
 1

Poseidon: A framework to assist Web process
design based on business cases

Jorge Cardoso

jcardoso@uma.pt
Department of Mathematics and Engineering

University of Madeira
9000-390 - Funchal

Abstract.

Systems and infrastructures are currently being developed to support Web
services and Web processes. One prominent solution to manage and
coordinate Web services is the use of workflow technology. For more than
two decades now, workflow management systems architectures, language
specifications, and workflow analysis techniques have been extensively
studied. While these areas of research have made the development of
sophisticated workflow systems possible, one important research area that has
been overlooked is the lifecycle of process application development. As a
result, current process management systems support the analysis, enactment,
and ad-hoc design of workflows, but they lack the tools and methods to assist
process design. The purpose of our study is to present a framework to assist
and guide process analysts and designers in their task. The Poseidon
framework includes a participative and an analytical design method. The
participative phase uses a clean sheet approach and starts by constructing a
business case table which captures all the business cases represented by a
process. Afterward, an analytical design phase is followed where scheduling
functions are derived from the business case table and are used to build the
structure of a process.

1 Introduction

With the maturity of infrastructures that support e-commerce, it will be possible for
organizations to incorporate Web services as part of their business processes. While in
some cases Web services may operate in an isolated form, it is natural to expect that
Web services will be integrated as part of workflows (Fensel and Bussler 2002).

Workflow systems are a valuable asset for managing e-commerce applications that
span multiple organizations (Sheth, Aalst et al. 1999), since they are capable of
integrating business objects for setting up e-services in an amazingly short time and
with impressively little cost (Shegalov, Gillmann et al. 2001).

A wide spectrum of workflow system architectures has been developed to support
various types of business processes. With small changes, these systems can also
manage Web processes. Cardoso, Bostrom et al. (2004) report that more than 200
workflow products are available in the market. Most of the systems provide a set of
tools which include a graphical application to design workflows and an engine or
enactment system to manage the execution of workflow instances.

Cardoso, J., "Poseidon: A framework to assist Web process design based on business cases", International Journal of Cooperative
Information Systems (IJCIS), World Scientific Publishing, Vol. 15, No. 1, pp. 23-55, March 2006.

 2

Research has targeted three main areas: workflow architectures, specification
languages, and process analysis. The workflow architectures developed include fully
distributed (Kochut, Sheth et al. 1999), database oriented (Ceri, Grefen et al. 1997),
web-based (Miller, Palaniswami et al. 1998), message-based (Alonso, Mohan et al.
1994), and agent-based (Jennings, Faratin et al. 1996) architectures. Workflow
research has also contributed to the creation of various specification languages to
model processes. The most well-known included PIF, PSL, BPML, WPDL, WSFL,
BPEL4WS, and DAML-S. Finally, another area of interest has been the analysis of
processes. Since design errors can result in runtime errors which need to be repaired
at high cost, it is important for organizations to check the properties (e.g. correctness
and quality of service) of process definitions before they become operational.
Significant work on Petri-nets and Petri-net-based analysis techniques have been used
to establish the correctness of processes (Aalst 1998). Simulation has also been one of
the selected approaches (Chandrasekaran, Silver et al. 2002) for process analysis.
Recently an increased interest has led to research on the analysis of non-functional
properties of processes (Eder, Panagos et al. 1999; Sadiq, Marjanovic et al. 2000; Son,
Kim et al. 2001; Cardoso, Sheth et al. 2002).

As can be seen from the previous paragraph, workflow architectures, specification
languages, and process analysis have been the major focus of the industry and
research. These areas of research are of recognized importance for the construction of
sophisticated and robust workflow systems. Nevertheless, one important area has been
overlooked, the research of the lifecycle of process application development.

Studies on the lifecycle of process development have been reduced and are almost
inexistent. In 1996, Sheth, Georgakopoulos et al. (1996) established that workflow
and process modeling was one of the outstanding research issues which should be
investigated. Several years later, Casati, Fugini et al. (2002) recognized that despite
the diffusion of workflow systems, methodologies covering the phases of workflow
application development are still missing.

The lifecycle of workflow applications development is comparable to the lifecycle
of software development (Sommerville 2000). It starts with the identification of
requirements and goes on through the design of workflows. Later phases include the
implementation, testing, and documentation of the developed applications. The use of
adequate methodologies to assist the lifecycle of processes development is a key
determinant to the success of any workflow project and requires the availability of
specific tools – different from the ones used in software development – to model each
phase of the cycle.

In this paper, we argue that better methodological support for stepwise creation of
Web processes and workflows that can ensure the fulfillment of business processes’
strategic goals is necessary. The design of processes can be a challenging task,
especially when they are complex. The design methodology needs to guarantee that
the created process definitions are correct and meets the real needs of its users. There
is a call for frameworks and tools which can assist the process analyst and designer to
manage the inherent complexity in Web process applications.

Casati et al. (2002) have undertaken one of the most comprehensive studies on
workflow development. They present a methodology for developing workflow
applications from analysis to implementation. The methodology uses UML, UML
extensions for business process modeling, and introduces new extensions to model
particular features of workflows, such as exception handling and transaction
management. Their work aims to supply an integrated and uniform method to cover

 3

the whole workflow development lifecycle. Casati et al. (2002) also reports that some
workflow systems vendors have started to provide methodological support to the
design of workflows, such as AdminFlow provided by HP.

Reijers et al. (Reijers 2003; Reijers, Limam et al. 2003) present a method to design
or redesign a process from a product-based approach. An example given of a product
that can derive a process production is the Bill of Materials (BOM). The method
presented can be used to design a process based on an existing process, from a clean-
sheet approach, or using a reference model. Once one of these three approaches has
been selected, an analytical technique is followed using formal theory to derive a
process design.

Sadiq and Orlowska (1999) propose a framework for workflow modeling based on
layers. The idea is to partition workflows into several graph layers rather than
modeling all the workflow constraints on a single graph. The first phase of the
modeling framework – the structural modeling – captures the flow of execution.
According to Sadiq and Orlowska this is the primary and, perhaps, the most important
aspect of a workflow model. Unfortunately, in their work no methodology is proposed
to drive and guide the structural modeling phase. Only an overall discussion on the
basic elements of workflow graphs (i.e., tasks, conditions, sequences, choice, nesting,
iterations, splits and joins) is given.

Cardoso and Teixeira (1998) describe how a graphical process modeling language
(STRIM (Ould 1995)) can be use to model workflows. Later, Cardoso and Sheth
(2003) worked on the development of mechanisms and algorithms to facilitate the
composition of workflows that model Web process applications. Their approach relies
on the use of the emerging Semantic Web and ontologies to overcome some of the
integration problems, such as the interoperability of heterogeneous Web services.

Compared to Casati et al. (2002), our work targets, not the modeling of the various
phases of the lifecycle of workflow development, but the development of a
framework to assist process analysts and designers to design Web processes and
workflows. The framework, named Poseidon, is to be used during the requirement
and design phase. Poseidon can be viewed as a methodology which structures a
comprehensive set of steps that drives the design of workflows based on requirements
gathered from communication with staff, managers, and experts.

Compared to Reijers et al. (Reijers 2003; Reijers, Limam et al. 2003) work, our
approach is not dominantly analytical and includes a participative and an analytical
design method. The process design is not driven by a product, but by business cases.

In contrast to Sadiq and Orlowska’s work (Sadiq and Orlowska 1999), we have
proposed a framework that not only describes the basic elements of a process, but also
provides instructions to guide process developers to place and organize the various
elements of a process graph. Compared to our previous research (Cardoso and
Teixeira 1998; Cardoso and Sheth 2003), the work presented in this paper is
complementary. In (Cardoso and Teixeira 1998) we target the graphical
representation of processes and workflows (i.e., design phase), then in (Cardoso and
Sheth 2003) our intention is to assist the designer to map tasks to Web services (i.e.,
implementation phase). Now, our objective is to develop a solution to semi-
automatically create a process design from the information gathered during the
requirement phase. The framework facilitates the construction of workflows through
complexity decomposition. In our approach, firstly, business cases are identifies, and
then sequential and parallel building blocks are created, whereupon conditional blocks
are established, before, finally simplifying and implementing the workflow.

 4

This paper is structured in the following way. Section 2 presents the requirements
and methodology of our framework. In section 3, we describe the design analysis
phase of workflows and present the Poseidon framework. Section 4 gives the
evaluation of the framework and presents future work. Finally, section 5 presents our
conclusions.

2 Poseidon: Requirements and Methodology

In organizations where business processes are repetitive and predictable, such as
banking and insurance, workflow systems are becoming of critical economic
importance. The importance of workflow systems is also becoming clear in the
context of Web services and Web process. Nevertheless, experience in designing and
deploying workflows has shown that methods to support process development are
practically inexistent.

Thus, new techniques and methods for the specification, design, implementation,
integration, testing, and maintenance are necessary to increase the quality of
workflows and reduce the effort required to produce them.

Due to the lack of suitable tools to assist the development and deployment of Web
processes and workflows, we have created the Poseidon framework. The framework
is to be used by process analysts and designers during the two first phases of the
process development lifecycle, i.e. the requirement gathering and design phases. In
the next two sections we enumerate the initial specifications that have originated the
Poseidon framework and give a brief overview of the methodology and rationale
behind the tool.

2.1 Framework Requirements

The Poseidon framework is a basic conceptual structure composed of steps,
procedures, and algorithms that determine how process design is to be approached.

An organization can select different frameworks to design different types of Web
processes. There is no such a thing as a ‘right’ or ‘wrong’ process development
framework. Nevertheless, some frameworks are more suitable than others for some
type of process application development. If an inadequate framework is selected and
used, this will probably reduce the value and utility of the Web process application
deployed.

Since we recognize that one-size-fits-all frameworks cannot meet the needs of
diverse organizations, we have customized and developed Poseidon bearing the
following requirements in mind:

� Simplicity and ease of use. The methodology should be easily understood
by its end users, i.e., process analysts and designers and interviewees
possibly without workflow expertise (e.g. CEOs, managers, and employees.)

� Business process size. The framework should support the modeling of small
and medium size business processes. We approximately classify small
workflows as having up to 15 tasks and medium size workflow as having
roughly 30 tasks.

 5

� Business process structure. The framework should be better suited for
production and administrative processes (McCready 1992) – than to ad hoc
ones – since they are more structured, predictable, and repetitive.

� Degree of automation. Based on one of the main advantages and aims of
workflow systems – automation – we hope to develop a methodology which
automates as many of its steps as possible. This will allow for faster process
development with lower design costs.

2.2 Methodology

The intention of this section is to give an overall description of our framework to
construct process graphs based on the knowledge gathered from interviews, group
brainstorming sessions, and meetings (in this paper we will use the term ‘interview’ to
designate these three methods of gathering knowledge).

The interviews are essentially carried out between process analysts and people who
have the expertise and knowledge of the processes’ business logic. The latter group
might, typically include people such as administrative staff, department managers,
and mid-range managers, and even CEOs.

Our framework involves four main phases and for each one we present a
mechanism to support and assist its concretization. In the first phase, by means of
interviews, we build a business case table. The table captures the various cases that a
business process describes. The basic property of a process is that it is case-based
(Aalst 1998). This means that every task is executed for a specific case.

In the second phase, we extract a set of scheduling functions from the business
case table. For each task, a scheduling function is extracted. A scheduling function is
a Boolean function for which the parameters are business variables from the business
case table. Each function models the scheduling of a task at runtime, i.e. for a given
set of business variables and their assertion, the function indicates if a task is
scheduled at runtime or not.

The third phase consists of using the scheduling functions from the previous phase
and identifying the sequential and parallel building blocks (Figure 1) that will make
up the process in development. In Figure 1, nodes represent tasks/activities and
arrows represent transitions. In this phase, we also establish the non-deterministic
routing of a process, i.e. the conditional building blocks.

A

B
1

B
n

B
2 C

and-split and-join

A

B
1

B
n

C

condition
1

condition
n

or-split or-join

BA

Sequential Parallel Conditional

B
2

condition
2

Figure 1. Example of basic process building blocks

The current framework captures the five basic patterns described in (Aalst, Barros et
al. 2000): sequential routing, AND-split, AND-join, XOR-split, and XOR-join. Those
are the most important patterns, since most process languages are able to model

 6

sequential, parallel, and conditional routing. Tasks associated with sequential and
parallel building blocks are executed in a deterministic fashion, while conditional
blocks are examples of non-deterministic routing. Conditional blocks indicate that the
scheduling of a task depends on the evaluation of a Boolean condition or expression
(see Figure 1).

The framework can be extended to include and model additional patterns (Aalst
describes 21 different patterns). Nevertheless, this extension may transform the
framework into a difficult tool to understand. Since one of the principal requirements,
expressed in section 2.1, was simplicity, it is important to analyze the benefits and
costs of adding new patterns to the framework.

In the last phase, we integrate the basic building blocks previously identified with
the non-deterministic blocks. The process is cleanup of any dummy (null) tasks and, if
necessary, the process may be slightly restructured or modified for reasons of clarity.

3 Poseidon framework

The input of the framework presented in this paper is a set of task names, and the
output is a process model or workflow. The process models include tasks or Web
services, transitions, control flow variables, and control flow conditions. The
framework relies heavily on interviews to supply the knowledge which cannot be
inferred automatically.

As already explained, the framework has four major steps which are discussed
individually in the following sections. These are the construction of business case
tables, extraction of scheduling functions, identification of basic block structures, and
the cleaning and implementation of the process graph.

3.1 Business case table

To capture all the cases represented in a process, we introduce the concept of business
case table (a partial example of such a table is shown in Figure 2). The table has the
main advantage of being a simple, yet powerful, tool to capture and describe business
cases.

 7

Figure 2. Example of a business case table

Each business case corresponds to an entry in the table and establishes the task
scheduled at runtime based on business variables assertion. Business variables are
variables that influence the routing or control-flow in a process. For example, in a
banking Web process application, the business variable Loan Amount determines the
acceptance or rejection of a loan request. If the variable has a value greater than
$500.000, then the loan is rejected and the task ‘reject‘ is executed, otherwise the task
‘accept’ is executed.

Business variables are identified during the participative phase in which CEOs,
managers, and staff members are interviewed alone or in small groups. Each business
variable has a domain, also identified during the participative phase.

The domain identifies the values that a business variable can take. For example, the
business variable Traveler can take the values “1st Line Manager”, “2nd Line
Manager”, “3rd Line Manager”, and “Non-Manager”, i.e.,

Traveler = {“1st Line Manager”, “2nd Line Manager”, “3rd Line Manager”, “Non-
Manager”}

3.1.1 Business case table schema

A business case table is based on a two dimensional table. The schema of the table is
the following. The columns are divided into two classes. The first class regroups a set
of business variables, while the second class includes the tasks that are part of a

 8

process. Each entry of the table relates business variables and tasks with information
indicating if a task is to be scheduled at runtime or not.

The first cells of each row, corresponding to the columns of the first class, contain
values that can be assigned to business variables. For example, in Figure 2, the value
“Foreign” has been assigned to the business variable Location and the value
“Traveler” has been assigned to the variable Person Filling the Form for the first eight
data rows.

The data cells corresponding to the columns of the second class contain
information indicating if a particular task is to be scheduled at runtime or not. The
idea is to establish if a given task is to be scheduled based on the assertion of a set of
business variables. Therefore, each data cell results from the intersection of a column
(with a task name) and a row (with a set of asserted business variables.) A business
variable is a variable on which the execution of a set of tasks may depend. Formally,
we are interested in evaluating for each taskt the following function, where bvi is a
business variable:

 scheduled(taskt, bv1, bv2, …, bvn) ∈ {�, �} (function 1)

A data cell corresponding to the columns of the second class may contain the
scheduled symbol (�) or the not-scheduled symbol (�). The scheduled symbol
indicates that a given task is to be scheduled at runtime when the business variables
are asserted to particular values. In Figure 2 for example, if Traveler = “1st Line
Manager”, Funding Source (Payment) = “Boeing”, Person Filling the Form =
“Traveler“, Traveler/User is a CWA Mgr. for that trip? = “Yes”, Traveler/User is a
M&CT Prog. Mgr. for that trip? = “Yes”, and Is CWA and M&CT same person? =
“Yes”, then the task Check Form (OA) is scheduled for execution at runtime; the cell
contains the scheduled symbol (�). On the other hand, this is not true for the task
Confirmation (Traveler), since for the same assertions the data cell contains the not-
scheduled symbol (�).

3.1.2 Business case table construction

Understanding the business case table schema is relatively easy, whereas its
construction is far more challenging and complex. The methodology to construct and
fill the table with business cases is an iterative process.

Initially, the table schema has only columns of the second class (i.e., each column
represents a process task, see Figure 3.a) and no business variable exists in the table.
The columns are identified by the process analyst and staff members of an
organization as the necessary functions to archive a goal or an objective. While we do
not present a method to establish this initial set of columns, this can be accomplished
using the methodology proposed in (Casati, Fugini et al. 2002) for the analysis phase
of workflow application development. It is convenient – but not essential – to order
the tasks according to their probable chronological order of execution. This allows
users to feel more comfortable, thus, making it easier for them to understand the case
table.

In the first step, the process analyst should enquire of the interviewees if the tasks
presented in the case table are always scheduled during the execution of a process. If a
task is always scheduled, it receives the scheduled symbol (�); if it is never scheduled

 9

it receives the non-scheduled symbol (�). In some cases, both symbols need to be
assigned to the same data cell. This is called a symbol conflict. We will see later that
this situation suggests that the task is scheduled under some logical condition.

a) Task A Task B Task C a.1) Check form Sign Notify
�,� �,� �,� � �,� �,�

b) Variable 1 Task A Task B Task C b.1) Manager Check form Sign Notify

value 1.a � � � 1 Line Manager � � �

value 1.b � � � 2 Line Manager � �,� �,�

value 1.c � � � 3 Line Manager � � �,�

c) Variable 2 Variable 1 Task A Task B Task C c.1) Travel Manager Check form Sign Notify

value 2.a � � � National � � �

value 2.b � � � Foreign � � �

value 2.a � � � National � � �

value 2.b � � � Foreign � � �

value 2.a � � � National � � �

value 2.b � � � Foreign � � �

value 1.a

value 1.b

value 1.c

1 Line Manager

2 Line Manager

3 Line Manager

Figure 3. Constructing the business logic case table

After having analyzed and set symbols for each task individually, the table may be
in one of three states.

1) All the tasks have received the scheduled symbol (�). This means that all the
tasks are scheduled at runtime. There is no non-determinism. Therefore the process
does not have any business variable and the tasks are scheduled in sequence or in
parallel. The only remaining step to carry out is to set a total order for the tasks. This
is relatively easy since no conditional routing exists. No further steps are necessary
and the process design is completed.

2) All the tasks have received the non-scheduled symbol (�). In this case, the
process does not schedule any task at runtime. This is the same as saying that the
process does not have any tasks. In practice, this situation should never occur. It
indicates that the methodology followed to establish the tasks of a process was
inadequate.

3) Finally, the last state indicates that the business case table contains one or more
symbol conflicts, since the two available symbols have been assigned to the same data
cell.

Let us dwell on this last state. Consider the row of table b.1) in Figure 3 which
asserts the value “2 Line Manager” to the business variable Manager. The row
contains a symbol conflict for the task Sign and Notify, since both scheduling
symbols, � and �, are present. This state of affairs was arose because during an
interview the interviewee expressed that the 2nd Line manager did not always need the
signature of his supervisor (represented with the Sign task) to travel on a business trip.
Furthermore, the 2nd Line manager also did not always need to notify his supervisees
(represented with the Notify task) of his journey. The phrase “… the 2nd Line manager
did not always need …” in the previous paragraph indicates the existence of a symbol
conflict. In our example, the conflict points out the existence of a business variable –
not yet present in the business case table – controlling the 2nd Line manager’s actions.

After the first step, if the business case table is in state 1 or 2, then the procedure
stops here. On the other hand, if the case table is in state 3, then we need to remove
symbolic conflicts using a procedure called symbol conflict resolution discussed in
the next section.

 10

3.1.3 Symbol conflict resolution

Symbol conflicts indicate that the scheduling of a set of tasks depends on one or more
business variables. To resolve a symbol conflict, the process analyst – with the help of
interviewees – should identify at least one business variable that controls the
scheduling of a conflicting task. The process analyst should also identify the business
variable’s domain and establish the task which asserts the variable.

When such a variable is identified the following steps are taken. A column is added
to the left side of the business case table and rows are added to the table. The column
is labeled with the name of the business variable identified. Each row of the table is
duplicated n-1 times, where n is the domain set cardinality of the newly introduced
business variable. The data cells corresponding to the new business variable column
are set the values of its domain. For example, in Figure 3, table b.1), the variable
Manager is assigned to “1 Line Manager”, “2 Line Manager”, and “3 Line Manager”.

Once the table’s schema is updated to reflect the introduction of a new business
variable, the data cells must also be updated with appropriate scheduling symbols.
During the duplication of data rows, the rows with and without symbol conflicts are
duplicated, but only the rows with a symbol conflict need to be updated. As
previously, the process analyst should carry out (additional) interviews to determine
which tasks are scheduled at runtime based on the business variables present in the
table. Each row with a symbol conflict is individually analyzed and its contents are
discussed with interviewees.

For example, in Figure 3, the business variable Travel has been identified and
added to the table. The domain of the variable is {“National”, “Foreign”}. Its
cardinality is equal to 2. Therefore, each rows of table b.1) is duplicated once (i.e., 2-1
times). The data cells of the variable Travel have been set to “National” and
“Foreign”. Please note that adjacent business variable data cells with identical
content, such as the one from the variable Manager, have been merged for practical
reasons. The data row number 1 of table b.1) has been duplicated to the data row
number one and two of table c.1). There is no need to update the new rows since no
conflict was present before the duplication. On the other hand, the data row number 2
of table b.1) has at least one symbol conflict. Thus, after the duplication, the rows
need to be updated. In this particular example, after updating all the duplicated rows,
the case table does not contain any symbol conflict. This means that it is not necessary
to add any other variable to the table, since all the symbol conflicts have been
resolved with the introduction of the Travel and Manager business variables.
Consequently, the procedure for constructing the business case table is complete.

After the row duplication, analysis, and update, it may become apparent that some
symbol conflicts have been resolved, while others still remain in the table. In such
cases, the conflict resolution procedure needs to be reapplied until all the symbol
conflicts have been removed (please note that when applying the procedure it is
possible to add more than one business variable at a time.)

3.1.4 Handling large business case tables

In our example from Figure 3, all the symbol conflicts have been resolved with the
introduction of only two business variables. However, in practice and depending on
the size and complexity of the process being modeled, various variables may be
required to remove all the symbol conflicts. In some cases, the size of the business
table can become fairly large. For example, a medium size process (15-30 tasks) with

 11

6 business variables, with the following domain cardinality 4, 3, 3, 2, 2, and 2, can
easily generate a table with approximately 288 rows.

Two techniques can be employed to deal with large tables: business case table
fragmentation and process restructuring. The first technique consists of fragmenting
the table into smaller tables based on business variable values. Each smaller table is
then placed on a different sheet. For example, the table c.1) in Figure 3 can be
fragmented into smaller table based on the Manager variable. The aim is to place the
rows for which the variable Manager has the value “1 Line Manager” on a separate
sheet. The same procedure is then carried out for the “2 Line Manager” and “3 Line
Manager”. This technique has been found to be extremely useful. Interviewees
respond in a better way when they are shown smaller tables, mostly because the
amount of information presented at a time is smaller. Also, locking one or more
business variables to a specific value reduces the complexity of the table, making its
interpretation easier for both the process analysts and interviewees.

Our development of workflows has involved the use of fragmentation technique to
reduce the complexity of the business case table. We have used a standard spreadsheet
application (Microsoft Excel) to design and manage the various fragmented tables.
Our initial table had seven business variables and 176 data rows. The fragmentation
has generated 11 tables of 16 data rows each.

The second technique consists of restructuring the tasks of a process into sub-
processes, creating a tree-like hierarchy of tasks and sub-processes. Once such a
structure is created, the methodology presented to construct business case tables can
be applied to the smaller sub-processes individually. Nevertheless, problems may
arise when sub-processes are not self-contained from a business variable perspective,
i.e. a sub-process routing depends on a business variable defined in its parent process.
When this occurs, the business case table of a sub-process must refer to the business
variable defined in the parent process. This increases the complexity and reduces the
semantics of the table.

A useful enhancement that can be performed is to reorganize the business variable
columns at any time to increase the clarity of the table’s information without affecting
its validity. For example, in Figure 3, it is possible to switch the position of the
columns Travel and Manager making the information presented clearer to the process
analysts and interviewees.

3.1.5 Methodology summary

As a summary, Figure 4 describes the main steps involved during the construction of
a business case table.

 12

Figure 4. Methodology to construct a business case table

3.2 Extracting scheduling functions from the business case table

Once the business case table has been created, we are interested in extracting and
minimizing the Boolean expressions from the scheduling table (see equation 1) that
rule the scheduling of tasks. The extracted functions are logic disjunctions of
conjunctions of business variables.

Using Boolean algebra to simplify Boolean expressions can be awkward, apart
from being laborious. Furthermore, this approach can lead to solutions, which, though
they appear minimal, are not. The Quine-McCluskey (McCluskey 1956) method and
Karnaugh maps (Karnaugh 1953) provides a simple and straightforward method of
minimizing Boolean expressions.

While these techniques are based on the use of a power of 2 encoding, this low
level of detailed is hidden from the business analysts, since it is only used by the
Quine-McCluskey method or Karnaugh map to minimize Boolean expressions.

The Karnaugh technique can be employed to construct scheduling functions with 3
and 4 business variables. It is possible to create functions with 5 and 6 inputs, but
these can become unwieldy and difficult to construct. Furthermore, this technique is
not-automated. As a result, this technique is only considered to be adequate for small
process applications.

 The Quine-McCluskey method, which is also known as the tabular method, is
particularly useful when extracting scheduling functions with a large number of
business variables. Additionally, computer programs have been developed employing
this algorithm. The use of this technique increases the degree of automation of our
methodology. Remember, that this was one of our initial goals.

Another alternative that can be considered to minimize Boolean expressions from
the scheduling table is the use of Binary Decision Diagrams, also known as BDD
(Drechsler and Sieling 2001). If the reader decides to select this method to minimize
Boolean expressions, it is importance to realize that, while this method is more

Methodology Create_Business_Case_Table(set-of-tasks)

1) Create a two-dimensional table with t columns, where t is the number of tasks in set-of-tasks.

2) Label each column with the name of a task in set-of-tasks.

3) Based on interviews, set the symbols � and � in the first data row of the table

4) If no conflicting symbols exist in the table, then the procedure is over; the workflow is
deterministic and it is only necessary to set sequential and parallel building blocks.

5) Otherwise, while conflicting symbols exist then

5.1) identify at least one business variable that removes at least one conflicting symbol of the
table

5.2) establish the domain and domain cardinality (n) of the business variable(s)

5.3) establish in which task the variable(s) is asserted

5.4) add the business variable(s) to the left side of the table

5.5) duplicate each data row n-1 times

5.6) update the rows with conflicting symbols based on information gathered by means of
additional interviews

6) End while

 13

powerful than the two previous techniques, it is also more complex. Based on our
requirements and objectives we have decided to use the Quine-McCluskey method.

To extract scheduling functions from the business case table using Karnaugh maps
or the Quine-McCluskey method, we first need to map a business case table to a truth
table. The mapping can be achieved in the following way.

1) For each business variable, use the formula �log2(domain cardinality)�, where
domain cardinality is the cardinality of the domain’s variable, to determine the
minimum number of bits necessary to represent the variable. For example, the
variable Travel from Figure 3 has a domain with only two values (“National” and
“Foreign”), then only one bit is necessary to represent the variable. The variable
Manager has a domain with three distinct values (“1 Line Manager “, “2 Line
Manager”, and “3 Line Manager”) and thus two bits are necessary to represent the
variable.

2) Create a mapping between each business variable value and a binary number,
starting with ‘0’. For example, the domain values of the variable Travel,
“National” and “Foreign”, can be mapped to ‘0’ and ‘1’, respectively. The domain
values of the variable Manager, “1 Line Manager “, “2 Line Manager”, and “3
Line Manager”, can be mapped to ‘00’, ‘01’, and ‘10’, respectively.

3) Map the symbols � and � to the Boolean domain {0, 1}. The symbol � is
mapped to ‘0’ and the symbol � is mapped to ‘1’.

4) Create a new table using the two mappings described previously. Figure 5
shows the result of mapping the table from Figure 3 to a truth table. Please note
that besides applying the mappings, we have made the following adjustment. We
have added, to the generated truth table, a set of new variables ‘a’, ‘b’, and ‘c’,
and functions ‘w’, ‘y’, and ‘z’. The variable and function symbols have been
added to simplify the handling of the truth table in the following steps. Also, we
have switched the position of the Manager and Travel columns (as recommended
in the previous section), making the truth table input values follow a standard
binary sequence (000, 001, 010, 011, …).

5) The functions of the truth table may be incompletely specified; that is, certain
input combinations will never occur. Therefore, the output may be undefined for
some of the input combinations. In our example, the input combinations ‘110’ and
‘111’ never occur. In this case, the process analyst needs to add the missing input
combinations to the truth table and represent the output values associated with
question marks in the table.

 14

Check Form

a) Manager Check form Sign Notify

� � �

� � �

� � �

� � �

� � �

� � �

Check Form

b) Travel Check form Sign Notify

a b c w(a,b,c) y(a,b,c) z(a,b,c)
0 true true true

1 true true true

0 true false false

1 true true true

0 true false false
1 true false true

0 true false false
1 true false false

1

1

0

0

Check Form

Travel

National

Foreign

1Added

rows

�

0

1

0

1 Line Manager

2 Line Manager

3 Line Manager

National

Foreign

National
Foreign

Check Form

Manager

Figure 5. Mapping a business case table to a truth table.

Applying one of the presented methods to the truth table b) from Figure 5, we
obtain the scheduling functions indicated in the scheduling table from Figure 6.

Variable Task Function

a,b,c Check Form w(a, b, c) = true

Sign y(a, b, c) = (¬a∧¬b) v (¬a∧b∧c)

Sign(1) y1(a, b, c) = ¬a∧¬b

Sign(2) y2(a, b, c) = ¬a∧b∧c

Notify z(a, b, c) = (¬a∧¬b) v (¬a∧b∧c) v (a∧¬b∧c)

Notify_m z1(a, b, c) = ¬a∧¬b

Notify_u z2(a, b, c) = ¬a∧b∧c

Notify_c z3(a, b, c) = a∧¬b∧c
Figure 6. Scheduling table constructed from the truth table

The table contains the task names and respective scheduling functions. On the left
side of the table, the column Variable indicates in which tasks the business variables
are asserted. For example, in Figure 6, the variable column indicates that the business
variables ‘ab’ and ‘c’ are asserted in the task Check Form. Since ‘ab’ has been
mapped to Manager and ‘c’ to Travel, this indicates that the task Check Form asserts
the business variables Manager and Travel.

When the scheduling functions are disjunctions of conjunctions, synonym tasks need
to be created. Synonym tasks have exactly the same behavior, execution, semantics,
and only their names differ. The number of disjunctions in a scheduling function sets
the number of synonyms to be created for a given task. Each of the disjunctions is
associated with a synonym task. For example, since the task Notify has a scheduling

function of the form (¬a∧¬b)∨(¬a∧b∧c)∨(a∧¬b∧c), three synonym tasks are created:
Notify_m, Notify_u, and Notify_c. The scheduling functions are decomposed into the

terms ¬a∧¬b, ¬a∧b∧c, and a∧¬b∧c, and each term is associated with one of the
synonym tasks.

 15

3.3 Identify Basic Block Structures

Process languages can be characterized in terms of the fundamentals building blocks
they support to model the control-flow of processes. Several workflow patterns have
been already identified, analyzed and documented. Aalst, Barros et al. (2000) has
done the most comprehensive work in this field. They have identified 21 workflow
patterns addressing comprehensive workflow functionality. The expressiveness and
power of process languages can be evaluated according to the set of patterns
supported.

Business process management systems are process-centric, focusing on the
management of control-flow logic. Typical control-flow logic includes sequential,
AND-split, AND-join, OR-split, OR-join, XOR-split, and XOR-join primitives. The
sequential primitive models serial block structures. AND-split and AND-join
primitives model parallel block structures. While, OR-split, OR-join, XOR-split, and
XOR-join model conditional block structures.

The aim of this section is to use the scheduling table previously constructed to a)
identify sequential and parallel block structures associated with a process and b)
organize these basic blocks using conditional block structures.

Before continuing with the explanation of how to identify and construct basic
building blocks, let us illustrate a more complex process. Consider the business case
table shown in Figure 7. The table systematizes the various cases that may occur in a
Request Travel Authorization business process. After applying the rules from section
3.2 to the case table, we obtain the truth table shown also in Figure 7.

Sign

Signature
Check

Form
Sign

Book

Flight

Book

Hotel
Reservation

Send

Tickets

Notify

Manager
Reject

Not

Auhtorized
Notify

No � � � � � � � � � �

Yes � � � � � � � � � �

No � � � � � � � � � �

Yes � � � � � � � � � �

No � � � � � � � � � �

Yes � � � � � � � � � �

�

Sign

Signature
Check

Form
Sign

Book

Flight

Book

Hotel
Reservation

Send

Tickets

Notify

Manager
Reject

Not

Auhtorized
Notify

a b c q(a,b,c) r(a,b,c) s(a,b,c) t(a,b,c) u(a,b,c) v(a,b,c) w(a,b,c) x(a,b,c) y(a,b,c) z(a,b,c)

0 true true false false false false true true false true
1 true true false false true true true false false true
0 true false true true false false false false false true
1 true false true true false false false false false true
0 true false false false false false false false true true
1 true false false false false false false false true true
0 true false false false false false false false false true
1 true false false false false false false false false true

Role

Researcher

Manager

User

Check Form

Check Form

Role

0 0

0 1

1 0

1 1

Figure 7. Business case table for the request travel authorization process

From the truth table, the scheduling functions represented in Figure 8 are extracted.
During the construction of the business case table, the tasks asserting business
variables were identified, as described in section 3.1. For example, the business
variables ‘Role’ and ‘Signature’ are asserted by the tasks Check Form and Sign,
respectively. This entails that the Boolean variables ‘a’ and ‘b’ are asserted by the
tasks Check Form and Sign, respectively.

 16

Variable Task Function

a,b Check Form q(a,b,c) = true

c Sign r(a,b,c) = ¬a∧¬b

Book Flight s(a,b,c) = ¬a∧b

Book Hotel t(a,b,c) = ¬a∧b

Reservation v(a,b,c) = ¬a∧¬b∧c

Send Tickets u(a,b,c) = ¬a∧¬b∧c

Notify Manager w(a,b,c) = ¬a∧¬b

Reject x(a,b,c) = ¬a∧¬b∧¬c

Not Authorized t(a,b,c) = a∧¬b

Notify z(a,b,c) = true
Figure 8. Scheduling table for the Request Travel Authorization business process

3.3.1 Sequential and Parallel Building Blocks

The objective of this step is to identify sequential and parallel structures, and define a
partial order for the tasks associated with these structures. To complete this step, the
following activities are performed:

1) Create a set S of sets si, where each set si contains all the tasks that have the
same scheduling function,

2) Label each set with its scheduling function,

3) For each set si, establish existing sequential and parallel building blocks, set a
partial order for the tasks

In the first activity, we produce a set S of scheduling sets si, where each set si
contains all the tasks that have the same scheduling function. The idea is to create sets
of tasks with the following property: if a task of set si is scheduled at runtime, then all
of the tasks in si are also scheduled. In our running example, S = {s1...s6}, where
s1={Check Form, Notify}, s2={Book Flight, Book Hotel}, s3={Sign, Notify
Manager}, s4 = {Reject}, s5 = {Reservation User, Send Tickets User}, and s6 = {Not
Authorized}.

The second activity associates each set with a scheduling function label. For

example, the set s1 is labeled with ‘1’ and the set s2 is labeled with ‘¬a∧b’.

Finally, the last activity establishes the sequential and parallel building blocks and
defines a partial order for each set si. Each set si can be organized using a sequential
and/or a parallel basic building block structure. Conditional structures cannot occur
for the sets si since non-determinism has already been captured with the scheduling
functions (the set up of conditional blocks is described in the next section.)

The first two activities can be automated, while the third one requires human
intervention. Nevertheless, we believe that this last activity can be partially
automated. One possible approach would be to analyze data dependencies and
information dependencies between tasks. A data dependency exists between two tasks
if the input of a task depends on the output of the other. An information dependency
exists between two tasks if the content or presentation of one task logically follows
the content of another. For example, let us consider that a sequence of tasks is to be
used to display a business contract to a user. Since several sections of the document
need to be accepted individually, it has been decided to fragment the document into
parts. Each part has been associated with a task requiring human intervention. In this
simple case, information dependency exists between the tasks, since the tasks needs to

 17

be ordered in such a way that the contract is read in a sequence that logically follows
the original document.

The establishment of sequential and parallel building blocks and partial orders may
require the use of null tasks (also known as dummy tasks). A null task does not have a
realization. Null tasks can be employed to modify a process to obtain structural
property (e.g., well-handled and sound) or to make possible the modeling of specific
business process procedures.

For our running example, an interview has led to the identification of the following
block structures and partial orders:

a) the task Notify is the last task to be executed in set s1;

b) the tasks in set s2 (Book Flight and Book Hotel) can be scheduled in parallel;

c) the tasks in set s3 are scheduled sequentially and the task Sign is scheduled
before the task Notify Manager;

d) since the set s4 has only one task, no partial order needs to be defined;

e) the tasks in set s5 are scheduled sequentially; the task Reservation User is
scheduled before the task Send Ticket User; and

f) since the set s6 has only one task, no partial order needs to be defined.

Figure 9 illustrates the result of applying the three activities of this step to the
scheduling table of Figure 8.

Figure 9. Parallel and sequential block structures and partial orders for the sets si

In each set, two types of transition can exist: permanent transitions (graphically
represented with a solid line) and potential transitions (graphically represented with a
dashed line)

Definition 1. Permanent transition. A permanent transition defines an order
between the executions of two tasks. Such a transition is formally defined as,

tb→te, where tb, te ∈ si and si ∈ S

 18

The semantics of this type of transition is the same as the one of traditional
workflow transitions. A permanent transition indicates that te is executed immediately
after tb.

Definition 2. Potential transition. A potential transition defines an order between the
executions of two tasks. Such a transition is formally defined as,

tbf te, where tb, te ∈ si and si ∈ S

The semantics of this type of transition indicate a precedence relationship between
two tasks. For example, if tbf te then tb is executed before te, but te does not need to be
executed immediately after tb.

3.3.2 Conditional Structures

At this point, we have already identified the sequential and parallel building blocks.
The next step is to construct a task scheduling graph based on the scheduling sets. The
aim of the graph is to identify the conditional building blocks of a process and
determine how they control and organize the scheduling sets previously recognized
(i.e. sequential and parallel building blocks). The graph is created based on the
following rules and assumptions:

Assumption 1. Business variables must be asserted prior to their use. For any set
si to be scheduled, all its tasks must have their business variables asserted. It does not
make sense for a task to use a business variable that has never been asserted.
Unasserted variables have unknown values (please note that variables with default
values are considered to be asserted.)

Assumption 2. Business variables are only asserted once. This is a fair assumption
since it is often the case, in real world processes, that variables are only asserted once
and their value remains unchanged until completion of the process. For example, let
us assume that a human task of an administrative business process requests the
intervention of an employee to fill in a form with his personal information. The
requested information includes his job position title. Let us assume that the job
position is a business variable that affects the process’s control flow. In this scenario,
the job position variable is asserted only once and thereafter it will not be changed
again until termination of the process.

The first assumption allows us to determine the tasks where conditional branches to
a set si may exist. Since all the variables of set si‘s scheduling function need to be
asserted for a proper scheduling, a conditional branch can only be attached to a task
were all the variables have already been set.

We also define rules, presented below, to impose constraints on how conditional
building blocks can organize the scheduling sets.

Definition 3. Business variables of a set si. The set of business variables of the
scheduling function associated with set si is represented with si

f, where f is the

 19

scheduling function. Graphically, the scheduling function f of a set si is represented
inside a rectangular shape (see Figure 9).

Rule 1 (Conflicting scheduling sets). If sa
f has a scheduling function f, the

scheduling set sb
g has scheduling function g, and f ∧ g is a contradiction, then a

transition between a task of set sa and a task of set sb does not make sense (in logic, a
contradiction is a Boolean expression or proposition that is always false.)

Proof. Let us assume that a transition from a task in sa to a task in sb exists. If f is
true, the set sa and its tasks are scheduled, but sb and its tasks can never be scheduled

since f ∧ g is a contradiction, i.e. g must be false. This holds since business variables
can only be asserted once (assumption nº 2). If f is false, then obviously sb and its
tasks cannot be executed, since sb can only be executed if and only if sa has been
previously executed.

Definition 4. A scheduling function f is a subfunction of a scheduling function g, if

f ∧ g logically implies g. For example, f = a∧¬b is a subfunction of g1 = a∧¬b∧d and

of g2 = d∧a∧¬b because a∧¬b∧a∧¬b∧d logically implies a∧¬b∧d, and a∧¬b∧d∧a∧¬b

logically implies d∧a∧¬b.

Observation. The transitions between scheduling sets can be viewed as a tree
structure. For example, in Figure 9, making s1 the root node of a tree, we can identify
3 out going branches: s1 to s2, s1 to s3, and s1 to s6. Node s3 has 2 outgoing branches: s3
to s4, and s3 to s5. This can be verified in Figure 10.

s1

s5s4

s3s2 s6

Figure 10. Tree structure of transitions between scheduling sets

Rule 2 (Dependency of scheduling sets). If sa
f has a scheduling function f, set sb

g
has a scheduling function g, the scheduling function f is a subfunction of the
scheduling function g, and one of the tasks in set sa asserts the variables present in g
but not present in f, then sb is a node of the sub-tree having root node sa.

Proof. If function f is a subfunction of function g, then a path p1 exists in the tree
between the sa and sb since if the tasks in sa are scheduled then the tasks of sb may
also be scheduled. Moreover, a path p2 also exists from the set ss, which sets the
variables present in g but not present in f, and the set sb.

Based on the assumptions and rules presented, we introduce the Conditional Block
Identification (CBI) algorithm to assist process analysts and designers in identifying
conditional building blocks. Before presenting the algorithm, let us define the
following elements,

 20

Definition 5. Asserted business variables of a task tn. The asserted business
variables of a task tn is represented with tn

v. For example, if task tn asserts variable a
and b then tn

v = {a, b}. Graphically, the business variables that a task asserts are the
variables of the Boolean function inside a diamond shape (see Figure 9 for an
example).

The CBI algorithm, which is described bellow, can be viewed as a methodology
describing an iterative process, with human involvement, to structure scheduling sets
si into a process graph. Please note that the symbol ≡ is to be read ‘takes the value
of’.

CBI Algorithm

Place the set sq ∈ S with sq
f = {‘true’} in the open set δ,

δ = { sq | sq
f = {’true’}, sq ∈ S }.

(*) Get a set si from the open set δ and update the open set,

is−≡ δδ , si ∈ δ

Propagate the business variables of all the tasks in set si, i.e. if a task tb asserts a set

of business variables tb
v then add the set tb

v to all the reachable tasks (rb tt >

represents that tr is reachable from tb) from tb in si.
v

b

v

r

v

rrbirb tttttstt ∪=∈∀ ,,, > .

For each tasks tj in si,

Let the set ζ contain the sets sm in S such that all the business variables in sm
f are

in tj
v,

}|{
v

j

f

mm tsSs ⊆∈=ζ .

Partition set ζ such that each partition ζp contains sets sm with the same set of
business variables,

ζp = {sm’, sm’’, sm’’’,…}, sm’
f’ = sm’’

f’’
= sm’’’

f’’’
 =…

If the designer decides to do so, allow him to create new permanent transitions

from tj to tpm (i.e., tj → tpm) where tpm is the first task of sm ∈ ζp.

tj → tpm, where tpm is the first task of sm ∈ ζp

If a set sm ∈ ζp has a potential transition, place sm in set ξ,

},,,|{ ebpmmebm ttsstts fζξ ∈∈∃=

Add the sets sm ∈ ξ to the open set δ,

 21

ξδδ ∪≡ .

End for each

If δ ≠ Ø, repeat the process starting at step (*).

A possible scenario for a tool implementing the CBI algorithm is as follows. A
business analyst starts a process design tool and sets up all the information that has
been described and required up to this point by the Poseidon framework. The tool
automatically selects a set si (one with a label equal to ‘true’) from S, placing it on the
drawing surface. The tasks present in the canvas (from set si) that may contain or-
splits are highlighted. The business analyst selects one of the highlighted tasks and,
automatically, the tool displays the scheduling sets sj of tasks for which a transition
may exist from the selected task. The analyst can select one or more sets.
Automatically an or-split structure is created and associated to the highlighted task
and the selected sets sj are placed on the canvas and a transition is drawn. This
procedure is repeated until no sets remain in S. In our example, the application of the
procedure described gives the graph illustrated in Figure 11.

Figure 11. Task scheduling graph

Once the dependencies betweens the sets si have been established, the structure
from Figure 11 can be redrawn to resemble more closely a process; see Figure 12.a).
Nevertheless, several process elements are missing. It is apparent in our example that
the process does not include any joins matching the or-splits and that the process has
several ending points.

 22

Figure 12. a) Redrawing the task scheduling graph, b) matching or-splits with or-joins

Both problems can be solved by matching or-splits with or-joins. Aalst (Aalst
2000) has pointed out the importance of balancing or/and-splits and or/and-joins to
obtain what is called a ‘good’ process. For example, two conditional flows created via
an or-split, should not be synchronized by an and-join, but an or-join should be used
instead. Matching or/and-splits may require the use of null tasks. Figure 12.b) gives
an example of how every or-split should be complemented by an or-join using a null
task.

3.4 Cleaning and Implementing

In the last phase, we cleanup of any dummy (null) tasks and, if necessary, the process
may be slightly restructured or modified for reasons of clarity. The process design is
ready to be implemented. The WIDE methodology (Casati, Fugini et al. 2002) can be
used to this end. The method proposed supports the workflow design from the initial
analysis phases to its implementation on specific workflow management systems.

The methodology covers the business process pre-analysis, workflow analysis,
workflow and external application design, and mapping to workflow implementation
phases. The design and mapping to workflow implementation phases are shown in
Figure 12.

Workflow
Design

Workflow
Design

Workflow
Mapping

Workflow
Mapping

Workflow, Exceptions,
Transactions, Interactions

Workflow, Exceptions,
Transactions, Interactions

Workflow ApplicationWorkflow Application

Poseidon
Framework

Poseidon
Framework

WIDEWIDE

MethodologyMethodology

Figure 13. Integration of Poseidon framework and WIDE methodology

WIDE methodology provides a set of essential guidelines to design workflows,
specify exceptions, transactions, interactions, etc., and map a workflow model into a
workflow management system. The workflow design phase of WIDE can be replaced,

 23

or complemented, with the Poseidon framework. Compared to WIDE workflow
design phase, the Poseidon approach is more powerful since it provides the semi-
automatic design of workflows (or processes). Since Poseidon assists the design of
processes, it is more suitable to help designers and business process analysts in their
tasks. After using the Poseidon framework to design a process, the WIDE
methodology can be used to interface processes with existing information systems and
external applications, and map the process model, the exceptions, the transactions,
and the interactions into a workflow management system.

3.4.1 Design phase

In the design phase, the methodology provides concepts that allow the mapping of the
resulting workflows onto several different workflow management systems, taking into
account the different features of the target system. At the end of the design phase the
following results are obtained: workflow schemas, the specification of exceptions and
transactions, and specification of interactions with external applications.

Workflow schemas. The initial workflow schemas are decomposed into tasks and sub-
processes. If a decomposition of the activity of a company into processes already
exists, a mapping can be provided from this documentation to a decomposition for the
workflow.

Exceptions. An exception refers to facts, situations, or abnormal events not modeled
by the underlying workflow management system, deviations between what we plan
and what actually happens (Luo 2000). Exceptions are low-probability events that are
unexpected, nonrepetitive, and infrequent (Strong and Miller 1995). Such exceptional
situations may be anticipated and inserted in the workflow schema specification, at
design time or later. One of the points of interest in this context is the ability of
inserting handlers of exceptions which typically occur given a workflow schema.

Transactions. The design of a transactional structure adds semantics to a workflow
describing how an instance behaves with respect to atomicity, consistency, isolation,
and durability. Transaction design includes the design of compensating transactions
needed to rollback completed business transactions.

Interactions with external applications. The design of the interaction between the
workflow and external information systems is a critical aspect of workflow
development. The main issue in the analysis of external information systems and
external applications is the specification of the interactions between the external
systems and the workflow. A second issue is the management of external information
systems data and workflow data which need to be exchanged and may be in different
formats, since external information systems data are usually more complex than
workflow data.

3.4.2 Mapping Phase

The mapping phase maps the workflow model, the exceptions, the transactions, and
the interactions into workflow products or applications.

Mapping the workflow model. The large majority of workflow systems support basic
constructs for defining a workflow, such as and-split, or-split, and-join, or-join, and
allows conditions based on workflow data to be associated to paths in order to define
when a given path is enabled. These elements are mapped to specific components of
the workflow management systems.

 24

Mapping exceptions. Exceptions are mapped into the workflow system. Exceptions
handling of asynchronous events, temporal events related to task deadlines, based on
the state of the task or case, and quality of service thresholds are considered.

Mapping transactions. Atomic tasks are the smallest parts into which a process is
broken down. Every task is atomic and performed in isolation. These tasks are
mapped one to one onto transactions. In case part of the workflow execution needs to
be rolled back, those basic tasks need to be undone using compensation techniques.

Mapping interactions with external applications. Most workflow management
systems include the notion of connector. A connector is a piece of software that
allows an easy communication between tasks and external applications. The mapping
consists in configuring properly the connectors to interact with external applications.
Usually, workflow systems make available to the designer several types of
connectors. For example, to access databases, flat files, spreadsheets, Web sites, ERP
systems, etc. When specific connectors are need, but are not supplied by the workflow
systems, it is possible to developed them using dedicated development tools.

4 Framework Evaluation and Future Work

4.1 Framework Evaluation

Since we recognized that one-size-fits-all design methods cannot meet the needs of
diverse organizations, we present an evaluation of the Poseidon framework. The
evaluation answers and discusses the set of requirements presented in section 2.1.

Simplicity and ease of use. During the design of processes at Phantom Works – the
R&D unit of The Boeing Company, we have tried several methods to capture
knowledge from non-technical persons. The methods ranged for the textual
description of processes, activities, control-flow, and business variables to the formal
representation of processes using graph-based visual notations. The first method
revealed to be too descriptive and was not well understood by managers and staff
members of the organization. The second method was to complex for non-technical
persons. After trying to use several variations of these two methods, we reached the
conclusion that the use of a table interrelating business variables and activities (i.e.,
tasks) was a better approach. CEOs, managers, staff, and non-technical persons in
general demonstrated to understand and feel comfortable with the concept of business
case table due to its simplicity and ease of use.

Business process size. The framework was successfully applied to small and medium
size processes. We also feel that the framework is suitable to support the design of
large processes. Unfortunately, we did not have an opportunity to model processes of
this size.

Business process structure. The framework has been used at Phantom Works to
develop administrative processes. One interesting administrative process that has been
developed was the Travel Request Authorization (Cardoso and Bussler 1999). This
process can be seen as a reference model for travel requests. The process created
followed all the initial requirements. Furthermore, the framework automatically
optimized the process, since Poseidon found that a set of tasks that were carried out
sequentially in the original process could be executed in parallel.

 25

Degree of automation. The framework has two main phases: the participative and the
analytical phase. The participative phase seeks to develop a process design within the
settings of workshops, where group studies composed of CEOs, managers, and staff
work together. The analytical phase seeks at using automated techniques to model and
derive the process design. In Poseidon, the results of participative phase are
automatically moved to the analytical phase. The analytical phase is fully automated
and its technical details are hidden from end users.

4.2 Future Work

4.2.1 Quality of Service

One important requirement of business processes is the management of Quality of
Service (QoS). Organizations operating in modern markets, such as e-commerce,
require QoS management. This management allows organizations to translate their
vision into their business processes more efficiently, since workflow can be designed
according to QoS metrics. An appropriate control of quality leads to the creation of
quality products and services; these, in turn, fulfill customer expectations and achieve
customer satisfaction.

As future work, the QoS model and algorithm described in (Cardoso, Miller et al.
2004) can be integrated with the Poseidon framework. The idea is to create a QoS
model and QoS estimates for each task/activity during the participative phase, i.e.
during the construction of a business case table. The estimates characterize the quality
of service that a task will exhibit at runtime. This information is then used in the
analytical phase to automatically compute the the QoS of the overall business process.
For e-commerce processes (and other type of processes) it is important to know the
QoS an application will exhibit before making the service available to its customers.

Quality of service can be characterized according to various dimensions. In our
framework, we have used a QoS model (Cardoso, Miller et al. 2004) composed of the
following dimensions: time, cost, and reliability.

• Time. Time is a common and universal measure of performance. The philosophy
behind a time-based strategy usually demands that businesses deliver the most
value as rapidly as possible.

• Cost. Task cost represents the cost associated with the execution of tasks. The cost
of executing a single task includes the cost of using equipment, the cost of human
involvement, and any supplies and commodities needed to complete the task.

• Reliability. To describe task reliability we follow a discrete-time modeling
approach. The stable reliability model used relates the number of times a task was
successfully executed and the number of times the task was executed (Nelson
1973).

Table 1 shows a partial business case table with QoS information.

 26

Table 1. Example of a business case table with QoS information

Traveler/User

is a M&CT

Prog. Mgr. for

that trip?

Is CWA

and M&CT

same

person?

Fill Form

(Traveler

,OA or

User)

Check

Form

(OA)

Confirmati

on

(Traveler)

Sign

(CWA

Mgr.)

Inform

(Program

Manager)

Inform

(1st Level

Mgr.)

Sign (1st

Level

Mgr.)

Sign (2nd

Level Mgr.)

Sign (3rd

Level Mgr.

Approval)

Notify

Results

(Traveler)

Book

Resources

(OA)

Notify

Reservations

(Traveler)

yes � � � � � � - X X X X X

yes � � � � � � - X X X X X

no � � � � � � - X X X X X

...

Time 15 min 8 h 3 min 24 h 2 min 2 min 24 h 36 h 48 h 10 min 24 h 10 min

Cost $10 $8 $3 $5 $4 $4 $5 $6 $7 $13 $13 $13

Reliability 97% 99% 100% 95% 96% 100% 92% 94% 93% 87% 85% 93%

yes

no

4.2.2 Process Mining

With the mergence of Web services, workflow management systems become essential
to support, manage, and enact Web processes, both between enterprises and within the
enterprise (Sheth, Aalst et al. 1999). Workflow systems are capable of both generating
and collecting considerable amounts of data describing the execution of business
processes, such as Web processes. This data is stored in a process log, an independent
component that records the events for all of the processes being executed by the
enactment service.

Process logs are vast data archives that are seldom visited. Yet, the data generated
from the execution of processes are rich with hidden information that can be used for
making intelligent business decisions. Data analysis may uncover important process
patterns, contributing greatly to business strategies.

An important and useful knowledge to discover and extract from process logs is
the set of implicit rules that govern the executions of tasks during the execution of a
process. This type of mining is called process mining or workflow mining (Aalst,
Dongen et al. 2003).

Process mining can automatically determine the causal relationship between
sequential tasks. The Poseidon framework is unable, in some cases, to determine if a
task ta should be executed before, or after, a task tb. This happen if there are no data
dependencies between the two tasks, i.e. from a data flow point of view, task ta can be
executed after task tb or the other way around. But in most processes there is a causal
relationship between sequential tasks. Let us consider the following very simple and
naïve example, at some point in time, a process executes the tasks tshow_page_1 and
tshow_page_2. Both tasks show a textual page to the user. The first task shows the first
page of a contract and, naturally, the second task shows the second page of a contract.
From the data point of view, task tshow_page_2 can be executed before tshow_page_1, but
from the logical point of view this sequence is not sound.

Therefore, when designing a process using the Poseidon framework, process
mining can be used effectively to find causal relationships between tasks that have
been previously executed in the context of other processes. In our simple example,
process mining techniques can found that, in the context of existing processes,
tshow_page_1 has always been executed before tshow_page_2 and, therefore, a causal
relationship exists.

5 Conclusions

New economies and global markets with their accompanying intense competition
have generated the need for organizations to adopt new working models. Most

 27

companies have recognized the need for business process management to increase
efficiency and to survive intense competition. Process design and management are
key issues in emergent architectures, such as e-Commerce. Organizations need well-
specified and documented methods to guide the design of (Web) process applications.

Although major research has been carried out to enhance workflow systems, the
work on process and workflow application development lifecycles and methodologies
is practically inexistent. The development of adequate frameworks is of importance to
guarantee that processes are constructed according to initial specifications.
Furthermore, it would be advantageous for process analysts to have tools to support –
automatically or semi-automatically – the design of applications.

Unfortunately, it is recognized that despite the diffusion of workflow systems,
methodologies and frameworks to support the development of process applications
are still missing. In this paper, we describe a framework to assist process analysts
during their interviews with administrative staff, managers, and employees in general
to design processes. The framework includes a set of procedures that guide the
process analyst during his interviews and supply (automatic) methods to ease the
design process. As a result, processes can be developed and implemented more
rapidly and accurately.

The core of the framework presented has been employed successfully to design
medium size processes at The Boeing Company (Seattle, WA, USA). Currently, the
framework is being used by M.Sc. students at the University of Madeira (Portugal) to
design business processes. We believe that the framework is also appropriate to
design large processes and that it represents a good step towards the modeling of
business processes.

6 References

Aalst, W. M. P. v. d. (1998). "The Application of Petri Nets to Workflow
Management." The Journal of Circuits, Systems and Computers 8(1): 21-66.

Aalst, W. M. P. v. d. (2000). Workflow Verification: Finding Control-Flow Errors
Using Petri-Net-Based Techniques. Business Process Management: Models,
Techniques, and Empirical Studies. W. M. P. v. d. Aalst, J. Desel and A.
Oberweis. Berlin, Springer-Verlag. 1806: 161-183.

Aalst, W. M. P. v. d., A. P. Barros, et al. (2000). Advanced Workflow Patterns.
Seventh IFCIS International Conference on Cooperative Information Systems.

Aalst, W. M. P. v. d., B. F. v. Dongen, et al. (2003). "Workflow Mining: A Survey of
Issues and Approaches." Data & Knowledge Engineering (Elsevier) 47(2):
237-267.

Alonso, G., C. Mohan, et al. (1994). Exotica/FMQM: A Persistent Message-Based
Architecture for Distributed Workflow Management. IFIP WG8.1 Working
Conference on Information Systems for Decentralized Organizations,
Trondheim, Norway.

Cardoso, J., R. P. Bostrom, et al. (2004). "Workflow Management Systems and ERP
Systems: Differences, Commonalities, and Applications." Information
Technology and Management Journal. Special issue on Workflow and E-
Business (Kluwer Academic Publishers) 5(3-4): 319-338.

 28

Cardoso, J. and C. Bussler (1999). MARATHON - Workflow Management System,
The Boeing Company. 2004.

Cardoso, J., J. Miller, et al. (2004). "Modeling Quality of Service for workflows and
web service processes." Web Semantics: Science, Services and Agents on the
World Wide Web Journal 1(3): 281-308.

Cardoso, J. and A. Sheth (2003). "Semantic e-Workflow Composition." Journal of
Intelligent Information Systems (JIIS). 21(3): 191-225.

Cardoso, J., A. Sheth, et al. (2002). Workflow Quality of Service. International
Conference on Enterprise Integration and Modeling Technology and
International Enterprise Modeling Conference (ICEIMT/IEMC’02), Valencia,
Spain, Kluwer Publishers.

Cardoso, J. and J. C. Teixeira (1998). Workflow Management Systems: A Prototype
for the University of Coimbra. 5th International Conference on Concurrent
Engineering, Tokyo, Japan.

Casati, F., M. Fugini, et al. (2002). "WIRES: a Methodology for Designing Workflow
Applications." Requirements Engineering Journal 7(2): 73-106.

Ceri, S., P. Grefen, et al. (1997). WIDE-A Distributed Architecture for Workflow
Management. Proceedings of the 7th International Workshop on Research
Issues in Data Engineering, Birmingham, UK.

Chandrasekaran, S., G. Silver, et al. (2002). Service Technologies and their Synergy
with Simulation. Proceedings of the 2002 Winter Simulation Conference
(WSC'02), San Diego, California.

Drechsler, R. and D. Sieling (2001). "Special section on BDD: Binary decision
diagrams in theory and practice." International Journal on Software Tools for
Technology Transfer 3(2): 112-136.

Eder, J., E. Panagos, et al. (1999). Time Management in Workflow Systems. BIS'99
3rd International Conference on Business Information Systems, Poznan,
Poland, Springer Verlag.

Fensel, D. and C. Bussler (2002). The Web Service Modeling Framework, Vrije
Universiteit Amsterdam (VU) and Oracle Corporation.

Jennings, N. R., P. Faratin, et al. (1996). ADEPT: Managing Business Processes using
Intelligent Agents. Proc. BCS Expert Systems 96 Conference, Cambridge,
UK.

Karnaugh, M. (1953). "The Map Method for Synthesis of Combinational Logic
Circuits." Transaction IEEE 72(9): 593-599.

Kochut, K. J., A. P. Sheth, et al. (1999). ORBWork: A CORBA-Based Fully
Distributed, Scalable and Dynamic Workflow Enactment Service for
METEOR. Athens, GA, Large Scale Distributed Information Systems Lab,
Department of Computer Science, University of Georgia.

Luo, Z. (2000). Knowledge Sharing, Coordinated Exception Handling, and Intelligent
Problem Solving to Support Cross-Organizational Business Processes.
Department of Computer Science. Athens, GA, University of Georgia: 171.

McCluskey, E. J. (1956). "Minimization of Boolean functions." Bell System
Technical Journal 35(5): 1417-1444.

McCready, S. (1992). There is more than one kind of workflow software.
Computerworld. November 2: 86-90.

 29

Miller, J. A., D. Palaniswami, et al. (1998). "WebWork: METEOR2's Web-based
Workflow Management System." Journal of Intelligence Information
Management Systems: Integrating Artificial Intelligence and Database
Technologies (JIIS) 10(2): 185-215.

Nelson, E. C. (1973). A Statistical Basis for Software Reliability, TRW Software
Series.

Ould, M. A. (1995). Business Processes: Modelling and analysis for re-engineering
and improvement. Chichester, England, John Wiley & Sons.

Reijers, H. A. (2003). Design and Control of Workflow Processes: Business Process
Management for the Service Industry. Berlin, Springer-Verlag.

Reijers, H. A., S. Limam, et al. (2003). "Product-based Workflow Design." Journal of
Management Information systems 20(1): 229-262.

Sadiq, S., O. Marjanovic, et al. (2000). "Managing Change and Time in Dynamic
Workflow Processes." The International Journal of Cooperative Information
Systems 9(1, 2): 93-116.

Sadiq, W. and M. E. Orlowska (1999). On Capturing Process Requirements of
Workflow Based Business Information Systems. Proceedings of the 3rd
International Conference on Business Information Systems (BIS '99), Poznan,
Poland, Springer-Verlag.

Shegalov, G., M. Gillmann, et al. (2001). "XML-enabled workflow management for
e-services across heterogeneous platforms." The VLDB Journal 10(1): 91-103.

Sheth, A., D. Georgakopoulos, et al. (1996). Report from the NSF Workshop on
Workflow and Process Automation in Information Systems. Athens, GA,
Deptartment of Computer Science, University of Georgia.

Sheth, A. P., W. v. d. Aalst, et al. (1999). "Processes Driving the Networked
Economy." IEEE Concurrency 7(3): 18-31.

Sommerville, I. (2000). Software Engineering, Addison-Wesley Pub Co.

Son, J. H., J. H. Kim, et al. (2001). "Deadline Allocation in a Time-Constrained
Workflow." International Journal of Cooperative Information Systems (IJCIS)
10(4): 509-530.

Strong, D. and S. Miller (1995). "Exceptions and exception handling in computerized
information processes." ACM Transactions on Information Systems 13(2):
206-233.

