approach to Enterprise Information Integration.
July 2003 Issue of DM Review.
http://www.dmreview.iproduction.com/issues/20030701/6962-1.html

[12] Gruber T. A translation approach to portable ontology specifications. Knowledge
Acquisition 1993; 5(2): 199-220.

[13] Silva B, Cardoso J. Semantic Data Extraction for B2B Integration. International
Workshop on Distributed Applications for B2B Integration (DABI) 2006. Lisboa,
Portugal, IEEE Computer Society.

[14] Cardoso J. Integrating HAD Organizational Data Assets using Semantic Web
Technologies. 3rd International Conference Interoperability for Enterprise
Software and Applications (I-ESA 2007), Funchal, Portugal. In: Gonçalves R,
Müller J, Mertins K, Zelm M. Enterprise Interoperability II 2007. Springer. p.
333-344.

[15] Bussler C. B2B Integration: Concepts and Architecture, Springer-Verlag; 2003.
[16] Horrocks I, Patel-Schneider P, Boley H, Tabet S, Grosof B, Dean M. SWRL: A

Semantic Web Rule Language Combining OWL and RuleML. 2003.
http://www.daml.org/2003/11/swrl/.

[17] Horrocks I, Patel-Schneider P. A Proposal for an OWL Rules Language (Draft
Version of 16 October 2003). http://www.cs.man.ac.uk/~horrocks/DAML/Rules/.

[18] Cardoso J, Miller J, Su J, Pollock J. Academic and Industrial Research: Do their
Approaches Differ in Adding Semantics to Web Services. In: Cardoso J, Sheth A.
Semantic Web Process: powering next generation of processes with Semantics and
Web services. Heidelberg: Springer-Verlag; 2005.

[19] Ehrig M, Sure Y. FOAM - Framework for Ontology Alignment and Mapping:
Results of the Ontology Alignment Initiative. In: Ashpole B, Ehrig M, Euzenat J,
Stuckenschmidt H. Workshop on Integrating Ontologies. Alberta, Canada: CEUR-
WS. 156:72-6; 2005.

 23

[20] Aumueller D, Do H, Massmann S, Rahm E. Schema and ontology matching with
COMA++. In: International Conference on Management of Data 2005; Baltimore:
ACM Press, p. 906-8

[21] Ferdinand M, Zirpins C, Trastour D. Lifting XML Schema to OWL. In: Koch N,
Fraternali P, Wirsing M. 4th International Conference Web Engineering 2004.
Heidelberg: Springer, p. 354-8.

[22] Garcia R, Perdrix F, Gil R. Ontological Infrastructure for a Semantic Newspaper.
In: First International on Semantic Web Annotations for Multimedia Workshop
(SWAMM'06); 2006.

[23] Bohring H, Auer S. Mapping XML to OWL Ontologies. In: Jantke K, Fähnrich K,
Wittig W. Marktplatz Internet: Von e-Learning bis e-Payment: 13. Leipziger
Informatik-Tage (LIT2005). Leipzig, p. 147-156.

[24] Bray T, Paoli J, Sperberg-McQueen CM, Maler E, Yergeau F. Extensible Markup
Language (XML) 1.0 (Fourth Edition). W3C Recommendation; 2004.
http://www.w3.org/TR/REC-xml/.

[25] Bechhofer S, Van Harmelen F, Hendler J, Horrocks I, McGuinness D, Patel-
Schneider P, et al. OWL Web Ontology Language Reference. W3C
Recommendation; 2004. http://www.w3.org/TR/owl-ref/.

[26] Clark J, DeRose S. XML Path Language (XPath). W3C Recommendation; 1999.
http://www.w3.org/TR/xpath.

[27] Klyne G, Caroll J, McBride B. Resource Description Framework (RDF): Concepts
and Abstract Syntax. W3C Recommendation; 2002. http://www.w3.org/TR/rdf-
concepts/.

[28] Cardoso J, Sheth A. Semantic Web Services, Processes and Applications.
Springer; 2006.

[29] Bray T, Hollander D, Layman A, Tobin R.Namespaces in XML 1.0 (Second
Edition). W3C Recommendation; 2006. http://www.w3.org/TR/REC-xml-
names/#NT-NCName.

[30] Mitem, Information Integration for the Public Sector, 2002,
http://www.mitem.com/customers/documents/MITEM-
InformationIntegrationforthePublicSector.pdf

[31] EBizQ. Semantic Integration: A New Approach to an Old Problem. Software AG;
2005. http://www.sagus.com/media/PDFs/SoftwareAG_eBizQ_062005.pdf.

[32] Ruh W. The Web of Meaning: The Business Value of the Semantic Web. Cisco
Systems; 2004. http://www.w3.org/2004/Talks/w3c10-
WebOfMeaning/Originals/Ruh.ppt.

[33] DuCharme B. Converting XML to RDF. O’Reilly xml.com; 2004.
http://www.xml.com/pub/a/2004/09/01/tr.html.

8 Vitae
Toni Rodrigues, a software designer and developer, joined SQLI (France) in 2006.

Since then he is working as a software consultant in financial messaging and SWIFT
payment systems. He previously was a member of the SEED Laboratory, a group
working with Emergent Information Systems. As a member of this laboratory, he wrote
his Master thesis on semantic data integration and was graduated by the University of

 24

Madeira in Computer Science. Current areas of interest are predominantly concerned
with service oriented architectures, web services as well as semantic web.

Pedro Rosa, a software developer joined Expedita – Arquitectura e Gestão de
Sistemas de Informação in 2006.Working as consultant and developer of web based
applications related to Tourism and Maritime Transportation sector. His interest areas
are mainly service oriented architecture, system integrations and Semantic Web.
Graduated in Computer Science by University of Madeira, he worked there as monitor
and wrote is master thesis on semantic data integration as a member of the SEED
laboratory.

Prof. Dr. Jorge Cardoso joined SAP Research (Germany) in 2007. He is also
Professor at the University of Madeira (Portugal). He previously gave lectures at the
University of Georgia (USA) and at the Instituto Politécnico de Leiria (Portugal). In
1999, he worked at the Boeing Company on enterprise application integration. Dr.
Cardoso was the organizer of several international conferences on Semantic Web and
Information Systems. He has published over 80 refereed papers in the areas of
workflow management systems, semantic Web, and related fields. He has also edited 3
books on semantic Web and Web services. He is on the Editorial Board of the
Enterprise Information Systems Journal, the International Journal on Semantic Web and
Information systems, and the International Journal of Information Technology.

9 Figure Captions
Figure 1. A semantic data integration approach
Figure 2. Java XML to OWL concept
Figure 3. Internal and external vocabularies
Figure 4. JXML2OWL Mapper

10 Table Captions
Table 1. Elements that need to be considered when mapping XML to OWL
Table 2. Mapping notation
Table 3. Performance assessment

