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Abstract. Systems and infrastructures are currently being developed to support Web services. The main idea
is to encapsulate an organization’s functionality within an appropriate interface and advertise it as Web services.
While in some cases Web services may be utilized in an isolated form, it is normal to expect Web services to be
integrated as part of workflow processes. The composition of workflow processes that model e-service applications
differs from the design of traditional workflows, in terms of the number of tasks (Web services) available to the
composition process, in their heterogeneity, and in their autonomy. Therefore, two problems need to be solved: how
to efficiently discover Web services—based on functional and operational requirements—and how to facilitate
the interoperability of heterogeneous Web services. In this paper, we present a solution within the context of the
emerging Semantic Web that includes use of ontologies to overcome some of the problem. We describe a prototype
that has been implemented to illustrate how discovery and interoperability functions are achieved more efficiently.
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1. Introduction

E-services have been announced as the next wave of Internet-based business applications that
will dramatically change the use of the Internet (Casati et al., 2001). With the development
and maturity of infrastructures and solutions that support e-services, we expect organizations
to incorporate Web services as part of their business processes. While in some cases Web
services may be utilized in an isolated form, it is natural to expect that Web services will be
integrated as part of workflows (Fensel and Bussler, 2002). Workflow management systems
are capable of integrating business objects for setting up e-services in an amazingly short
time and with impressively little cost (Shegalov et al., 2001). Workflows and Web services
play a major role in architectures such as business-to-business (B2B), business-to-customer
(B2C), customer-to-customer (C2C), dynamic trading processes, dynamic value chains, and
virtual organizations.

A workflow is an abstraction of a business process. It comprises a number of logic steps
(known as tasks or activities), dependencies among tasks, routing rules, and participants.
In a workflow, a task can represent a human activity or a software system. The emergent
need of workflows to model e-service applications makes it essential that workflow tasks
be associated with Web services. As a result, research is currently being carried out to
enhance workflows systems in their support and management of Web services (Shegalov
etal., 2001).
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The modeling of e-services using workflows raises two challenges for workflow systems.
First, Web services must be located that might contain (1) the desired functionality and (2)
operational requirements needed to carry out the realization of a given task. It is necessary
to efficiently discover Web services from the potentially thousands of services available
on the Internet. Second, once the desired Web services have been found, mechanisms are
needed to (3) facilitate the resolution of structural and semantic differences. This is because
the heterogeneous Web services found in the first step need to interoperate with other
components present in a workflow host.

1. The design of traditional workflow applications involves the selection of appropriate
tasks with their desired functionality in order to compose a workflow and to establish
connections among these tasks (control and data flow). Tasks are selected from a work-
flow repository which typically contains only tens to a few hundreds of tasks. Since
the number of tasks to choose from is modest, the process is humanly manageable, not
requiring sophisticated search or discovery mechanisms. However, when a workflow is
employed to model e-services, the potential number of Web services available for the
composition process can be extremely large. Then, we are no longer searching for a
task from a set of a few hundred, but we are searching for a service from a set that can
potentially contain thousands of Web services. One cannot expect a designer to manually
browse through all of the Web services available and select the most suitable ones.

2. The autonomy of Web services does not allow for users to identify their operational met-
rics at design time, i.e., before their actual execution. Operational metrics characterize
Web services according to their Quality of Service (QoS), which includes their timeliness,
quality of products delivered, cost of service, and reliability. When composing a workflow
it is indispensable to analyze and compute its overall QoS (Cardoso et al., 2002a, 2002b).
This allows organizations to translate their vision into their business processes more
efficiently, since workflows can be designed according to QoS metrics. The management
of QoS directly impacts the success of organizations participating in electronic activities.
To achieve this objective, one of the first steps is to develop an adequate QoS model for
workflow processes, tasks, and Web services. Such a model will allow for the discovery
of Web services and for the composition of workflows based on operational requirements.

3. Numerous of the information interoperability problems that the composition of work-
flows involving Web services face are already well known within the distributed database
systems community (Kashyap and Sheth, 1996; Calvanese et al., 1998). To achieve
interoperability, it is necessary to address the problem of semantic integration—the
identification of semantically similar objects that belong to different systems and the
resolution of their schematic differences (Kashyap and Sheth, 1996). When tasks and
Web services are put together, their interfaces (inputs and outputs) need to interoperate;
therefore, structural and semantic heterogeneity needs to be resolved. Structural hetero-
geneity exists because Web services use different data structures and class hierarchies to
define the parameters of their interfaces. Semantic conflicts occur when a Web service
output connected to another service or task input does not use the same interpretation
of the information being transferred. The general approach to semantic integration has
been to map the local terms onto a shared ontology. Even though a shared ontology en-
sures total integration, constructing such an ontology has been costly, if not impractical;
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Figure 1. Multidimensional approach to Web service discovery and integration.

autonomous systems are required to commit to a shared ontology, and compromises are
difficult to maintain when new concepts are added (Rodriguez and Egenhofer, 2002).
Recently however, significant progress is being made to deal with the issues of ontology
evolution/management (Gandon, 2002) and multi-ontology environments (Mena et al.,
1996; Kashyap and Sheth, 1996; Fonseca, 2001), leading to increased momentum in
developing and applying ontologies.

The main motivation for our work is the need to enhance workflow systems with better
mechanisms for e-service composition. More precisely, we target the development of new
mechanisms for Web services discovery and integration. Our method is novel and provides
a multidimensional approach to Web service discovery and integration using syntactic,
semantic, and operational metrics of Web services (figure 1).

In this paper, we describe the composition process of e-workflows and present an algo-
rithm to be employed when designers need to add Web services to an e-workflow. E-services
can be orchestrated with hard-coded applications or by using workflows. We call a work-
flow which manages e-services and possibly traditional workflow tasks an e-workflow. Our
approach relies on the use of ontologies to describe workflow tasks and Web services inter-
faces. This work is a part of the METEOR-S project, which builds our earlier experiences
in developing METEOR workflow management system with the emerging Web Services
and Semantic Web technologies to support next generation of Semantic Web Processes.

The discovery and integration of Web services into e-workflows has specific require-
ments and challenges as compared to previous work on information retrieval systems and
information integration systems. In this paper, we describe a methodology with the aim to
give a solution to the following objectives and issues:

Increase the precision of the discovery process. The search has to be based, not only on
syntactic information, but also on Web services operational metrics and semantics.
Tasks and Web services operational metrics need to be represented using a suitable model
describing the QoS metrics (Cardoso et al., 2002a).

Enable the automatic determination of the degree of integration of the discovered Web
services and a workflow host.

— The integration of Web services differs from previous work on schema integration due to
the polarity of the schema that must be integrated. The polarity of schema forces an output
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schema to be connected to an input schema. The input schema (ns;) of a new task needs
to be integrated with one or more output schema (s, ) of the tasks connected to it ({s, i,
8025 - -+ So.n} — ns;). The output schema (ns, ) of the new task needs to be integrated with
one or more input schema (s; ,) of the tasks it connects to (ns, — {s;.1, 82, .-, Sin})
This process does not require a full integration of the schema {s, 1, 55,2, - - - , So.» } With
the schema ns;. Only the input schema ns; needs to have its schema fully integrated,
i.e. in order to work properly all its (mandatory) inputs need to be mapped to an output
belonging to one of the schema s, ,. For the integration of the output schema so, the
schema {s; 1, $; 2, ..., Si.n} are the ones that need to be fully integrated.

— Previous work (Paolucci et al., 2002) on Web service discovery does not address the
interoperability problem or heterogeneity of related ontologies.

This paper is structured as follows. Section 2 presents a scenario illustrating the com-
position of an e-workflow and highlights the difficulties involved. Section 3 focuses on
the extension of traditional workflow tasks specifications to semantically describe their in-
terfaces, on the specification of Web services, and on the association of a QoS model to
specify operational metrics for both tasks and Web services. In Section 4, we describe the
composition process of an e-workflow and the structures that are created and manipulated;
these will later be used in the Web service discovery phase. Section 5 represents the core
of our work; we present an algorithm that takes into account syntactic, operational, and se-
mantic information in order to compute the degree of similarity of a Web service template
(structure of the required Web-service according to the designer) and a Web service object
(structure of a real web service). The algorithm evaluates the similarity of its arguments
based on their degree of integration. Section 6 presents the architecture of the prototype we
have developed to demonstrate the concepts introduced in this paper. Section 7 discusses
related work, and Section 8 presents our conclusions.

2. Scenario

A designer is composing an e-workflow to automatically manage the approval of travel
authorization requests to conferences. A partial view of the workflow design is illustrated
in figure 2.

The e-workflow operates in the following way. When an employee desires to attend a
conference, he initializes an instance of the travel authorization request e-workflow. The
first part of the e-workflow is the approval process; it is represented by the letter ‘A’ in the
figure. The approval process allows managers to decide if an employee’s request will be
approved (we have hidden this portion of the workflow for brevity to reduce its complexity.)

If the managers approve the request, the next tasks to be executed are Get Conference
Information, Get User Information, Travel Reservation, and Hotel Reservation. The Get
Conference Information task is responsible for obtaining the date, duration, and the city
where the conference is being held, based on the conference name. To obtain this information
a Web service is chosen and linked to a workflow task. The Get User Information task
retrieves the employee’s name and address based on his ID. The Travel Reservation task is
responsible for making a travel reservation according to the conference date, duration, city;
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Figure 2. Travel authorization request e-workflow.

it is also based on the employee’s personal information. Finally, the Hotel Reservation task
makes the necessary hotel reservation based on the travel itinerary.

Once the tasks involved with the travel and hotel reservation are executed, the portion
of the e-workflow represented by the letter ‘B’ is executed. This part of the e-workflow is
responsible for notifying the user of the travel arrangements made for him.

Let us assume that the designer has already placed the tasks shown in figure 2 on the
canvas. The e-workflow is almost complete; only the Travel Reservation task realization
is missing. The designer manually looks for an appropriate Web service by browsing the
Internet. This process is time consuming, cumbersome, and tedious. Potentially tens or
hundreds of thousands of on-line Web services may be available. Only hundreds provide
the desired functionality, and maybe only handfuls provide the required operational metrics
and interface (i.e., input and output parameters). Furthermore, once a suitable Web service
has been found, it needs to be integrated with the tasks already placed in the workflow. The
designer needs to manually establish data connections among the new Web service and the
tasks already present in the e-workflow, accounting for structural and semantic differences.

2.1. E-workflow composition problems

In the previous scenario, the workflow designer faces two problems: locating a Web service
with the desired functionality and operational metrics to accomplish a specific task and
resolving the structural and semantic differences between the services found and the tasks
and Web services to which it will be connected (using transitions).

‘We cannot expect a designer to discover a Web service manually, since potentially thou-
sands of services are available on the Internet. Thus, efficient discovery mechanisms must be
available. What makes the e-service vision attractive is the ability to automatically discover
the e-services that fulfill users’ needs (Casati et al., 2001). The discovery of a Web service
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cannot only be based on its name or description; it also has to account for its operational
metrics and its interfaces.

The composition of e-workflows cannot be undertaken while ignoring the importance of
operational metrics. Trading agreements between suppliers and customers modeled with
e-workflow include the specification of QoS items such as products or services to be deliv-
ered, deadlines, quality of products, and cost of service. The correct management of such
specifications directly impacts the success of organizations participating in e-commerce
and also directly impacts the success and evolution of e-services itself.

Web services can be seen as black boxes, with an input interface and an output interface.
Since, when integrated into an e-workflow, a Web service has to interoperate at the interface
level with adjacent tasks, the discovery also has to be based on the structural and semantic
properties of its inputs and outputs. Once a Web service is found, it is not realistic to expect
that its interfaces will perfectly match and interoperate with the hosting e-workflow without
additional work. Web services are heterogeneous by nature; we expect the designer will need
to manually establish connections among the Web service interfaces and the tasks present
in an e-workflow. In our example, the designer is faced with the problems of manually
connecting the outputs of the tasks Get Conference Information and Get User Information
with inputs of the task Travel Reservation, and then connecting the outputs of the task
Travel Reservation with the inputs of the task Hotel Reservation. To facilitate this work, a
workflow designer should be assisted by mechanisms that suggest the establishment of a
connection between outputs and inputs that maximizes the degree of integration.

3. Workflow tasks and Web service tasks

We rely on the use of ontologies to semantically describe task and Web service interfaces.
Semantics have been a strong candidate for increasing the success of information discovery
and integration on the Internet; its use has been presented as the next step in the evolution
of the World Wide Web (Fensel and Musen, 2001).

The importance of ontologies is being recognized in research fields as diverse as knowl-
edge engineering, knowledge representation, qualitative modeling, language engineering,
database design, information modeling, information integration, object-oriented analysis,
information retrieval and extraction, knowledge management and organization, and agent-
based systems design (Guarino, 1998). Ontologies are introduced as an “explicit specifi-
cation of a conceptualization” (Gruber, 1993). The use of ontologies for the explication of
knowledge is a possible approach to overcome the problem of integrating heterogeneous
workflow tasks and Web services.

3.1. Ontologies

Anontology 2; = {c, ..., ¢,} contains a set of classes. Each class c; has an associated set
of properties { p, . . ., pm}. Each property has a range indicating a restriction on the values
the property can take. An ontology relates more specific concepts to more general ones
(from which generic information can be inherited). Such links have been variously named
“is a,” “subset of,” “member of,” “subconcept of,” “superconcept,” etc. Such links are used
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to organize concepts into a hierarchy or some other partial ordering, called “taxonomy.”
The taxonomy is used for storing information at appropriate levels of generality and au-
tomatically making it available to more specific concepts by means of a mechanism of
inheritance. More general concepts in such a partial order are said to subsume more specific
concepts, and a more specific concept is said to inherit information from its subsumers.
The notion of ontological concepts is very similar to the notion of classes in object-oriented
programming.

In our implementation, tasks and Web services interfaces are semantically described by
concepts (classes) that are defined in ontologies constructed with DAML + OIL (Horrocks
etal.,2001). Our approach is not dependent on DAML + OIL; other ontology representation
languages could be employed.

3.2.  Extending workflow tasks specifications

In most workflow systems, each task is described by several elements which typically
include a name, a type, a list of input parameters and output parameters, a short textual
description, and a task realization (implementation). A task invocation specifies the number
of input parameters that must be supplied for a proper task realization and the number of
outputs parameters to hold and transfer the results of the task realization to other tasks. In
their simplest form, the input and output parameters can be represented by attributes, or
data components. Attributes are specified with an attribute name, a type, and an optional
initial value. Examples of built-in primitive types include boolean, string, byte, integer, and
real. Data components are represented by classes composed of a collection of attributes.

To enhance the integration of tasks and Web services, workflow components need to have
their inputs and outputs associated with ontological concepts to facilitate the resolution
of structural and semantic heterogeneity. Figure 3 illustrates the establishment of such a
mapping.

Each input and output data class parameter of a task is associated with an ontological
concept class. We assume that each attribute of a data class must have a corresponding
property that belongs to the associated concept class. This assumption can be further relaxed
by considering work in schematic heterogeneity (Kashyap and Sheth, 1996) and schema
mapping (Madhavan et al., 2001).

Primitive data types of attributes (such as byte and double) are represented in the on-
tology by properties which reference data types defined in the XML Schema specification
(XMLSchema, 2001). It would have been possible to associate primitive built-in data types
with ontological concepts or properties. Nevertheless, we have chosen XML Schema be-
cause it provides a comprehensive data type hierarchy, which includes unsigned byte, short,
decimal, non-negative integer, string, and base 64 binary.

3.3.  Web service specification

The emergence and challenges of e-services have directed the development and creation
of mechanisms to support Web services. One fundamental issue is their specification. Two
main approaches have been proposed. One of the approaches uses declarative and structured
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data based purely on syntax, such as WSDL (Christensen et al., 2001) and XLANG (Thatte,
2001). A second approach provides a semantic orientation to the description of Web services.
This is the case in the DAML-S specification (Ankolekar et al., 2001).

Web services are “self-contained, self-describing modular applications that can be pub-
lished, located, and invoked across the Web” (Tidwell, 2000) and therefore are a modern
alternative to the specification of workflow tasks. Since they are self-described, the interop-
eration among independently developed Web services is facilitated. Traditional workflow
tasks, such as non-transactional, transactional, and human tasks (Kochut et al., 1999) can
easily be represented or encapsulated with Web services.

As with WSMF (Fensel and Bussler, 2002), our approach to e-workflow composition
is not dependent on the method chosen to specify Web services. Therefore, any of the
specification languages mentioned above can be employed. For the prototype that we have
developed we have selected the DAML-S specification; more precisely, we use the Service
Profile ontology.

The service profile ontology describes the functionality of a Web service. It tells “what the
service does” (Ankolekar et al., 2001) and is employed to advertise Web services availability
and capability. We have decided to use DAML-S because we need to establish associations
among the inputs and outputs parameters of a Web service with ontological concepts. In
figure 4 we give a partial example of the specification of a Web service using DAML-S.

One of the service inputs is the PreferredClass, and one of the outputs is the Tripltinerary.
Both of them refer to concepts defined in the ontology itinerary-ont.daml.

3.4.  Operational metrics

The operational metrics of tasks and Web services are described using a QoS model. For us,
QoS represents the quantitative and qualitative characteristics of an e-workflow application
which are necessary to achieve a set of initial requirements. E-workflow QoS addresses
the operational issues of workflows, rather than workflow process functions. Quantitative

- <profile:input>

- <profile:ParameterDescription rdf:ID="PreferredClass">
<profile:parameterName>PreferredClass</profile:parameterName>
<profile:restrictedTo rdf:resource="http://

www.daml.org/2001/06/itinerary/itinerary-ont.daml#iclass" />
</profile:ParameterDescriptions>
</profile:input>

- <profile:outputs>
- <profile:ParameterDescription rdf:ID="Itinerary ">
<profile:parameterName>TripItinerary</profile:parameterName>
<profile:restrictedTo rdf:resource="
http://www.daml.org/2001/06/itinerary/itinerary-ont.daml#Flight" />
</profile:ParameterDescription>
</profile:output>

Figure 4. 'Web service specification using DAML-S.
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characteristics can be evaluated in terms of concrete measures such as workflow execution
time, cost, reliability, etc. Qualitative characteristics specify the expected services offered
by the system such as security and fault-tolerance mechanisms. QoS should be seen as
an integral aspect of workflows, and therefore it should be integrated with tasks and Web
services specifications.

While the DAML-S specification that we use includes constructs to specify quality of
service parameters, such as quality guarantees, quality rating, and degree of quality, the
specification does not provide a detailed set of classes and properties to represent quality of
service metrics. The model needs to be extended to allow for a precise characterization of
each dimension in order to permit the implementation of algorithms for the automatic com-
putation of QoS metrics of processes based on their sub-processes’ QoS metrics. Therefore,
we have developed our own model.

We have investigated relevant work to determine which dimensions would be relevant
to compose a more suitable QoS model for the automatic computation of QoS metrics. We
have constructed a model composed of the following dimensions: time, cost, reliability, and
fidelity (Cardoso et al., 2002b). Since fidelity is subject to judgments and perceptions, we
have decided to omit its specification and analysis in this paper. Nevertheless, a thorough
study can be found in Cardoso et al. (2002a).

While in this paper we do not discuss the computation of QoS metrics, comprehensive
solutions to the difficult problems encountered in synthesizing QoS for composite services
are discussed in detail in Cardoso et al. (2002b). This paper presents a stochastic workflow
reduction algorithm for computing aggregate QoS properties step-by-step.

3.4.1. QoS dimensions. Based on our model, we have developed ontology for the speci-
fication of QoS metrics (for tasks and Web services).

Time is a common and universal measure of performance. Task response time (T) corre-
sponds to the time a workflow instance takes to be processed by a task. The task response
time can be broken down into two major components: delay time (DT)—the non-value-add
time needed in order for an instance to be processed by a task and process time (PT)—the
time a workflow instance spends at a task while being processed.

Cost (C) represents the cost associated with the execution of workflow tasks. During
workflow design, prior to workflow instantiation and during workflow execution it is neces-
sary to estimate the cost of its execution to guarantee that financial plans are followed. It can
be broken down into two major components: enactment cost and task realization cost. The
enactment cost (EC) is the cost associated with the management of the workflow system
and workflow instances monitoring. The task realization cost (RC) is the cost associated
with the runtime execution of the task.

Task Reliability (R) corresponds to the likelihood that the components will perform when
the user demands them. It is a function of the failure rate. Each task structure has an initial
state, an execution state, and two distinct terminating states. One of the states indicates thata
task has failed or was aborted, while the other state indicates that a task is done or committed
(Krishnakumar and Sheth, 1995). This QoS dimension provides information concerning
the relationship between the number of times the state done/committed is reached, and the
number of times the failed/aborted state is reached. To describe task reliability we follow
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Table 1. Task QoS for a manual task.

Basic class Distributional class
Min value Avg value Max value Dist. function
Time 192 196 199 Normal (196, 1)
Cost 576 576 576 576.0
Reliability 100% 100% 100% 1.0

a discrete-time modeling approach. Discrete-time models are adequate for systems that
respond to occasional demands, such as database systems. We use the stable reliability
model proposed by Nelson (1973), for which the reliability of a task 7 is R(t) = 1—failure
rate.

3.4.2. Dimensions characterization. For each dimension, the description of the opera-
tional runtime behavior of a task is composed of two classes of information: basic and
distributional.

The basic class associates with each task’s QoS dimension the minimum value, average
value, and maximum value the dimension can take. For example, the cost dimension cor-
responds to the minimum, average, and maximum cost associated with the execution of a
task.

The second class, the distributional class, corresponds to the specification of a constant or
of a distribution function (such as Exponential, Normal, Weibull, or Uniform) which statisti-
cally describes task behavior at runtime. The values specified in the basic class are typically
employed by mathematical methods in order to compute workflow QoS metrics, while the
distributional class information is used by simulation systems to compute workflow QoS.

Table 1 shows an example of the specification of QoS metrics for a task from a genomic
workflow (Cardoso et al., 2002a).

4. The e-workflow composition process

The composition of e-workflows differs slightly from the design of traditional workflows.
A typical scenario of the composition process is as follows. The designer composes an
e-workflow for which several traditional workflow tasks (e.g. human, non-transactional,
and transactional tasks) and Web service tasks have already been placed and interconnected
on the canvas. Tasks with a realization are called grounded tasks (GT). When the designer
wishes to add a Web service to the workflow, he starts by creating a service template (ST)—
see Section 4.1 for the formal specification of a ST. The ST will be employed later to find an
appropriate Web service. Once a ST is created, it is sent to the Web service discovery module,
which returns a set of service object (SO) references that are ranked according to their
degree of similarity—syntactic, operational, or semantic with ST. The designer then selects
the most appropriate Web service to accomplish his objectives (Section 6 shows an example
of the SOs retrieved from the discovery process). The selection automatically associates a
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Figure 5. GT, ST, and SO structures.

realization with the ST, causing it to change its state to a grounded task. Additionally, a set
of data mapping is presented to the designer suggesting a possible interconnection among
the newly created task interfaces and the grounded task interfaces.

The construction of a ST is illustrated in figure 5. The outputs of the GTs Get Conference
Information and Get User Information (Date, Duration, City, User Name, and Address)
are employed to construct the outputs of the ST. The input of the GT Hotel Reservation
(Itinerary) is employed to construct the inputs of the ST. The user manually sets the name,
description, and QoS model of the Web service to be found.

4.1. E-workflow integration components

The composition process described in the previous section involved the manipulation of
three distinct structures: GT, ST, and SOs. In this section, we formally describe each
structure.

4.1.1. Grounded tasks. Grounded tasks (GT) have a realization and contribute to the
achievement of the e-workflow goal. A GT is formally defined as follows:

GT(t) = (QoS, Is, Os)

Where ¢, QoS, Is, and Os are the name of the task, its QoS, a set of input parameters, and
a set of output parameters, respectively. The QoS specification associated with a GT is to
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be used by algorithms to synthesize the QoS of workflows based on the QoS metrics of the
tasks and the Web services that compose the workflow (Cardoso et al., 2002a).

For example, in our initial scenario, the tasks Conference Registry, Get User Information,
and Hotel Reservation are grounded tasks. The GT Conference Registry has the following
structure:

GT(“GetConferencelnformation™)
= ({time.max = 50, reliability.avg = 0.95, cost.max = 12.4}, {*Conference”},
{“Date”, “Duration”, “City”’})

4.1.2. Service template. 'When a designer needs to search for a Web service to be integrated
into an e-workflow, a service template (ST) is created. A service template represents the
intent of the designer to extend the functionality of an e-workflow, bringing the process closer
to its ultimate goal. STs do not have a realization associated with them; they represent a
structure or blueprint that the designer uses to indicate the characteristics of the Web service
that is needed. A ST is specified as:

ST = (sn, sd, QoS, Os, Is)

Five fields exist: sn, sd, QoS, Os, and Is. The sn variable corresponds to the name of
the Web service to be found. We will see later that the name specified does not have to
syntactically match exactly with the name of the Web services to be discovered. The sd,
QoS, Os, and Is fields correspond to a textual description, the operational metrics, and a set
of output and input parameters, respectively, of the Web service to be found.

The set of output parameters corresponds to the set of the output parameters of the
tasks connected to a ST, and the set of input parameters corresponds to the set of the input
parameters of the tasks the ST will be connected to. Lets us indicate the GT's to be connected
to a ST with the symbol >st, and the GTs that the ST connects to with st<. Then,

Os = U output(gt), Is= U input(gt)

grest> gre<st

For example, our scenario contains one service template, the Travel Reservation template
(represented by a dotted circle in figure 2) that holds the following information:

ST = (“Travel_Agency”, “A travel agent service that provides
flight reservations based on the specification of a flight request”,
{cost.max = 50, time.avg = 5}, {“Date”, “Duration”, “City”’}
{“UserName”, “Address”}, {“Itinerary”})

4.1.3. Service object. The service object is a structure that holds the description of a real
Web service. As stated earlier, we specified Web services semantically. A SO is formally
described as follows:

SO = (sn, sd, QoS, Is, Os)
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The structure is composed of five concepts: sn, sd, QoS, Is, and Os. The fields of a SO
have the same meaning as the ones defined in a ST. This makes sense because SOs will be
matched against STs.

5. Matching ST and SO

The Web service discovery and integration process is carried out by a key operation: the
match function. The matching step is dedicated to finding correspondences between a
service template and a service object. During the discovery phase, the match function is
employed to successively match a ST against a set of SOs using syntactic, operational, and
semantic information, which are possibly advertised in a registry (e.g. UDDI). The SOs
are ranked based on their degree of similarity and connections between the SO interfaces
that maximize the degree of integration with the ST The user may then select the Web
service with the highest degree of similarity and manually solve the schematic differences
not already solved by the system. We have constructed a system which implements the
above idea.

— Syntactic Similarity: The syntactic similarity of a ST and a SO is based on their service
names and service descriptions.

— Operational Similarity: The operational similarity of a ST and a SO is calculated based
on the metrics specified in their QoS model. The purpose is to determine how close two
Web services are, as based on their operational capabilities.

— Semantic Similarity: We rely on semantic information to evaluate the similarity of con-
cepts and properties that define the ST and SO interface since users may express the
same concept in different ways (Sheth and Kashyap, 1992; Lee et al., 1993) and syntac-
tical methods are insufficient. This evaluation will be used to calculate their degree of
integration.

5.1.  Syntactic similarity function

The syntactic similarity of a ST and a SO is calculated with the function SynSimilarity(ST,
SO). The similarity computation relies on the SynNS(ST, SO) and SynDS(ST, SO) functions,
and the weights @ and @,. The functions SynNS and SynDS are binary functions that
compute the degree of similarity between two service names, and two service descriptions,
respectively. Both functions return a real value between 0 and 1, indicating the degree of
syntactic similarity. The weights @ and @, are real values between 0 and 1; they indicate
the degree of confidence that the designer has in the service name and service description
he supplied when constructing a ST.

SynSimilarity(ST, TO)

. @1 SynNS(ST .sn, SO.sn) + w,r,SynDS(ST .sd, SO.sd) 0. 1]
o) + @ '

w, m € [0, 1]
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High weight values indicate the designer’s confidence in the supplied information. For
example, let consider that a user is searching for a service and supplies the service name
“Travel Agency” and a service description “Accepts a quote request for air travel.” The
user has allowed the association of a weight with the service name and with the service
description. If the user is not confident about the service description given, the weight @,
can be set to a low value, for example 0.20. If the user is certain of the service name given, the
weight @) can be set to 0.8. Please note that sum of the weights does not have to add up to 1.

It is not realistic to expect that the majority of users will understand the relationship
between information confidence and weighting. In view of the fact that humans often feel
awkward in handling and interpreting such quantitative values (Tversky and Kahneman,
1974), we have constructed a mapping table that establishes a correspondence between
quantitative values and a qualitative scale (Miles and Huberman, 1994). Thus, instead of
explicitly specifying quantitative values, the designer can optionally select qualitative terms.
An example of a mapping table (which can be customized) is expressed in Table 2. The
articulation of the weights @ and @, depend on the designer’s experience. Therefore we
expect the designer to go through a learning curve of a relatively short period.

Several methods can be employed to match service names and descriptions. Name Sim-
ilarity can be defined and measured in various ways, including equality of name, canonical
name representations after stemming and other preprocessing, synonyms, similarity based
on common sub-strings, pronunciation, and soundex. Service descriptions are comments in
natural language that express the intended semantics of a service. These comments can be
evaluated linguistically to determine the similarity between services. The linguistic anal-
ysis can be as simple as extracting keywords from the descriptions which are used for
synonym comparison, much like names, or it could be as sophisticated as using natural
language-understanding technology to look for semantically equivalent expressions.

In our approach, we use “string-matching” as a way to calculate similarity. The functions
SynNS(n, ny) and SynDS(d, d,) evaluate syntactic similarity by considering the number
of g-grams (Zamora et al., 1981; Angell et al., 1983; Salton, 1988) that their arguments
have in common. To achieve a better comparison between two service descriptions we pre-
process the descriptions. A common stop list is applied to remove common words with no
information value such as “and” and “of” (Fox, 1992); words are also reduced to their stem
by removing prefixes and suffixes (Porter, 1980), and duplicates are eliminated. Table 3
shows the results of two examples of calculating how close two Web service names are.

Table 2. Confidence mapping table.

Qualitative Uncertain Hesitant Optimistic Confident Certain

Quantitative [0.0, 0.2] [0.2,0.4] [0.4,0.6] [0.6, 0.8] [0.8, 1.0]

Table 3. Comparing web service names.

Service name A Service name B Result

“The Travel Agency” “Travel Agent” 0.87
“The Travel Agency” “An Internet Travel Agent” 0.63
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Edit distance algorithm (Levenshtein, 1966) can also be considered. For the service
description comparison, techniques borrowed from the information retrieval area may also
be considered. For example, the frequency-inverse document frequency (Salton, 1988)
weighting (TF-IDF) has been used in the LARKS system (Sycara et al., 1998) to match
heterogeneous agents on the Internet. A very good source of information retrieval techniques
can be found in Belew (2000). There is some evidence that combining different ranking
methods to yield a new method can improve performance, possibly through capturing the
best of the different methods (Losee, 1988; Hull et al., 1996).

5.2.  Operational similarity function

The operational similarity of a ST and a SO is calculated with the function OpSimilarity(ST,
S0O). The binary function OpSimilarity computes the geometric distance of the QoS dimen-
sions specified in the ST and the ones specified in the SO. The function returns a real value
between 0 and 1, indicating the similarity of the operational metrics of its arguments. The
closer to the value 1 the result is, the more similar a SO is to a ST.

t = QoSdimD(ST, SO, time)

¢ = QoSdimD(ST, SO, cost)

r = QoSdimD(ST, SO, reliability)
OpSimilarity(ST, SO) = N/t x ¢ X 1

The distance of two QoS dimensions is calculated using function QoSdimD(ST, SO,
dim), where dim is a dimension. The function calculates the geometric distance of the
distance of the individual components making up the dimension dim (i.e., the minimum,
average, and maximum value the dimension can take) of the ST and of the SO. The distance
of two dimension components is called the dimension component distance (dcd).

Q0SdimD(ST, SO, dim)
= \/ dcdyin(ST, SO, dim)dcd g (ST, SO, dim)dcd o (ST, SO, dim)

Three dcd functions exist: dcd,y,i, (ST, SO, dim), dcd,, (ST, SO, dim), and dcd,p,, (ST,
SO, dim). The dcd,,;,,(ST, SO, dim) is defined as follows:

|min(SO.qos(dim)) — min(ST.qos(dim))|
min(ST.qos(dim))

ded iy (ST, SO, dim) =1 —

The definition of the other two functions is similar; the symbol “min” should be replaced
with “avg” or “max”. The functions min, avg, and max return the minimum, average, and
maximum, respectively, of the QoS dimension specified in the argument.

Table 4 shows an example of how to compute the distance of two QoS dimensions for
the time dimension. The metrics shown are from the task Prepare Sample from a genomics
process (Cardoso et al., 2002a). The results indicate a high similarity between the time
dimension metrics of the ST and of the SO.
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Table 4. Example on how to calculate the QoS distance for the time dimension.

Min Avg Max
ST 190 197 199
SO 192 196 199
dcd, (ST, SO, time) 1 - 15220501 1 — 96=157| 1 — U819
QoSDimD(ST, SO, time) S8 x 18 % 1=0.99

5.3.  Semantic integration

Web service integration differs from previous work on information integration due to the
number of services involved, the potential number of ontologies employed to describe
service interfaces, and the polarity of input/output schema. Solutions involving a semiauto-
matic integration, requiring user input that defines similarities between terms or semantic
interrelations (Hammer et al., 1994; Kashyap and Sheth, 1996; Bergamaschi et al., 1998)
are not adequate for the Web service integration problem. We desire to develop a mechanism
that automatically computes the similarity of two services. We now present our algorithm
to compute the degree of integration of a ST and a SO.

5.3.1. Semantic integration function. The semantic integration function Dintegration(ST,
SO) is a binary function that returns the degree of integration between its operators. The
operands are a service template (ST) and a service object (SO), and the result is a real value
between O and 1.

Dintegration(ST, SO) € [0, 1]

The underlying goal of the function is to establish a mapping between the output of the
ST (ST.0) and the input of the SO (SO.I) and a mapping between the output of the SO
(8§0.0) and the input of the ST (S7'.7) that maximize the degree of integration.

Depending on the data present in a service template, four distinct cases can occur when
comparing input and output parameters. The definition of the function DIntegration captures
these four cases.

Dintegration(ST, SO)

I1(ST.0s,S0.1Is) + I1(SO.0s,ST .Is)
15015 5 STIL_ ST.Os # @, ST.Is £ ©
T1(ST.0s, SO.I
IGT.05, S0.Is) ST.Os # 0, ST.Is = &
— 1SO.Is|
T1(SO.0s, ST.Is)
ko) ST.Os = @, ST.Is # @
ST Is|
0, ST.Os =@, ST.Is = @
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The simplest case occurs when a ST does not specify any inputs or outputs. In this case,
the integration degree is evaluated to 0. If a ST only specifies a set of outputs and no inputs,
then the function I1(Os, Is) is employed to compute the semantic mapping between the
outputs Os of the ST and the inputs Is of the SO. The result of applying the function IT
is normalized with respect to the number of inputs being mapped. A task or Web service
always needs to have its mandatory inputs satisfied with data in order to correctly carry out
its intended function. Optional inputs are not taken into account. Nevertheless, a designer
may explicitly mark an optional input as mandatory. The same concept is applied if the ST
includes inputs but no outputs.

Finally, if a ST includes both a set of outputs and a set of inputs the mapping function
IT is applied to both sets. In this case, we compute the arithmetic mean of the normalized
results from the evaluation of function ITl. We use the arithmetic mean because we give the
same importance to the normalized semantic mapping of the ST outputs with the SO inputs
and the normalized semantic mapping between SO outputs with ST inputs.

5.3.2. Mapping inputs and outputs. The function IT1(Os, Is), where Os is a set of output
parameters and Is a set of input parameters, computes the best mapping that can be obtained
from connecting the outputs of the set Os to the inputs of set Is.

Max(T1I(Os — O, Is — 1)+ (0, 1)), Os,Is# 2,0 € Os, I €ls

I1(0s, Is) =
0, Os=0VIs=0

Please note that the number of mappings established is Min(|Os|, |Is|). Each output O of
Os is matched against each input I of Is. Their semantic similarity degree is evaluated with
function (O, I'). Since input/output parameters are associated with ontological concepts
(see Section 3.2), the function 7 (O, I) compares two concept classes represented by O
and /.

If the concepts are from the same ontology, i.e. Q(O) = Q(I), the function SemS' (O, I)
is employed to evaluate their similarity; otherwise, if they are from distinct ontologies,
ie. Q(0) # Q(I), the function SemS”(0, I) is used. The result of function SemS” is
normalized with respect to the number of properties of the input concept I. As we will
see, the evaluation of the similarity of two concepts is based on their composing
properties.

5.3.3. Comparing outputs and inputs from the same ontology. The function SemS' (O, I)
evaluates the similarity of two concept classes associated with an output (O) and an input
(1), conceptualized within the same ontology. Please note that at this stage the functions
are working with property information specified in ontologies. Four distinct scenarios can
occur: a) the concepts are the same (O = I), b) the concept I subsumes concept O (O > 1),
c) the concept O subsumes concept I (O < I), or d) concept O is not directly related to
concept / (O # I).Inthe latter case, the concept O does not have a parent/child relationship
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with concept I, but both concepts have a parent concept in common.

1, 0=1
1, 0 >1

SemS'(0. 1) = { |p(O) 01
lp(D)|’

Similarity' (0, 1), O # 1

In the first case, as the two concepts are equal then their similarity is one. In the second
case, if the concept I subsumes the concept O, their similarity is also evaluated to 1. The
similarity is maximal since if an output concept O is a subclass of an input concept / it
has at least the same set of properties as /. Thus, all input properties have a corresponding
output property associated with them. In the third case, the concept O subsumes the concept
I (O < I). As aresult, some properties of the concept I may not have an output property
associated with them. The similarity is set to the ratio of the number of properties of concept
O (represented with |p(0O)|) and the number of properties of concept I (| p(1)]). This ratio
indicates the percentage of input properties of the SO that are satisfied by output properties
of the ST.

In the last case, the concepts O and I are not equal and do not subsume each other in any
way. In this case, for assessing similarity, Tversky’s feature-based similarity model (Tversky,
1977) has been considered as the most powerful similarity model to date (Richardson and
Smeaton, 1995).

Tversky introduced a general feature-counting metric for similarity called the feature-
contrast model. This model is based on the idea that common features tend to increase the
perceived similarity of two concepts, while feature differences tend to diminish perceived
similarity. For instance, a SUV (Sport Utility Vehicle) and a sedan are similar by virtue of
their common features, such as wheels, engine, steering wheel, and gears, and are dissimilar
by virtue of their differences, namely height and the size of the tires.

Based on Tversky’s model, we introduce a similarity function based on the number of
properties shared among two concepts ¢; and c¢;. Our similarity function is defined as
followed, where the function p(x) retrieves all the properties associated with a concept a
and function |s| corresponds to the number of elements in the set s.

[p(O) N p(I)| y [p(O) N p(D)|
[p(O)U p(1)| [p(1)]

simularity’ (O, I) = \/

The similarity' (O, I') function computes the geometric distance between the similarity
of the domains of concept O and concept / and the ratio of matched input properties from
the concept 1.

As an example, let us illustrate the use of function SemS'(O, I) for the four cases—(a),
(b), (¢) and (d)—that can occur when connecting an output O to an input / (see figure 6).
In our example, both input and output are conceptualized with concepts from the same
ontology, i.e. 2(0) = (/) = Time ontology (an example using difference ontologies is
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Table 5. The four examples illustrated in figure 6.

ST Output SO Input
(a) STy Date (1) — SO, Date (1)
(b) STy Date (1) — SO, Time-Point (2)
(c) STy Date (1) — SO3 Calendar-Date (3)
(d) ST, Calendar-Date (2) — SOy Event (4)

given in the next section). The time ontology is not fully represented in figure 6; only the
concepts that are employed in our example are shown. The four cases that may occur are
listed in Table 5 and are evaluated as follows:

— In case (a), both O and I are associated with the same concept (Date). Since the output
of the ST matches perfectly the input of the SO, the similarity is evaluated to 1.

— Incase (b), the output O is associated with the concept Date, and the input / is associated
with the concept Time-Point. Since the concept Time-Point subsumes the concept Date,
the properties of the concept Date (the set {absolute_time, year, month, day }) is a superset
of the properties of the concept Time-Point (the set {absolute_time}). All the properties
of I existin O. As a result, the similarity is evaluated to 1.

— In case (c), the output O is associated with the concept Date and the input [ is as-
sociated with the concept Calendar-Date. Since the concept Date subsumes concept
Calendar-Date, the properties of the concept Date(the set {absolute_time, year, month,
day}) is a subset of the properties of the concept Calendar-Date (the set {dayOftheWeek,
monthOftheYear, absolute_time, year, month, day}). In this case, when the output O
is connected to the input / some properties of / are left unfulfilled (the properties
dayOftheWeek and monthOftheYear). To indicate this mismatch the similarity is set
to the ratio of the number of properties of O and the number of properties of 7, which in
this case is | p(O)|/|p(I)] = 4/6 ~ 0.67.

— In the last case (d), the output O of the ST} is associated with the concept Calendar-Date
and the input / of the SO, is associated with the concept Event. The concept Event
has the set of properties {absolute_time, year, month, day, hour, minute, second} and the
concept Calendar-Date has the set of properties {dayOftheWeek, monthOfthe Year, abso-
lute_time, year, month, day}. Since the concepts do not have a parent/children relation-
ship, the function similarity' (O, I is used to compute the geometric distance between the
similarity of the domains of concept Calendar-Date and concept Event and the percent-
age of input properties that are fulfilled with an output property from O. The similarity
is evaluated as follows:

s1 = p(Calendar-Date) = {dayOftheWeek, monthOfthe Year, absolute_time,year,
month, day}

52 = p(Event) = {absolute_time, year, month, day, hour, minute, second}

s3 = p(Calendar-Date) N p(Event) = {absolute_time, year, month, day}
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s4 = p(Calendar-Dates) U p(Event) = {dayOftheWeek, monthOfthe Year, absolute_time,
year, month, day, hour, minute, second}

4 4
similarity'(Calendar-Date, Event) = M X M =,/=-x =~0.504
[sa] szl 9 7

The result of evaluating the function similarity' (Calendar-Date, Event) indicates a low
degree of integration between the concepts Calendar-Date and Event. On one hand, the
concepts show a low similarity according to the feature-contrast model (<0.504). On the
other hand, only four out of the seven input properties are connected to output properties.

5.3.4. Comparing outputs and inputs from distinct ontologies. The problem of deter-
mining the similarity of concepts defined in different ontologies is related to the work on
multi-ontology information system integration. Our approach for this problem uses the
same rationale that we have exploited earlier to compare input and output concepts from
the same ontology without any parent/child relationship. Additionally, we also take into
account syntactic similarities among concepts.

Since we compare input and output concept classes based on their properties, the first
step is to find the best mapping between output and input concept properties. This objective
is achieved using the function SemS”(O, I), which is very similar to function IT(Os, Is)
previously defined as being able to find the best mapping between a set of outputs and a set
of inputs.

SemS"(0, I
Max(SemS" (O — o, 1 —i)+ S(0,i)), O #0,1#0,0€0,i€l
~ o, O=o0VvI=0

A property o is associated with a property i that maximizes the semantic similarity
computed, using the function S(o, ). The function S(o, i) calculates the similarity between
a property o and a property i. Three distinct cases are considered: (1) the ontological
properties involved are associated with a primitive data type (see Section 3.2), (2) the
properties are associated with concept classes, and (3) one property is associated with a
primitive data type, while the other is associated with a concept class. The function S(o, i)
is shown below.

d,; = SemDS(d(0), d(i))
no,i = SynS(n(o), n(i))
roi = SemRS(r(0), r(i))
m , o andi are primitive types
S(0,i) = 1d,., o and i are concept classes

f(o, 1), otherwise
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In the first case, the similarity of the properties is computed based on the geometric dis-
tance of (a) the semantic similarity of their domains (i.e., concept classes), (b) the syntactic
similarity of their names, and (c) the semantic similarity of their ranges.

(a) The semantic similarity of the domains of two properties, d(0) and d(i), is evaluated
using function SemDS(od, id), which is based on Tversky’s model.

|p(od) N p(id)|

SemDS(od, id) = \p(od) U pid)|

Two elements intersect if their syntactic similarity, using the g-grams methodology (see
Section 5.1), is greater than a constant ¢ (we are currently using ¢ = 0.75).

(b) The syntactic similarity of property names is calculated using the function SynS(n, n,).
This function uses g-grams to determine the similarity of two property names.

(c) The semantic similarity of the ranges of two properties, r(0) and r (i), is evaluated using
the function SemRS(r(0), r(i)) defined below.

The function SemRS(or, ir) indicates the validity and the integration degree that is ob-
tained when output and inputs are primitive data types. This function is automatically
created based on the capabilities of the WIMS where the e-workflow being constructed will
be enacted.

1, or=ir

1, or = integer, ir = string

or = long, ir = integer

2
. 3’
SemRS(or, ir) = |

, or = double, ir = integer

3
1, or = integer, ir = long
0

, otherwise

For example, if a WfMS can map an output property of task a, with range integer, to an
input property of task b, of range long, this can be indicated by adding the following entry
to function SemRS:

1, or = integer and ir = long

The similarity is maximal, and it is set to 1, since the WfMS can map an integer data type
to a long. When an association between two data types is not valid, the function SemRS
returns 0. In other situations, it is possible to specify a fuzzy degree of integration by setting
the similarity to a value greater than zero and less than one since a loss of information may
occur.

1/3, or = double and ir = integer
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In the second case (2) of function S(o, i), since 0 and i are concept classes, we use the func-
tion SemDS (0, i) to compute their similarity. The function SemDS evaluates the similarity of
two concept classes only in a shallow fashion. An alternative is to use a deep-based similar-
ity function (i.e., recursively compare subclasses). This can be achieved by substituting the
function SemDS(o, i) present in function S(o, i) with the function SemS”(od, id)/|p(id)|.

In the third case (3), function f(o, i) is used to calculate the similarity among a property
associated with a basic data type and a property associated with a data class. For the definition
of this function we rely on the concept of dynamic attributes that has been proposed in
(Litwin and Abdellatif, 1986) to specify the mappings between different attributes. The
idea is to define a function or a set of functions that indicate the possible mappings between
a property and a concept class. Examples of such mappings can be found in Kashyap and
Sheth (1993).

Let us illustrate the use of functions SemS” (0, I) and S(o, i) with the example shown in
figure 7.

To makes the example easier to understand, the ST employed to find a SO only specifies
a set of outputs, with no inputs. Furthermore, we carry out the computation of function
SemS” (0, I) for only one of the outputs of the ST (the TheDate parameter) and for only
one of the SO inputs (the inputs are represented with the indexes 1 through 5 in figure 7). We
consider that five SOs (SO 734 and SOs) are present in the registry during the discovery
procedure. The five cases are shown in Table 6.

During the discovery process, the ST is compared with each SO individually. Therefore,
the function SemS” (O, I) is applied five times. In figure 7, the computation of the function
between the output of a ST and the input of a SO, _5 is represented with a letter (a, b, c, d,
ore).

Let us start with the computation of function SemS”(O, I) to evaluate the degree of
integration of the concept class TheDate (from the DateTime ontology) and the concept
class Calendar-Date (from the Time ontology). Figure 8 shows the mappings.

For each connection shown in figure 8, function S(o, i) is called on to evaluate the degree
of integration among two properties. Since in our example the output and input properties
of the concept classes O and I reference primitive data types, function S will uniquely use
the case (1) described previously. This corresponds to the use of the following function:

\3/SemDS(d(0), d(@)) x SynS(n(o), n(i)) x SemRS(r(0), r(i))

Table 6. The five examples illustrated in figure 7.

ST Output SO Input
(a) ST TheDate — SO, Date
(b) ST TheDate — SO, Calendar-Date
(c) ST TheDate — SO3 Event
(d) ST TheDate — SOy Scientific-Event
(e) ST TheDate — SOs Time-Point
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Q(DateTime) Q(Time)
2
TheDate ( ) »{ ) Calendar-Date
gYear: short absolute_time: long

gMonth: short o e year: long
gDay: short = manth: integer
day: integer

dayOftheWeek: string
monthOftheYear: string

Figure 8. Evaluating the degree of integration.

Let us trace the computation of S(o, i) with o = “gDay” and i = “day”. The func-
tion SemDS evaluates the similarity of the domains (concept classes) of properties o and
i. The properties “gDay” and “day” have the domain concepts TheDate and Calendar-
Date, respectively, i.e., d(“gDay”’) = TheDate and d(“day”) = Calendar-Date. Therefore,
SemDS(TheDate,Calendar-Date) is evaluated the following way:

p(TheDate) = {gMonth, gYear, gDay}
p(Calendar-Date) = {absolute_time, year, month, day,
dayOftheWeek, monthOftheYear}
| p(TheDate) N p(Calendar-Date)|

| p(TheDate) U p(Calendar-Date)|
=0.5

SemDS(TheDate, Calendar-Date) =

This result, 0.5, indicates that the domains of properties o and i are somewhat similar,
which follows our perception that the concepts TheDate and Calender-Date are similar.

The second function to be evaluated is SynS(no, ni). This function computes the syntactic
similarity of the property names no and ni. In our example, the similarity of properties gDay
and day is evaluated to 0.8. Other examples of the application of the function SynS:

SynS(gDay, dayOfTheWeek) = 0.29
SynS(gMonth, monthOfTheYear) = 0.44

The last function to be evaluated is function SemRS(r(0), r(i)), which calculates the
similarity of the ranges of properties o and i. For the properties gDay and day, the following
metric is obtained

SemRS(r(g Day), r(day)) = SemRS(short, integer) = 1.0

An example of a connection among properties not supported or desired is the following
one:

SemRS(r(gDay), r(dayOfTheWeek)) = SemRS(short, string) = 0.0
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Table 7. Examples of the evaluation of function S(o, 7).

0 i SemDS SynS SemRS N
gMonth dayOfTheWeek 0.5 0.12 0.0 0.0
gYear monthOfTheYear 0.5 0.35 0.0 0.0
GDay Month 0.5 0.0 1.0 0.0
GDay Year 0.5 0.0 1.0 0.0
GDay Day 0.5 0.8 1.0 0.74
GDay Time 0.5 0.0 1.0 0.0
GDay monthOfTheYear 0.5 0.0 0.0 0.0
GYear Year 0.5 0.86 1.0 0.75
GMonth monthOfTheYear 0.5 0.44 0.0 0.0
gMonth Month 0.5 0.89 1.0 0.76

Table 8. Example of computing function SemS” (O, I).

ST o SO 1 SemS" (0, I)
(a) ST TheDate SO, Date 2.58
(b) ST TheDate SO, Calendar-Date 2.25
(c) ST TheDate SO3 Event 2.14
(d) ST TheDate SOy4 Scientific-Event 2.05
(e) ST TheDate SOs Time-Point 0.00

Having calculated the functions SemDS, SynS, and SemRS, we can now compute function
S. The result of evaluating S(gDay, day) is,

V0.5 x0.8 x1=0.74

Table 7 shows the results of applying function S(o, i) to various properties of the concept
classes TheDate and Calendar-Date.

Once all the possible mappings between the properties of the output concept class TheDate
and the input concept class Calendar-Date are evaluated, the function SemS”(TheDate,
Calendar-Date) returns the result shown in Table 8 line b). The table also shows the results
for all the five cases initially considered in figure 7.

The function SemS” (O, I) returns the cumulative degree of similarity of the mappings
between two concept classes. The results of applying function 7w (O, I) to our example is
shown in Table 9.

It can be seen that function 7 (O, I) returns values closer to 1, when the concept classes
being compared exhibit a higher degree of similarity. This is the case for the concepts
Q(DateTime).TheDate and Q(Time).Calendar-Date. When two concepts are not similar
the function returns 0, which is the case for the concepts 2(DateTime).TheDate and
Q(Time).Time-Point.
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Table 9. Example of computing function 7 (O, I).

ST o SO 1 (0, 1)
(a) ST TheDate SO, Date 0.65
(b) ST TheDate SO, Calendar-Date 0.38
(c) ST TheDate SO3 Event 0.31
(d) ST TheDate SOy Scientific-Event 0.26
(e) ST TheDate SOs Time-Point 0.00

5.3.5. Mapping outputs with inputs. While the algorithm presented does not explicitly
show how the mapping between the outputs and inputs of two services which maximize the
degree of integration is constructed, this is achieved by keeping track of the best mapping
obtained when computing function IT(Os, Is) and function SemS”(O, I).

6. System architecture

The core of our work has already been presented in the previous section, with the description
of the algorithm to match a ST against a set of SOs. Therefore, in this section we will only
briefly describe the architecture of our system prototype that is part of the METEOR-
S system. Our system is composed of two main services: registry service and discovery
service, as illustrated in figure 9. The services available to users and to the WfMS are both
implemented using servlets and are accessible through HTTP. We are considering extending
the access to allow RMI calls.

Suppliers access the registry service to advertise and unadvertise their Web services.
To make an advertisement, a supplier registers a DAML-S service object (SO) with

Web Server
. .i;!egimr.y T
Senrice[Name URI Input |Output
- ' Workflow Management System
| s0 DAML-S

0
— b Qe L
[ Fte:]\;if!er ].—‘ ‘ Saarc:r?r:ELl;gine }4—‘ :5 .-'El_'g_ent . O?o o

. Sedich
| Parse DAML-S |q—| Discovery Service |‘
_ DAML-S

N - W Advertise
Service
- R — Service
Unadvertise ™~
Seruigé Name

Figure 9. System architecture.
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Figure 10. The Web service discovery page.

the system. To unadvertise a service, the only information necessary is the name of the
service.

Clients and customers typically access the system to find Web services previously reg-
istered (figure 10). This is achieved by sending a service template (ST) to the system.
The service template specifies the requirements about the service to discover. Service tem-
plates are described using DAML-S, more precisely by using the profile.daml ontology (see
Section 3.3).

Once the system receives an advertisement or a discovery message, the SO or the ST
received are parsed, using the Jena toolkit (Jena, 2002). The information retrieved from
parsing a service advertisement is stored in a registry (figure 9). The registry is a service
capability table, where service descriptions are added or removed in response to advertised
and unadvertised messages. The registry table and its contents are stored in physical memory
for fast access.

The results are ranked according to the criteria specified—(syntactic, semantic, and op-
erational metrics) when the ST was sent to the system (figure 10). Better matches are
characterized by a score closer to 1. Finally, the ranked candidates are returned to the entity
that issued the query. Figure 11 shows the results of a query. For each SO present in the
registry, a detailed information sheet comparing it against the ST is constructed. It includes
the results of evaluating the SO against the ST: syntactically, based on operations, and se-
mantically. Finally, it also includes the suggested data mappings between the ST and the
SO (which outputs should be connected to which inputs).
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7. Related work

Our work is directly related to ontology-based Web service discovery, search, match, and in-
tegration, and indirectly related to information retrieval systems and information integration
systems.

The work that most closely relates to ours is described in Paolucci et al. (2002). They
present an algorithm that deals with the localization of Web services, but they do not
address the interoperability problem. Their system also uses the service profile ontology
from the DAML-S specification language. Their work considers only the matching of in-
put/output concepts defined by the same ontology. Web services are heterogeneous and
autonomous by nature; therefore it is advantageous to compare outputs and inputs that
subscribe to different ontologies. The similarity function described is based on the taxon-
omy of the ontology, accounting for the parent/child relationship between concepts. The
algorithm uses the minimal distance between concepts in the taxonomy tree. We believe
that a feature-based approach rather than one employing the taxonomy of the ontology
achieves better precision in the discovery process. What makes two concepts distinct is
number of properties in which they are the same and in which they are different. As a last
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difference, operational metrics of Web services are not taken into account when discovering
services.

Gonzalez-Castillo et al. (2001) also use DAML + OIL to semantically describe Web
services. Their algorithm follows a very similar approach to the one taken by Paolucci et al.
(2002). Their system does not use DAML-S for the description of Web services (the system
was developed before its existence). Instead, they have developed their own specification
for Web service description, but no notion of inputs and outputs was defined. As a result,
the matching of Web services is carried out based on service description, not accounting
for inputs and outputs. Their approach does not target the discovery of Web services based
on operational metrics, nor does it deal with the Web service integration problem.

Another approach that also uses a specific language to describe service advertisements
and requests is the LARKS (Language for Advertisement and Request for Knowledge
Sharing) system (Sycara et al., 1999). The LARKS language can be seen as a precursor
of the DAML-S specification. The system uses ontologies defined by a concept language
(ITL). Their approach does not provide an automatic solution for the computation of the
similarity of concepts defined in distinct ontologies. Furthermore, the technique used to
calculate the similarity of ontological concepts involves the construction of a weighted
associative network, where the weights indicate the belief in relationships. While they
argue that the weights can be set automatically by default, it is clear that the construction
of realistically weighted relationships requires human involvement, which becomes a hard
task when thousands of agents are available. Their work does not consider the matchmaking
of agent-based operational metrics. While the output and input parameters of agents are
compared using syntactic and semantic matching methods, the algorithm presented does
not supply a mapping of potential connections between the outputs and inputs of two agents
that yields a maximum degree of integration.

In the information retrieval area, Benjamins et al. (1998) present the (KA)2 system, an
ontology-based information retrieval system for the World-Wide Web. The system allows
a community to build a knowledge base collectively, based on consensual knowledge, by
populating a shared ontology. Using the shared ontology, a web-crawler accesses the web
pages and uses the ontology to infer answers. The use of ontologies has been shown to
improve the search from the perspectives of recall and precision, as well as ease of query
formation. The OntoSeek (Guarino et al., 1999) project has also shown that ontologies
improve content-based searches. Their work focuses on specific classes of information
repositories: yellow pages and product catalogues.

Ontologies have been employed as a common basis for information integration. Ontolo-
gies allow for the modeling of the semantic structure of individual information sources,
as well describing models of a domain that are independent of any particular informa-
tion source. Several systems have been developed using this solution. Projects include
Carnot (Woelk et al., 1993), InfoSleuth (Bayardo et al., 1997), OBSERVER (Mena et al.,
1996; Kashyap and Sheth, 1998), and COIN (Bressan et al., 1997). These projects differ
from our work in their reduced number of ontologies involved in the integration process
and also considering that their approaches do not face the schema polarity problem (see
Section 1 for a description of the schema polarity problem). Additionally, a vast amount of
the work done is directed to solve schematic differences in multidatabase systems (Kashyap
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and Sheth, 1996), and similar work is being addressed in addressing ontology mismatch
(Noy and Musen, 2000; Klein, 2001).

8. Conclusions

In this paper we have presented a set of challenges that the emergence of Web services
and e-services has brought to organizations. While in some cases Web services may be
utilized in an isolated form, it is normal to expect Web services to be integrated as part of
workflows processes. This entails research in two areas. Mechanisms to efficiently discover
Web services during an e-workflow (i.e., a workflow managing traditional tasks and Web
services) composition process and to facilitate their subsequent integration with the e-
workflow host.

We present a methodology and a set of algorithms for Web service discovery based on
three dimensions: syntax, operational metrics, and semantics. This approach allows for
Web service discovery not only based on functional requirements, but also on operational
metrics.

The need to discover workflow components based on operational metrics has a greater
importance when Web services are involved, as compared to workflow tasks. The autonomy
of Web services does not allow for users to identify their operational metrics at design time,
or prior to their actual execution. The development of mechanisms for the discovery of Web
services based on operational metrics allows organizations to translate their vision into their
business processes more efficiently, since e-workflows can be designed according to QoS
requirements, goals, and objectives.

To facilitate the discovery and posteriori integration of Web service into workflows we
propose an approach based on the use of ontologies to describe workflow tasks and Web
service interfaces. Ontology-based approaches have already proved to be an important
solution to information integration in order to achieve interoperability. During an e-workflow
composition, there is a loss of information associated with Web service task interfaces
because a large part of the domain knowledge a developer employs when deploying a Web
service is not present at composition time.

In our work we have devised an algorithm and implemented a prototype to discover and
facilitate the resolution of structural and semantic differences during the integration process
with an e-workflow. The algorithm uses a feature-based model to find similarities across
workflow tasks and Web service interfaces. The system determines and evaluates the best
mapping between the outputs and inputs of a SO and the workflow host that yields the
highest degree of integration.
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