
IBIS – Interoperability in Business Information Systems

 © IBIS – Issue 3 (3), 2006

Using Semantic Web Technologies to Build Adaptable
Enterprise Information Systems

Bruno Caires
Department of Communications and Computing

University of Madeira
Funchal, Portugal

bruno.caires@uma.pt

Jorge Cardoso
Department of Mathematics and Engineering

University of Madeira
Funchal, Portugal
jcardoso@uma.pt

Abstract: In most existing software systems, client applications are tightly coupled to
database systems (client/server), which imply that when changes occur in the
database, those changes also have to be propagated to all connected clients. Another
issue is that since several database engines may exist in the organization, in most cases
relational databases, the integration may be a very difficult process. To overcome the
above-mentioned problems, we propose a solution based on a middleware located
between clients and database servers that provide both an abstraction layer and a
unified view over a set of databases. The middleware is based in semantic Web
technologies and uses a semantic global model specified in OWL. Interoperability with
other systems/organizations is achieved providing the middleware services as Web
Services. Therefore, our approach allows clients to be loosely coupled from the
database servers, minimizing maintenance when changes occur.

Introduction

With the constant grow of enterprises and the need to share information across
departments and business areas becomes more critical, companies are turning to
integration to provide a method for interconnecting heterogeneous, distributed and
autonomous systems. Whether the sales application needs to interface with the
inventory application, the procurement application connect to an auction site, the
PDA calendar synchronize with the corporate calendar server, it seems that any
application can be made better by integrating it with other applications [HW04].
To confirm the importance that integration has assumed, studies show that
European corporations spend over 10 billion euros in information integration
[ABBFLL05]. In addition, integration costs assume an average of 24% of yearly IT
budget [Yag02]. Therefore, integration is one of the most important challenges
that organizations face today.
Semantic and semantic Web technologies offer a new way to integrate data and
applications [O06]. These new technologies have find one of their first commercial
users in organizations facing data integration needs [O06] and always seeking for
better data integration solutions. According to TopQuadrant, a consulting firm that

mailto:bruno.caires@uma.pt�
mailto:jcardoso@uma.pt�

http://www.ibis-journal.net ISSN:1862-6378

IBIS – Issue 3 (3), 2006

 © IBIS – Issue 1 (1), 2006

specializes in semantic Web technologies, the market for semantic technologies
will grow at an annual rate of between 60% and 70% until 2010.
Based on semantic technologies [Pal01], the semantic Web is an extension of the
current Web in which information is given well-defined meaning, better enabling
computers and people to work in cooperation [BM02]. Toward this objective, and in
order to achieve the "well defined meaning of information", a fundamental concept
in the centre of the semantic Web is ontology. An ontology is a formal, explicit
specification of a shared conceptualization [Grub93] allowing the definition of
concepts, attributes and relations between concepts. Ontologies allow data to be
defined and linked in a way that enables its use for more effective discovery,
integration, re-use across various applications and machine processing [BM02].
Our approach for integrating several Relational Database Management Systems
(RDBMS) is achieved by using an abstraction layer, providing a virtual view over a
set of data sources in order to allow the data accessibility in real time. This virtual
view represents the knowledge that the users of the system want to store and
access, rather than the data that implements that knowledge. The global model,
built using semantic Web technologies is not only human readable but also
computer readable. Applications access data sources through a global virtual view,
abstracting from aspects like data source type, connection type and data source
query language, focussing on the ‘what data’ and not on ‘how to get the data’.
Ontologies expressed in Web Ontology Language (OWL) constitute a good candidate
to represent the virtual view of our system. In fact, the shared conceptualization
(ontology) can be an abstract model for all the enterprise domain concepts. These
domain concepts are explicitly defined and related independently of the underlying
applications. This model is created independently from the data sources, allowing
reuse and distribution of the created ontology among stakeholders. It should
describe the most accurate domain model of the organization, not being limited or
restricted by any existing application or data source schema.
A middleware system, that implements the global view, should be built improving
reuse, evolution and organization of the developed system [Rit05]. Thus, one
possible approach to break apart a complicated software system is layering
[FRFHM02]. The architecture of our system is based in three layers: data source,
domain and interface, described in the following sections. The interoperability of
our system is achieved through the use of a Service Oriented Architecture (SOA)
[He03] that relies on Web Services [WS] to expose and allow clients (both
applications or external organizations) to interoperate with the virtual view.

Data Source Heterogeneity

When several database systems exist in an organization, a common problem
associated to the creation of a global view is heterogeneity. It occurs when there is
a disagreement about the meaning, interpretation or intended use of the same or
related data. Four types of information heterogeneity may arise: system
heterogeneity, syntactic heterogeneity, structural or schematic heterogeneity, and
semantic heterogeneity [CA06]:

• System heterogeneity: Applications and data may reside in different
hardware platforms and operation systems.

IBIS – Interoperability in Business Information Systems

 © IBIS – Issue 3 (3), 2006

• Syntactic heterogeneity: Information resources may use different
representation and encodings of data. Syntactic interoperability can be
achieved when compatible forms of encoding and access protocols are used
to allow information systems to communicate.

• Structural heterogeneity: Different information systems store their data in
different data models, data structures and schemas.

• Semantic heterogeneity: The meaning of the data can be expressed in
different ways leading to heterogeneity. Semantic heterogeneity considers
the content of an information item and its intended meaning.

The use of Web Services can solve the syntactic and system heterogeneity. XML and
XSD (schemas) [W3CXC] can solve the structural heterogeneity because a XML file
that respects a specific XSD Schema has a well-defined structure. Using OWL, as a
shared ontology, semantic heterogeneity is resolved [CA06]. These technologies are
the foundation of the system we have developed.

Figure 1: Integration using a shared Ontology

As illustrated in Figure 1, the middleware (middle-tier located between the client-
tier and the database-tier) contains the global virtual view over a set of databases.
The global virtual view is specified using ontology, described in OWL. There are
services (S1, S2, Sn) exposing and allowing access to databases through Web
Services. Service requests and responses are XML messages. Therefore, syntactic,
system and structural heterogeneity are achieved.

Motivating Scenario

Let us suppose an organization that has several software systems, each one
connected to a particular RDBMS database. Examples include the human resource
management system, the accounting system, among others. Typically, developed
applications followed two tier (client/server) architecture. Client applications
were commonly “Commercial of-the-shelf” (COTS), implemented in a language
such as java or php, while database servers were engines such as mysql. With this
approach, clients were directly connected to servers (databases) and business rules

http://www.ibis-journal.net ISSN:1862-6378

IBIS – Issue 3 (3), 2006

 © IBIS – Issue 1 (1), 2006

were stored in the database server or in each application. In this specific scenario,
business rules represent the rules that must be followed in order to insert or
retrieve data from the database. It may also imply calculations and data
transformation. If the business rules are stored in the application, it makes difficult
its reutilization. It also implies a new release of the application for each change. If
the business rules are stored in the server (database) there is a dependence of the
database server technology, which makes difficult its change. Also, in most
database systems, the programming language is data-centric, therefore not
appropriated for business rules manipulation. Nevertheless, having the
development time as an advantage, a disadvantage from the typical client/server
architecture is that if changes occur in the database schema, all the clients need to
be changed. Changes in the database can be either structural (change completely
the structure of the database) or just a change in the name of a table or attribute.
Applications frequently suffer changes along their lifetime. These changes are
motivated by immediate needs, maintenance tasks and changes in the evolving
environment. Consequences of this situation are backward and expensive
modernization and adjustment of the built systems.
In our approach, we developed a middle-tier that besides acting as an abstraction
layer [HL], is also suitable to the integration of data from multiple systems into a
unified, consistent and accurate representation geared toward the viewing and
manipulation of data. Through the middle-tier, data is aggregated, restructured,
relabelled and presented to the user [T06], therefore centralizing the business
rules.
With the use of semantic Web technologies to develop the middleware and by
creating a model of data entities (ontology), mapping those entities to their
respective sources and exposing its services as Web Services we intend to:

• Isolate changes that may occur in the database. When the database
changes, it is not necessary to change all the clients.

• Increase productivity of developers presenting them the domain model and
with not complex database schemas.

• Allow the ‘interface developers’ (like php, asp, etc) to make queries
dynamically and in the domain language described by the ontology,
abstracting from technical aspects like in which database is the data, type
of server and SQL query language.

• Minimize the time developers spend learning our database system and
creating access points to the information (views and stored procedures).

• Increase productivity and reduce maintenance to the developed solutions.
• Achieve interoperability with other applications/organizations using Web

Services.

The Prototype

In this section, we start by defining the methodology used to build the abstraction
layer (middleware) by providing a virtual view over a set of RDBMS data sources. It
follows with the architecture of the developed prototype, describing each of its
layers. The mapping process to the data sources and the XML query language that
allows users (even non-technical) and applications (internal or external to the
organization) to make requests to the created virtual view are presented. As an

IBIS – Interoperability in Business Information Systems

 © IBIS – Issue 3 (3), 2006

example, we will use the “personal data” ontology to show a running example. This
ontology describes personal data such as name, birth date, address, contact and
identification associated to a person.

Methodology

Our approach is based in the Semantic Information Management (SIM) methodology
[BJ04]. The aim of this approach is to provide enterprises with insight into the
information residing in different sources, in different formats, with different
schemas across the enterprise. The SIM aims to provide a solution to this problem
by creating a central ontology and mapping the individual source schemas to this
central ontology, thereby creating a global view of all data residing in the
organization [ABBFLL05, BJ04 and Bru04].

Figure 2: The Semantic Information Management Methodology

As illustrated in Figure 2, the SIM methodology consists of six steps:

1. Gather requirements: the requirements for the information architecture are
collected and the scope of the project established.

2. Collect metadata: all data assets relevant to the project are catalogued and
an interface to access the data created.

3. Construct ontology: Create the ontology.
4. Rationalize: Establish the mappings between the data schemas and the

ontology.
5. Publish/Deploy: The ontology, along with the mappings, is published to

relevant stakeholders.
6. Utilize: Processes need to be created to ensure maintenance of

architecture.

Our SIM based methodology differs from the original definition because the
ontology created is not generated by ‘reverse engineering’ the database schemas
but instead generated from scratch (LAV) [LAN02], and then map it to the database
object (table or view) that stores the data described by the concept. This way, the
created ontology, describes the ‘as it should be’ and not the ‘as is implemented’.
Because the ontology is generated from scratch, already created ontologies can be
reused, and the created ontology can be distributed. Another aspect that
motivated the LAV approach is that the ontology is going to describe the structure
of the XML response of a service request. This is going to be illustrated in more
detail in the “Querying the middleware” section.
The drawback of the adopted solution is that mappings from the ontology to the
database tables that store the data are created manually, and if changes occur in

http://www.ibis-journal.net ISSN:1862-6378

IBIS – Issue 3 (3), 2006

 © IBIS – Issue 1 (1), 2006

the database schema, the mappings have to be redone manually. The advantage
that motivated its use is that in most cases, if the database changes (databases
externally or internally developed) the ontology remains the same, which imply
that clients do not have to be changed.

Architecture

The architecture of our middle-tier is three layered (data source, domain and
presentation layer), as depicted in Figure 3. In the next sections, we describe each
of the three layers.

Data Source Layer

This layer is responsible for the communication with databases (RDBMS). Our
solution uses Hibernate [HIB]. Hibernate design goal is to relieve the developer
from 95% of common data persistence related programming tasks by eliminating
the need for manual, hand-crafted data processing using SQL and JDBC [HIB]. It is
an open-source product developed in java and increases the developer productivity
enabling developers to focus more on the business problem. It is interoperable with
any JDBC compliant database and supports more than 20 popular dialects of SQL
including Oracle, DB2, Sybase, MS SQL Server, PostgreSQL, MySQL, HypersonicSQL,
Mckoi SQL, SAP DB, Interbase, Point base, Progress, Front Base, Ingres, Informix
and Firebird [J06].
As outlined in Figure 3, the data source layer contains a set of classes that
represent an interface (access point), allowing access to the objects of database
servers. This layer is responsible for executing SQL statement in order to get data
from the database.

Domain Layer

This layer contains the domain model described in OWL. Domain concepts,
relations between them and the rules associated are all presented in the OWL
model. The ontology is queried using SPARQL [PS06], which is a W3C ontology query
language. Our domain layer also contains the mapping to the data sources, stored
in the instances of the ontology, as illustrated in Figure 3. This is going to be
described in more detail in the ‘Querying the Middleware’ section. This layer
receives requests in SPARQL and executes the queries in order to extract the
mapping data from the instances. Then, using a developed “query generator
module” the SQL statement that allows getting the data from the data sources
layer is generated using the data stored in the ontology and in the ontology
instances. Then, Data is transformed to a XML format. This is going to be illustrated
in more detail in the next sections.

IBIS – Interoperability in Business Information Systems

 © IBIS – Issue 3 (3), 2006

Figure 3: Middleware architecture

Presentation Layer

This layer receives the request message in XML from clients and provides responses
in XML. Web Services are used in order to provide the services, which mean that
responses are encapsulated in SOAP [W3CSP]. This layer also has the responsibility
to transform data that is going to be returned to clients (according to a specific
XML format) using XSLT style sheets [W3CXS]. As shown in Figure 3, this layer sends
a SPARQL statement to the domain layer. The SPARQL expression is generated by

http://www.ibis-journal.net ISSN:1862-6378

IBIS – Issue 3 (3), 2006

 © IBIS – Issue 1 (1), 2006

transforming the client request that is described in detail in the Query Language
section.

Ontology to Represent Domain and Instances to Store

Mappings

In this section, we discuss the ontology that resides in the domain layer. First,
important domain classes and respective attributes were described. Examples are
illustrated in Figure 4. All attributes should be as string type because the instances
of the created classes will contain the mappings to the data sources. This way,
each ontology instance will contain the database table name that stores the data,
as is going to be described in more detail in the next section. Ontology relations
describe the relations that exist between domain concepts. For example, the
domain class Person is connected to Address through the property hasAddress, as
depicted in Figure 5. The ontology also contains rules. For example, we can use the
ontology to describe the relation between the address and the Person classes using
a cardinality restriction: one person must have at least one address.

Figure 4: Partial view of the classes of Personal Data ontology

(using TGViz)

Figure 5: Person and Address

domain concepts (using Ontoviz)

Mappings to Data Source Layer

After the creation of the ontology (or reuse of an already defined ontology),
instances containing the mappings to the data sources should be created. The
mappings will store information in order to allow the construction of an SQL
statement that will be executed in the data source layer in order to get the desired
information.

IBIS – Interoperability in Business Information Systems

 © IBIS – Issue 3 (3), 2006

In order to generate the correct SQL statement, two types of mappings should be
created: domain classes and attributes to database tables and fields, and domain
relations to database relations.

Figure 6: Ontology Class (left side), Database table (centre) and Ontology Instance (right)

Several cases may exist in mapping domain classes to database tables:

• One class of the ontology may contain data from only one database table.
• One class of the ontology may contain data from two or more database

tables.
• One table from the database provides data to two or more domain classes.

In all of these cases, the name of the instance should be equal to the name of the
object in the data source layer that allows access to the table in the database. The
fields that belong to the table are mapped starting by field=???; (??? Represents
variable text). The fields that do not belong to the instance, should be mapped
using the following nomenclature: table=???;field=???;path={???}:

• table represents the name of the table that contains the specified field.
• field represents the name of the field that is stored in the table (previously

presented).
• path represents the path to reach the table. The content of Path is

field=???;table=???;field=???...field=???;table=???;field=???;. It should always
start and end with field. At least one field attribute is required.

As an example, using a domain class to database table mapping (illustrated in
Figure 6), the name of the instance of the class Person should be equal to the
respective object in the data source layer (TabPerson in this case). Attributes of
the created instances should contain the name of the field in the specified table
name, as depicted in Figure 6 by birthDate.
While in the domain model (described In OWL) relations connect domain concepts,
in the database relations connect tables. In order to map ontology relations to
database relations, our solution is to annotate the ontology relations. The content
of the annotation property, named relationAttribute, should follow the format
field=???table=???field=???...field=???table=????field=???. It should start and end with
‘field=’. The number of ‘tables=’ depends of the number of intermediary tables
that exist.
Exemplifying, in Figure 7, the domain classes Person and Address are shown. These
two ontology classes will be mapped to the tables TablPerson and TablAddress
(depicted in Figure 8), respectively. As illustrated in Figure 8, an intermediary
table named TablPersonAddress exists. Therefore, we need to store information

http://www.ibis-journal.net ISSN:1862-6378

IBIS – Issue 3 (3), 2006

 © IBIS – Issue 1 (1), 2006

about this table, because other way it will not be possible to generate the SQL to
obtain the data. In this case, the property hasAddress should be annotated with the
following content in the relationField:
field=IdPerson;table=TablPersonAddress;field=IdAddress;. The IdPerson is the field
that connects the TablPerson to TablPersonAddress. The IdAddress connects the
table TablPersonAddress to TablAddress.

Figure 7: Domain class Contact and Person and

Address

Figure 8: Table Person,

Address and the intermediary
relation table

Querying the Middleware

As already mentioned and depicted in Figure 3, our middleware is accessible
through Web Services and the message content of the request and response is
structured in XML and encapsulated in a SOAP envelope. Users interact with our
system making requests (which contains ‘what data’ is needed), using a XML
structure named CQL (Client Query Language) defined by the XSD schema
illustrated in Figure 9. CQL allow users to specify:

• Fields (ontology attributes) to be returned, using the outputFields element.
• The order of the output fields (ascending, descending), using the

orderFields.
• Filters (for example, return only names started by letter A), using the filters

element.
• Choose the path that connects domain classes, using the outputProperties

element.

These XML elements are described in more detail in the Figure 10 XSD Schema.

IBIS – Interoperability in Business Information Systems

 © IBIS – Issue 3 (3), 2006

Figure 9: Schema of the XML request (Dashed rectangles represent optional XML elements. All the

others are required.)

For example to obtain the birth date and name of a person, the user should make
the following request:

http://www.ibis-journal.net ISSN:1862-6378

IBIS – Issue 3 (3), 2006

 © IBIS – Issue 1 (1), 2006

<get_request>
 <outputFields>
 <outputField name="birthDate"/>
 <outputField name="usualName"/>
 </outputFields>
 <orderFields>
 <orderField type="ASC" name="usualName"/>
 </orderFields>
</get_request>

Figure 10: Ontology Class Person

The above-illustrated request is processed by the middleware, therefore generating
automatically and on the fly the needed SQL statement to get the data. The
needed data in order to build the SQL statement is obtained by executing a SPARQL
query (generated by transforming the XML request from the user) on the ontology.
The return of the SPARQL query will contain the table name, attribute and
relations between tables.
The result of this request (the response) will be the birthDate and usualName of all
‘persons’ stored in the database, formatted in XML, sorted by usualName. As we
will illustrate in the following section, the response of this request is a XML
structure that hierarchical describes the ontology.
In the next section, we will illustrate a running example, which shows a small
ontology, the database schema that stores the data described by the ontology, the
instances that map the ontology concepts to the tables in the database, the
request and the response.

Example

Let us suppose that we are interested in getting the name of all our students and
their address. The first step is to locate the concepts in the ontology. Next, we
need to formulate the request. By invoking the service, we will get the data,
structured in XML accordingly to the ontology.

Ontology

In Figure 11, we illustrate the ontology classes Person and Address belonging to the
personal data ontology. Some of the fields associated to each class are also
illustrated.

IBIS – Interoperability in Business Information Systems

 © IBIS – Issue 3 (3), 2006

Figure 11: Extract from the complete Person Data ontology

Database Schema

Next, we illustrate an extract from the personal data database schema. In the
example, we will focus in the TablPerson, TablPersonAddress e TablAddress.

Figure 12: Extract from the Personal Data database

Mappings – Instances

In this section, we illustrate the mapping instances of the domain classes Address
and Person, highlighting the TablPerson and its attribute birthDate and the
TablAddress and its attribute address. The hasAddress object property is annotated
with the following content in the relationField:
field=IdPerson;table=BDMest.dbo.TablPersonAddress;field=IdAddress;. This
annotation relates the two tables through the table TablPersonAddress. The
attributes that relate TablPerson with TablPersonAddress (which is IdPerson) and
TabkPersonAddress with TablAddress (which is IdAddress) are also stored in the
annotation.

http://www.ibis-journal.net ISSN:1862-6378

IBIS – Issue 3 (3), 2006

 © IBIS – Issue 1 (1), 2006

Figure 13: Instances of the classes of the ontology

Request

We are interested in getting the name and the address information of a person.
The correct query in order to get the right information is:

<get_request version="1.0">
 <outputFields>
 <outputField name="address" class="Address"/>
 <outputField name="name" class="Person"/>
 </outputFields>
 <outputProperties>
 <outputProperty name="hasAddress"/>
 </outputProperties>
</get_request>

The hasAddress object property connects the two required classes Address and
Person.
The middleware generates automatically and on the fly the SQL statement by
extracting the ‘mapping information’ stored in the instances of the ontology.

SELECT

TablPerson.PersonName AS name,
TablAddress.Address AS address

FROM TablPerson
LEFT JOIN TablPersonAddress
 ON TablPerson.IdPerson = TablPersonAddress.IdPerson
LEFT JOIN TablAddress
 ON TablPersonAddress.IdAddress = TablAddress.IdAddress

Response

The returned data, formatted in XML accordingly to the domain layer, would be:

IBIS – Interoperability in Business Information Systems

 © IBIS – Issue 3 (3), 2006

<Root>
 <Person name="John Doe">
 <hasAddress>
 <Address address="Statue Avenue"/>
 </hasAddress>
 </Person>
</Root>

The structure of the XML is accordingly to the ontology structure. The main reason
that motivated this approach was that, in the current application scenario, it is
easier to clients (php, java …) to read and manipulate raw XML than an OWL
structure.

Related Work

Several tools and approaches to integrate heterogeneous data sources exist today.
We will briefly describe the Corporate Ontology Grid (COG), the Mediator
envirOnment for Multiple Information Systems (MOMIS), OBSERVER, the Knowledge
Reuse And Fusion/Transformation (KRAFT) and InfoSleuth.

Some of the approches are based on agents. Examples are InfoSleuth and KRAFT.
InfoSleuth is a multi-agent system for semantic interoperability in heterogeneous
data sources [NFKPTU99]. Agents are used to query and instance transformations
between data schemas. An agent is aware of its own ontology and the mapping
between that ontology and the data schema, it is aware of the shared ontologies
and it can map its ontology to those of other agents. InfoSleuth uses several shared
ontologies, made available through the ontology agents.
KRAFT architecture is designed to support knowledge fusion from distributed
heterogeneous databases and knowledge bases. The basic philosophy of KRAFT is to
define a “communication space” within certain communication protocols and
languages must be respected [GPFGB97].
In both systems, a language implementing the protocol of communication agents
and a language expressing the information to be extracted is needed.

OBSERVER is a component-based approach to ontology mapping. It provides
brokering capabilities across domain ontologies to enhance distributed ontology
querying, thus avoiding the need to have a global schema or collection of concepts.
It uses multiple pre-existing ontologies to access heterogeneous distributed and
independently developed data repositories. Each component node has an ontology
server that provides definitions for the terms in the ontology and retrieves data
underlying the ontology in the component node [MKSI96]. Query language in the
OBERVER is specific. In each node, component mapping must exist to all other
relevant nodes (one-to-one mapping).

The COG aims to create a semantic information management in which several
heterogeneous data sources are integrated into a global virtual view [Bru04]. COG
allows the integration of imported RDBMS schema databases, XML Schemas, COBOL

http://www.ibis-journal.net ISSN:1862-6378

IBIS – Issue 3 (3), 2006

 © IBIS – Issue 1 (1), 2006

copybook and custom wrappers. The workbench that allows the integration is
Unicorn Workbench. The tool accommodates both the GAV and LAV approach
[Bru04, BJ04]. Queries cannot be executed in the workbench and it is not possible
to query multiple data sources. Views over the global virtual view have to be
previously created in order to permit the access to the data. Queries are very
similar to SQL. The access to the global virtual view is done via specific API.
Compared to COG, our approach only allows integration of RDBMS data sources.
Queries are generated dynamically and it is possible to execute queries over
different databases. Requests are formatted in XML. Our approach allows the
provision of services through Web Servives.

The goal of MOMIS is to give the user a global virtual view of the information
coming from heterogeneous data sources [BB04, BBCG04]. MOMIS creates a global
mediation schema for the structured and semi structured heterogeneous data
sources, in order to provide the user with a uniform query language. It is based in
GAV approach, which means that the global schema is built based on the local
sources. OWL and SPARQL are not used in MOMIS. Queries are expressed using a
SQL-like language.
None of the solutions presented use OWL as a way of describing the domain model
and storing the mappings to the databases. Much of the presented solutions are
somehow limited in generating the statement to get the data. In others, a specific
query language was created using proprietary language.

Conclusion

In this paper, we have presented our solution for creating a middleware to provide
integration and abstraction between clients and databases. Our system creates a
global virtual view over a set of data sources, using ontologies specified in OWL.
We used a layered system, allowing reuse, evolution and incremental development.
Therefore, three layers compose the middleware: data source, domain and
interface. The interface layer provides services and allows the interoperability of
our solution with other systems/organizations, structuring requests and responses
in XML, exposed as Web Services. A customize request language, expressed in XML,
allows users to interact with the system, abstracting from technical details.
The domain layer uses OWL ontologies, describing the domain and allowing the
integration of several data sources. Mappings to the data sources are stored in the
instances of the ontology. With this solution, we can distribute our ontology among
stakeholders because it does not contain neither confidential nor technical data.
The data source layer is implemented using Hibernate, which allows connection to
more that 20 database vendors using JDBC.
We are convicted that our solution will guarantee and improve the integration of
heterogeneous data sources by the use of a semantic abstraction layer, described
in OWL. It also decouples client applications from database servers, minimizing
maintenance.

IBIS – Interoperability in Business Information Systems

 © IBIS – Issue 3 (3), 2006

References

[ABBFLL05] Alexiev, V.; Breu, M.; Bruijn, Jd.; Fensel, D.; Lara, R.; Lausen, H.: Information
Integration with Ontologies, John Wiley &Sons, 2005

[AH04] Antoniou, G.;, Harmelen, F.: A Semantic Web Primer, MIT Press, 2004
[Bru04] Bruijn, Jd.: Semantic Integration of Disparate Data Sources in the COG Project,

www.debruijn.net/publications/COG-ICEIS2004.pdf , 2004
[BB04] Beneventano, D.; Bergamaschi, S.: The MOMIS Methodology for Integrating

Heterogeneous Data Sources, www.dbgroup.unimo.it/prototipo/paper/ifip2004.pdf ,
2004

[BBCG04] Bergamaschi. S.; Beneventano, D.; Corni, A.; Gelati, G. and others: The MOMIS
System, http://www.dbgroup.unimo.it/Momis/ ,2004

[BJ04] Bruijn, Jd.: Best Practices in Semantic Information Integration, 2004
[BM02] Berners-Lee, T.; Miller, E.: The Semantic Web Lifts Off, Special Issue of ERCIM

News, 2002
[CA06] Cardoso, J.; Sheth, A.: Semantic Web Services, Processes and Applications, Springer,

2006
[Dar97] Darleen, S.: Client/Server Software Architectures – An Overview,

http://www.sei.cmu.edu/str/descriptions/clientserver.html, 1997
[DS00] Darleen, S.; Santiago, C: Three tier software architectures,

http://www.sei.cmu.edu/str/descriptions/threetier.html, 2000
[FC] http://www.webopedia.com/TERM/F/fat_client.html
[FRFHM02] Fowler, M.; Rice, D.; Foemmel, M.; Hieatt, E.; Mee. R.; Stafford, R.: Patterns of

Enterprise Application Architecture, Addison-Wesley, 2002
[FWK02] Fremantle, P.; Weerawarana, S.; Khalaf, R.: Enterprise Services, Communications of

the ACM, 2002
[GPFGB97] Grayy, P.; Preecey, A.; Fiddianz, N.; Grayz, W.; Bench-Capon T. and others: KRAFT:

Knowledge Fusion from Distributed Databases and Knowledge Bases,
www.csd.abdn.ac.uk/~apreece/research/download/dexa1997.pdf , 1997

[Grub93] Gruber, T.: A translation approach to portable ontologies. Knowledge Acquisition,
Academic Press, 1993

[He03] He, H.: What is Service-Oriented Architecture,
http://www.xml.com/pub/a/ws/2003/09/30/soa.html, 2003

[HIB] http://www.hibernate.org/
[HL] http://en.wikipedia.org/wiki/Abstraction_layer
[HW04] Hohpe, G.; Woolf, B.: Enterprise Integration Patterns, Addison-Wesley, 2004
[J06] JBoss: Hibernate Reference Documentation, http://labs.jboss.com/portal/ , 2006
[Lan02] Lanzerini, M.: Data Integration: A Theoretical Perspective,

http://www.cs.ubc.ca/~rap/teaching/534a/readings/Lenzerini-pods02.pdf , 2002
[MFK01] Manolescu, I.; Florescu, D.; Kossmann, D.: Answering XML Queries over

Heterogeneous Data Sources, www.vldb.org/conf/2001/P241.pdf , 2001
[MKSI96] Mena, E.; Kashyap, V.; Sheth, A.; Illarramendi, A.: OBSERVER: An Approach for

Query Processing in Global Information Systems based on Interoperation across Pre-
existing Ontologies, http://dit.unitn.it/~p2p/RelatedWork/Matching/MKSI96.pdf ,
1996

[MW] http://en.wikipedia.org/wiki/Middleware
[NFKPTU99] Nodine, M.; Fowler, J.; Ksiezyk, T.; Perry, B.; Taylor. M.; Unruh, A.: Active

Information Gathering in InfoSleuth,
www.argreenhouse.com/InfoSleuth/publications/codas99.pdf , 1999

[Ogb02] Ogbuji, U.: The Past, Present and Future of Web Services Part 1 and 2, Web
Services.org, 2002

[O06] Oracle White Paper, Semantic Data Integration for the Enterprises, Oracle, 2006
[Pal01] Palmer, S.: The Semantic Web: An Introduction,

http://infomesh.net/2001/swintro/, 2001
[PA03] Polikoff, I.; Allemang, D.: Semantic Integration: Strategies and Tools, TopQuadrant,

http://www.topquadrant.com/documents/TQ0303_Semantic%20Integration.PDF,
2003

http://www.ibis-journal.net ISSN:1862-6378

IBIS – Issue 3 (3), 2006

 © IBIS – Issue 1 (1), 2006

[PS06] Prud'hommeaux, E.; Seaborne, A.: SPARQL query language for RDF,
http://www.w3.org/TR/rdf-sparql-query/, 2006

[PTE] http://protege.stanford.edu/
[Rit05] Rito, A.: A Software Architecture for WEB Applications: A Student Management

System Example, Instituto Superior Técnico, 2005
[Sta02] Stal, M.: Web Services: Beyond Component-Based Computing, Communications of

the ACM, 2002
[Tay06] Taylor, J.: Enterprise Information Integration: A new Definition, Integration

Consortium, http://www.dmreview.com/article_sub.cfm?articleId=1009669, 2006
[TC] http://www.webopedia.com/TERM/T/thin_client.html
[W3CSC] http://www.w3.org/XML/Schema
[W3CSP] http://www.w3.org/TR/soap/
[W3CXS] http://www.w3.org/TR/xslt
[WS] http://www.w3.org/2002/ws/
[Yag02] Yager, T.: The Future of Application Integration,

http://www.computerworld.com/action/article.do?command=viewArticleTOC&spec
ialReportId=3&articleId=71198, 2002

Biography

Bruno Caires has received a Post Graduate Diploma in Software Engineering from
University of Madeira, Portugal. He is currently pursuing MS in Software Engineering
from the same University. Actually, and for the last three years, he is responsible
for the development of SOA middleware. His interests include System Integration,
SOA, Web Services, Middleware and Semantic Web Technologies.

Jorge Cardoso received his PhD in Computer Science from the University of
Georgia in 2002. Actually, he is Professor at University of Madeira. He previously
gave lectures at University of Georgia (USA) and Instituto Politécnico de Leiria
(Portugal). While at the University of Georgia he was part of the LSDIS Lab, where
he did extensive research on workflow management systems. Current interests
include Workflow Quality of Service, Semantic Workflow Composition, Web
services, Web processes, e-Commerce, and Groupware/CSCW.

	Using Semantic Web Technologies to Build Adaptable Enterprise Information Systems
	Introduction
	Data Source Heterogeneity
	Motivating Scenario
	The Prototype
	Methodology
	Architecture
	Data Source Layer
	Domain Layer
	Presentation Layer

	Ontology to Represent Domain and Instances to Store Mappings
	Mappings to Data Source Layer

	Querying the Middleware
	Example
	Ontology
	Database Schema
	Mappings – Instances
	Request
	Response

	Related Work
	Conclusion
	References
	Biography

