
Distributed and Parallel Databases, 13, 43–72, 2003
c© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

IntelliGEN: A Distributed Workflow System
for Discovering Protein-Protein Interactions

KRYS KOCHUT
Department of Computer Science, University of Georgia, Athens, GA 30602, USA

JONATHAN ARNOLD
Department of Genetics, University of Georgia, Athens, GA 30602, USA

AMIT SHETH, JOHN MILLER, EILEEN KRAEMER, BUDAK ARPINAR AND JORGE CARDOSO
Department of Computer Science, University of Georgia, Athens, GA 30602, USA

Abstract. A large genomics project involves a significant number of researchers and technicians performing
dozens of tasks, either manual (e.g. performing laboratory experiments), computer assisted (e.g. looking for genes
in the GENBANK database), or sometimes performed entirely automatically by the computer (e.g. sequence
assembly). It has become apparent that managing such projects poses overwhelming problems and may lead to
results of lower or even unacceptable quality, or possibly drastically increased project costs. In this paper, we present
a design and an initial implementation of a distributed workflow system created to schedule and support activities
in a genomics laboratory. The focus of the activities in the laboratory is the discovery of protein-protein interactions
of fungi, specifically Neurospora crassa. We present our approach of developing, adapting and applying workflow
technology in the genomics lab and illustrate it using one distinct part of a larger workflow to discover protein-
protein interactions. Novel features of our system include the ability to monitor the quality and timeliness of the
results and if necessary, suggesting and incorporating changes to the selected tasks and their scheduling.

Keywords: workflow management, biological process, bioinformatics, protein-protein interaction, laboratory
information management

1. Introduction

In the new millennium biology has gone through a paradigm shift with the advent of
Genomics, the study of the structure, function, and evolution of whole genomes. The term
“genomics” was coined in 1986, and institutional support for this new discipline began
with the creation of the National Center for Human Genome Research (NCHGR) in 1989.
The initial goal of this discipline was the determination of the entire DNA sequence of a
human being (a human genome) and several related model organisms that have played a
central role in Genetics, including the bacterium Escherichia coli, the yeast Saccharomyces
cerevisiae, the worm Canerohabditis elegans, and the fruit fly Drosophila melanogaster.
Sequencing the human genome and those of each model system were daunting distributed
computing tasks which required collecting, storing, integrating, retrieving, and distributing
3 billion base pairs (bp) of sequence on the human genome alone.

Many aspects of computer science were brought to bear to solve these problems [43, 81].
What genomics promises is that with the availability of the complete genetic blueprints of

44 KOCHUT ET AL.

a variety of living systems, we will be able to unlock how living cells function and evolve.
Already genetics has given us the Central Dogma: DNA) Deoxyribonucleic Acid, a long
polymer composed of four bases (or letters) makes up the double helix, encodes our genetic
blueprint; RNA) genes in our genetic blueprint are transcribed into a related information
molecule called RNA to carry the instructions in the blueprint out into the cell; protein) the
message is translated into proteins (another information molecule with a 20 letter alphabet),
which carry out the work of the cell. The tools of genomics for the first time provide new
experiments that describe the complete blueprint (DNA), the cellular levels of all RNAs
(RNA profiling), and the cellular levels of all proteins (protein profiling), i.e., not only the
information on what a cell is to do (as encoded in the DNA) but what the cell is doing (by
RNA and protein profiling).

The paradigm shift in biology is that it is becoming an information science. This means
biology is becoming: (1) data driven and informatics-based, with billions of base pairs of
DNA sequence in public databases (http://ncbi.nih.gov), used to collect, store, integrate,
retrieve, and distribute the avalanche of genomics data; (2) high throughput and computa-
tional, with new technologies not only to sequence a genome but to describe the full state of
the cell as with new technologies like RNA profiling [22]; (3) hierarchical in its organiza-
tion of information along the pathway of the Central Dogma; (4) inherently mathematical,
in order to have the ability to organize and analyze the data; (5) systems science-oriented,
with a focus on living systems as complex networks [78]. This paradigm shift is driven by
the promise of being able to understand important complex traits at a cellular level. These
traits include heart disease and cancer on one hand, and fundamental processes such as
metabolism, development, survival, biological clocks, and mating on the other hand, all
controlled by many genes at once.

Since 1989, a number of new computational problems have emerged, and computer
scientists have played a fundamental role in the birth of this new discipline. Genome projects
by their nature are distributed [34]. The overall task of sequencing any genome requires the
collaboration of scientists at many sites working on a hierarchically organized project. The
scientists take on different well-defined tasks in the project and then transmit the information
they produce to other scientists engaged in other tasks to complete the project.

A large genomics project involves a significant number of researchers, technicians, and
other support personnel directly involved in the lab activities. All the people perform dozens
of tasks, either manual (e.g. performing laboratory experiments), computer assisted (e.g.
looking for related genes in the GENBANK database), or sometimes performed entirely
automatically by the computer (e.g. genomic sequence assembly). Typically, the tasks must
be performed in a specific sequence according to the adopted experimental method. In
addition, most of these tasks require vast amounts of support data from a variety of disparate
sources, ranging from local flat files, database servers storing experimental results, to a
wealth of Web accessible data sources, such as GENBANK and the Protein Database. It has
become apparent that managing such projects poses overwhelming problems and may lead to
results of lower or even unacceptable quality, or possibly drastically increased project costs.

In this paper, we present a design and an initial implementation of a distributed workflow
system created to schedule and support activities in a genomics laboratory focused on what
genes do. This project investigates which proteins work together to accomplish tasks in the

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 45

cell, discovering protein-protein interactions of fungi, specifically Neurospora crassa. Our
goal is to create a highly flexible workflow system that efficiently coordinates, manages
and schedules lab activities, including those involving collection, use and sharing of the
necessary experimental data. Our approach of developing, adapting and applying workflow
technology is presented in some detail using one distinct part of a larger workflow to
discover protein-protein interactions. In addition, novel features of our system include the
ability to monitor the quality and timeliness of the results and if necessary, suggesting and
incorporating changes to the selected tasks and/or their scheduling.

A primary contribution of this work is in-depth modeling and study of a distinct part of
very complex biological process, which allows us to demonstrate the benefit of bioinformat-
ics with the focus on support for process aspects of informatics challenges. In particular, it
demonstrates the needs for workflow management to enable faster discovery of biological
processes such as protein-protein discovery by enabling effective processing and analysis
of laboratory experiment data. Considering just the number of tasks whose execution need
to be coordinated shows that such activities are nearly impossible without the automation
afforded by workflow management. For the workflow management research, it allows us to
show several requirements, including:

• workflows with varied task interconnections and complex data exchanges between tasks
• very large number (tens of thousands) of task executions in a distributed environment

involving multiple computers and multiple laboratories,
• processes requiring adaptation to reflect what is learned and addressing new details not

addressed earlier, and requiring exception handling to prevent loss of extensive work
performed, and

• ability to assess quality of scientific results.

In this paper, we discuss in detail the issues of complexity, quality of service measurement,
as well as adaptation. However, our experience in using the protein-protein interaction
workflow has not been long enough to discuss comprehensive aspects of exception handling.
By using state of the art research in workflow management for a challenging biology
problem, this work also demonstrate the current capabilities and future requirements in
one instance of collaboration between biologists and computer scientists. While earlier
workflow systems have been used to automate laboratory experiments, we believe that
IntelliGEN demonstrates a new generation of optimized laboratory workflows that cannot be
supported by homegrown (such as script based) or currently available commercial laboratory
information systems.

2. Background

2.1. Protein-protein interactions

Genomics is only a beginning in discovering and investigating biological phenomena that
drive humans and life. The blueprints are here, but what do they mean? How do we decipher
the Rosetta Stone now available on many organisms and make Genomics a hypothesis-driven

46 KOCHUT ET AL.

science? The focus on what cells do will initially follow the path of sequencing simpler
systems, such as microbes. Microbes have small genomes with 7 to 49 Mbp of DNA [10],
and many of them, like those in the Fungal Kingdom, share properties with their more
complex relatives. For example, the filamentous fungus N. crassa has a biological clock
[54]; however, these simpler microbial systems remain more tractable for analyzing what
their cells are doing [21].

One way to describe how living systems function is to think in terms of another metaphor
from computer science: a living system is a biological circuit. Each organism is a network
of biochemical reactions, as shown in figure 1. In the past the focus of biologists is to
carve out one small piece of the larger genomic circuit diagram and focus for 20–30 years
on understanding one tiny piece of the biological circuit. A classic example is the Nobel
Prize winning work of Jacob and Monod to construct the first biological circuit describing

qa-x0

qa-x1

Dxr

Dxp

Sx

Lx

Ax

qa-xp

qa-xr

qa-20

qa-21

D2r

D2p

S2

L2

A2

qa-2p

qa-2r

qa-40

qa-41

D4r

D4p

S4

L4

A4

qa-4r

qa-30

qa-31

D3r

D3p

S3

L3

A3

qa-3r

qa-y0

qa-y1

Dyr

Dyp

Sy

Ly

Ay

qa-yr

qa-1S0

qa-1S1

D1Sr

D1Sp

S1S

L1S

A1S

qa-1Sr

qa-1F0

qa-1F1

D1Fr

D1Fp

S1F

L1F

AIF

qa-1Fr

qa-1Sp qa-1Fp

qa-1Sp/QA
SA

Sucrose

qa-1Sp/qa-1Fp

QA

DHS

PCA

DHQ

qa-4p qa-3p qa-yp

T2

QAe

T4

M2

M4

M1

M3

I2

Figure 1. A kinetics model of quinic acid metabolism represented as a biological circuit.

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 47

how E. coli combusts (i.e., metabolizes) lactose and derives energy from the process. In
particular, figure 1 shows one of the early paradigms for eukaryotic gene regulation in N.
crassa [27], which describes how N. crassa metabolizes quinic acid, a compound from
which the organism derives energy to live.

The paradigm shift through genomics is to move from one small part of the circuit in
figure 1 to the whole circuit. A major goal of genomics is to reconstruct the entire biological
circuit for an organism to describe all of its functions. The hope is that by a systems approach
we can quickly reconstruct large complex networks and show how these biological circuits
can provide predictions about complex traits involving many genes, such as heart disease,
cancer, metabolism, biological clocks, development, viability, and mating involving many
genes. The reconstruction of such a network requires a diverse array of experimental tasks
to be carried out. To make the task concrete we focus now on one small piece of the whole
circuit, taking the qa cluster as an example. This is appropriate because it was in this model
system that the biochemical function of genes was first discovered sixty years ago [9].

The specification of the model in figure 1 begins by writing down the chemical reactions of
the known participants in quinic acid (QA) metabolism. The circles on the wiring schematic
denote reactions, and the boxes are reactants. Arrows indicate the reactants entering a
reaction, and outgoing arrows indicate the products of a reaction. Reactants include the
7 genes in the qa gene cluster (qa-x, qa-2, qa-4, qa-3, qa-y, qa-1S, qa-1F) [27] in the boxes
at the top of the circuit. These genes can be either in an unbound (‘off’ state) or a bound
state (‘on’ state) with a protein (i.e., transcriptional activator) produced by the qa-1F gene
as indicated by a superscript, 0 or 1, respectively. These are in turn transcribed into RNA
species (superscripted with an r) carrying the message of the genetic blueprint out into the
cell, where in turn the messenger RNAs are translated into protein products (superscripted
with a p) to carry out the work of the cell. The first four rows of the circuit are simply a
restatement of the Central Dogma.

What remains is to specify in the circuit what the proteins are doing. One protein qa-1Fp

turns on the circuit, and another protein qa-1Sp turns off the circuit. There are at least 7
protein/DNA interactions between qa-1Fp, and regions near the genes in the qa cluster.
These protein/DNA interactions determine whether or not a gene is on or off. The bound
state leads to activation of all seven genes while the unbound state to inactivation of all
seven genes.

Proteins can collaborate as molecular machines to carry out the work in the cell. These
collaborations are called protein-protein interactions, and their identification is the whole
purpose of the workflow described in this paper. There is one identified protein-protein inter-
action in the biological circuit between the repressor, qa-1Sp, and the transcriptional activa-
tor, qa-1Fp. The repressor protein in some unknown way blocks the activator from working.

The cell must also adapt to its environment and acquire energy to live. QA is the energy
source for the cell and is hypothesized to be the cell signal that interacts with the bound
complex of qa-1Sp/qa-1Fp to promote induction [27]. When the complex forms, the system
is in the off state. The presence of QA switches the system from the off to on state by
favoring the unbound state of the transcriptional activator.

In the lower half of the circuit a total of 4 out of the 7 protein products participate on a
known biochemical pathway ultimately converting QA into products feeding into the energy

48 KOCHUT ET AL.

producing Krebs Cycle. There are at least two cellular states for QA, extracellular (denoted
with an e) or intracellular QA. The cell only goes to work on QA when it is imported into
the cell. One of the genes, qa-y, produces a permease, qa-yp, which is thought to be involved
in the transport of QA into the cell.

For most reactions, mass balance leads to a specification of a system of differential
equations to describe this reaction network or biological circuit [12]. The boxes in the
middle of this diagram with the RNA and protein species are the observables. The boxes
at the bottom are the reactants in the underlying biochemical pathway. The model is a first
approximation of what needs to be considered to predict induction of the qa cluster and
its products. This model is a highly simplified version of what the cell is actually doing
with the QA. We have not put the molecular machine that transcribes DNA into messenger
RNA. Neither have we put in the molecular machine that translates messenger RNA into
protein. As a first approximation, transcriptional and translational machinery are treated as
an infinite resource, available as needed. The aim is to introduce only enough of the “wiring
schematic” of the organism into the model to make the model predictive about how the
system responds when the system is perturbed genetically, environmentally, or chemically.

The model is then fitted to the observed RNA and protein profiles (the boxes in the third
and fourth rows of the circuit) and evaluated for fit in the presence of varied perturbations.
The system is perturbed genetically when the qa-2 gene is knocked out, and the system
observed. The system is perturbed chemically when an inhibitor is added to inhibit the qa-2p

gene product, and the system is observed. The system is perturbed environmentally when
sucrose is added or removed as the preferred carbon source, and the system is observed. In
each perturbation the circuit is simulated with a reaction network simulator, which leads to
predictions of the messenger RNA and protein profiles over time. The predicted RNA and
protein profiles either match or do not match the observed profiles. In all likelihood, it will
be necessary to add additional components to the wiring schematic in figure 1 even in this
well-understood paradigm of eukaryotic gene regulation [27].

Imagine extending this whole process to the cell. One starting point may be something
like a cell with only 256 genes [42] in a very small microbial genome. Can we build the
circuit and show that the circuit describes how the cell functions? This is hypothesis-driven
genomics. To carry out this program on a model microbial system requires the completion
of different tasks with the genetic blueprint in hand, including:

1. genetic, chemical, or environmental perturbation of the cell,
2. RNA and protein profiling to describing the state of the cell after perturbation,
3. building protein/protein and protein/DNA interaction maps to build the links in the

biological circuit [82],
4. fitting the kinetics models to observed messenger RNA and protein profiles,
5. evaluating the fit of the model,
6. searching for an improved model,
7. storing the intermediate circuit model for later query; and
8. repeating the process.

We model this process as an automated workflow. In the next several sections we will
describe one distinct part of this larger workflow, identifying the protein-protein links in the

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 49

circuits. It is clear that there are many subtasks that will be carried out by different groups
of researchers. Then there is the challenge of integrating the information to carry out the
fitting process, not to mention the computational task of fitting a large reaction network.

As with sequencing the human genome, the process of computing life, i.e. identifying the
biological circuit, involves many new computational problems. One of these is constructing
software that allows the design, construction, execution, management, and adaptation of
workflows to carry out circuit identification or some subset of the tasks needed for circuit
identification. The experiments require typically over 100,000 task executions. The tasks
are complex, and as the project unfolds over the course of several years new technologies
become available, or discoveries are made that require the workflow to be adapted. Data
routinely come from multiple sources in multiple storage media. There is also the challenge
of database integration and efficient storage and integration of data with complex structure.
The problem of constructing a map of all the protein-protein interactions requires new
algorithms similar to the ones in physical mapping [82]. Once the data are integrated, novel
algorithms are needed for simulating the large reaction networks, which are at the heart of
the data integration step.

2.2. Process management and workflow systems

A workflow is an activity involving the coordinated execution of multiple tasks performed by
different processing entities [53]. These tasks could be manual, or automated, either created
specifically for the purpose of the workflow application being developed, or possibly already
existing as legacy programs. A workflow process is an automated organizational process
involving both human (manual) and automated tasks.

Workflow management is the automated coordination, control and communication of
work as is required to satisfy workflow processes. A Workflow Management System
(WfMS) is a set of tools providing support for the necessary services of workflow creation
(which includes process definition), workflow enactment, and administration and monitor-
ing of workflow processes [39]. The developer of a workflow application relies on tools for
the specification of the workflow process and the data it manipulates. The specification tools
cooperate closely with the workflow repository service, which stores workflow definitions.
The workflow process is based on a formalized workflow model that is used to capture data
and control-flow between workflow tasks.

The workflow enactment service (including a workflow manager and the workflow run-
time system) consists of execution-time components that provide the execution environment
for the workflow process. A workflow runtime system is responsible for enforcing inter-task
dependencies, task scheduling, workflow data management, and for ensuring a reliable exe-
cution environment. Administrative and monitoring tools are used for management of user
and work group roles, defining policies (e.g., security, authentication), audit management,
process monitoring, tracking, and reporting of data generated during workflow enactment.

Workflow technology has matured to some extent, and current products are able to sup-
port a range of applications (for technology and state of the art overview, see [2, 23, 28].
Nevertheless, many additional limitations remain, especially in supporting more demanding
applications, more dynamic environments and for better support for human involvement

50 KOCHUT ET AL.

in organizational activities and better support for Quality of Service (QoS) management
[17, 73]. In this paper, we focus on problems involved in supporting a large genomics project,
in which a number of additional demands are placed on the workflow management system.
These demands include high adaptability to varying experimental conditions in the lab,
automatic quality assessment of the experimental results, as well as assisting the workflow
administrator and researchers in introducing changes in the workflow due to inadequate
quality or timeliness of the results. Research issues based on these requirements have been
investigated as part of the METEOR project and workflow management system developed
at the LSDIS lab of the Computer Science Department at the University of Georgia [58],
which we use in this effort.

2.3. Fungal Genome Database

The Fungal Genome Database (FGDB) [50, 69] is a 10-year development effort that supports
storage, retrieval, and distribution of all of our data over the Web [40] for physical mapping,
genetic mapping, sequencing, and now protein-protein interaction mapping experiments. An
important scientific contribution of FGDB is its support of ordered sequences of genomic
objects in order to meet the efficient computation requirements involving genome data.
FGDB is implemented in the object-relational database system, Oracle 8i Enterprise Edition,
on a SUN Enterprise 250 server. The outline of the database schema is presented in figure 2
in the form of a UML (Unified Modeling Language) class diagram [71].

We have also developed Java-based tools to visualize the data in FGDB, which can
be downloaded from our web site [33, 79, 87, 88]. FGDB supports physical mapping of
Aspergillus nidulans, N. crassa, Aspergillus flavus, Nectria haematococca, and Pneumo-
cystis carinii and sequencing projects for N. crassa and P. carinii.

2.4. Workflow management system METEOR

METEOR is a comprehensive Workflow Management System. METEOR’s architecture
includes a collection of four services: Workflow Builder, Workflow Repository, Workflow
Enactment, and Workflow Manager. Workflow Enactment includes two services: ORB-
Work and WebWork. Both ORBWork and WebWork use fully distributed implementations.
WebWork [61], an entirely Web-based enactment service, is a comparatively light-weight
implementation that is well-suited for a variety of enterprise workflow process applications
that involve limited data exchange and do not need to be dynamically changed. ORBWork
[51] (used in this project) is better suited for more demanding, mission-critical enterprise
applications requiring high scalability, robustness and dynamic modifications. The overall
architecture of the system is shown in figure 3.

2.4.1. Workflow builder service. This service consists of a number of components that are
used to design graphically and specify a workflow, in some cases leaving no extra work after
a designed workflow is converted to a workflow application by the runtime code generator.
Its three main components are used to specify the entire map of the workflow, data objects
manipulated by the workflow, as well as the details of task invocation, respectively. The task

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 51

Figure 2. Database schema (more detailed schema at [40]).

Workflow
Designer

Workflow
Repository

Builder Service

WEBWork
Workflow

Engine

Workflow
Translator/
Generator

ORBWork
Workflow

Engine Enactment Service

Repository Service

Figure 3. METEOR architecture.

design component provides interfaces to external task development tools (e.g., Microsoft’s
FrontPage to design the interface of a user task, or a rapid application development tool).
This service supports modeling of complex workflows consisting of varied human and
automated tasks in a conceptual manner using easy-to-use tools. In particular, the designer

52 KOCHUT ET AL.

of the workflow is shielded from the underlying details of the infrastructure or the runtime
environment. At the same time, very few restrictions regarding the specification of the
workflow are placed on the designer.

The workflow specification created using this service includes all the predecessor-
successor dependencies between the tasks as well as the data objects that are passed among
the different tasks. It also includes definitions of the data objects, and the details of task
invocation. The specification may be formatted to be compliant with the Workflow Process
Definition Language (WPDL) of the Workflow Management Coalition [39] and its sub-
sequently defined XML syntax. This service assumes no particular implementation of the
workflow enactment service (runtime system). Its independence from the runtime supports
separating the workflow definition from the enactment service on which it will ultimately
be installed and used. Workflow process definitions are stored in the workflow repository.

2.4.2. Workflow repository service. The METEOR Repository Service is responsible for
maintaining information about workflow definitions and associated workflow applications.
The graphical tools in the workflow builder service communicate with the repository service
and retrieve, update, and store workflow definitions. The tools are capable of browsing the
contents of the repository and incorporating fragments (either sub-workflows or individual
tasks) of already existing workflow definitions into the one currently being created. The
repository service is also available to the enactment service (see below) and provides the
necessary information about a workflow application to be invoked.

The first version of the repository service was based on the Interface I API, as specified by
WfMC [39]. Subsequently, we have built the second version of the workflow repository [8],
in which workflows are stored as XML-documents to facilitate their Web-interchange on
a distributed system managed by METEOR. The researcher (or a service of the METEOR
system itself) can query the workflow repository in order to introduce dynamic changes
needed for workflow adaptation, as described later.

2.4.3. ORBWork enactment system. The task of the enactment service is to provide an
execution environment for processing workflow instances. Both ORBWork and WebWork
have suitable code generators that can be used to build workflow applications from the
workflow specifications generated by the design service or those stored in the repository.
In the case of ORBWork, the code generator outputs specifications for task schedulers
(see below), including task routing information, task invocation details, data object access
information, user interface templates, and other necessary data. The code generator also
outputs the code necessary to maintain and manipulate data objects created by the data
designer. The task invocation details are used to create the corresponding “wrapper” code
for incorporating legacy applications with relative ease. The management service supports
monitoring and administering workflow instances as well as configuration and installation
of the enactment services.

2.5. Adaptability and dynamic workflows

Recently, there has been an increasing interest in developing WfMSs capable of supporting
adaptive and dynamic workflows. Such systems must be uniquely sensitive to a rapidly

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 53

changing process execution triggered by collaborative decision points, context-sensitive
information updates, and other external events. The majority of current work addresses
relevant issues at modeling and language levels [24, 36, 45, 53, 57, 70] while the relevant
issues involving organizational changes appear in [24, 38]. A particularly different approach
to supporting adaptive workflow (capable of reacting to the changes in local rules and other
conditions) has been developed using the notion of migrating workflows) [19]. Related
issues of integrating workflow or coordination technologies and collaborative technologies
are investigated in [31, 72].

ORBWork utilizes a fully distributed scheduler in that the scheduling responsibilities
are shared among a number of participating task schedulers, according to the designed
workflow map [51]. Each task scheduler receives the scheduling specifications at startup
from the Workflow Repository (currently, the repository service sends the specifications
via the HTTP protocol). Each set of task specifications includes the input dependency
(input transitions), output transitions with associated conditions, and data objects sent into
and out of the task. In the case of a human task (performed directly by an end-user),
the specifications include an HTML template of the end-user interface page(s). In the
case of a non-transactional automatic task (typically performed by a computer program),
the specifications also include a task description and the details of its invocation. Finally,
in the case of a transactional task, the specification includes the details of accessing the
desired database and the database query.

When a task is ready to execute, a task scheduler activates an associated task manager.
The task manager oversees the execution of the task itself. Figure 4 presents a view of
the ORBWork’s distributed scheduler. Note that scheduling components and the associated
tasks and task managers are distributed among four different hosts. The assignment of these
components to hosts can be modified at runtime.

TASK

Scheduler
TASK

Scheduler

TASK
Scheduler

TASK
Scheduler

TASK

Scheduler

TASK
Manager

TASK
Manager

TASK

Manager

TASK TASK

TASK
HOST 1

HOST 2

HOST 3

HOST 4

Figure 4. ORBWorks distributed scheduler.

54 KOCHUT ET AL.

The partitioning of various components (scheduler’s layout), including task schedulers,
task managers and tasks, among the participating hosts is flexible. An ORBWork adminis-
trator may move any of the components from one host to another. In the fully distributed
layout, it is possible to place all of the workflow components on different hosts.

Each task scheduler provides a well-constrained subset of the HTTP protocol, and thus
implements a lightweight, local Web server. This enables an ORBWork administrator to
interact directly with a selected task scheduler and modify its scheduling specifications
from a common Web browser. It also enables the end-user to access workflow instances
residing on the task’s worklist. This set up naturally supports a mobile user.

The ORBWork scheduler and its supporting components have been designed in such a
way that the enactment service can be used to support a variety of dynamic changes both to
the workflow schema and to the individual workflow instances. The workflow administrator
can easily modify the workflow schema at runtime by acquiring new information from the
workflow repository, or even by modifying the specification by direct interaction with the
scheduler.

We divide the dynamic changes in ORBWork into two categories: primitive changes and
composite changes. A primitive change is composed of “atomic” changes that can only
be applied to a process definition totally or not applied at all (e.g., adding a synchronous
transition between two tasks). A composite change is composed of a sequence of primitive
changes that describe a complicated process definition change (e.g., adding a task between
two existing tasks can be achieved by applying a sequence of primitive changes as we will
see in the following sections). Primitive changes can be further divided into immediate
changes and incremental changes. Immediate changes are changes that can be introduced
into workflow run-time in one step without losing the correctness and consistency of the
workflow. In the context of ORBWork run-time, one step means reloading the necessary
process definition files. On the other hand, there are situations when we cannot apply the
changes to a particular task in “one shot”. Consider that we want to change the input/output
dependencies of a task, where several workflow instances are pending on this task (waiting
for necessary transitions from the predecessor tasks in order to invoke the task). If we just
update the task specifications without taking care of all these already existing workflow
instances, they may work incorrectly. Incremental changes address that problem. Such
changes are introduced into the workflow enactment system step by step and guarantee the
correctness and consistency of the whole workflow system. In practice, most of the primitive
changes in a workflow system are incremental.

Another very important issue of implementing a dynamic workflow system is how should
different versions of a workflow/task schema the workflow enactment system support. We
say that a particular task is in a stable state if all input/output dependencies, input/output
parameters of the workflow instances residing on that task scheduler, are the same. Consider
the following scenario: A workflow system is normally running and with several instances
working simultaneously. The workflow administrator decides to do some changes to the
input dependencies of a task and several instances are under the control of this task’s
scheduler. From the earlier discussion, we know that some instances should still use the
old input dependency schema while new instances should use the new version of the input
dependencies. At some time, the task scheduler may be scheduling two workflow instances

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 55

with different input dependencies. In such a case, the task is unstable. Moreover, if we try
to change the input dependencies of that unstable task, the task scheduler will finally have
three different versions of input dependencies. If the administrator keeps making changes,
the task scheduler may have four, five, six or more input dependency versions.In our current
implementation, we only allow two versions of a process definition to exist for the workflow
instances residing on a particular task.

An additional issue worth mentioning here is how to suspend the task scheduler. When
dynamic changes are introduced to a particular task, we will force the ORBWork runtime
to suspend that task scheduler. In our implementation, we divide the suspend operation
into three different types: suspend input transition; suspend output transition; suspend
both input/output transitions. After applying the “suspend input transition” operation, no
workflow instance is allowed to “flow” to this task by making a transition call on this task’s
scheduler. Similarly, the “suspend output transition” operation keeps any existing workflow
instance on that task from making a transition call to a successor task’s scheduler. The third
suspend operation is the combination of the previous two.

A detailed description of possible changes and how they are implemented is described
in [18]. The types of dynamic modifications currently offered in ORBWork are presented
in Table 1. However, sometimes a predefined schedule of tasks may need to be altered for
just a single workflow instance, without introducing permanent changes to the workflow
schema. The ORBWork process manager allows the per-instance changes of similar types as
described above, but only those associated with a single instance, rather than with the whole
workflow schema. The changes cease to exist, once the instance completes. Theoretical
aspects of introducing dynamic changes to workflow systems are examined in [1].

2.5.1. Support for scalability and fault tolerance. The fully distributed architecture of
ORBWork yields significant benefits in the area of scalability. As mentioned, all of the
workflow components of a designed and deployed workflow (this includes individual
task schedulers, task managers, and task programs) may be distributed to different hosts.
However, in practice it may be sufficient to deploy groups of less frequently used task
scheduler/manager/programs to the same host. At the same time, heavily utilized tasks
may be spread out across a number of available workflow hosts, allowing for better load
sharing.

The features of ORBWork designed to handle dynamic workflows are also very useful in
supporting scalability. As load increases, an ORBWork administrator may elect to move a
portion of the currently running workflow to a host (or hosts) that become available for use in
the workflow. The migration can be performed at the time the deployed workflow is running.
Simply, the workflow administrator may suspend and shutdown a given task scheduler
and transfer it to a new host. Because of the way task schedulers locate their successors,
the predecessors of the moved task scheduler will not notice the changed location of the
task. If the associated task must be executed on a specific host (for example it is a legacy
application), the associated task manager may be left in place, while only the scheduler is
transferred.

In the case that a group of task schedulers is deployed to the same host, the ORBWork
administrator has the option to combine them into a single “master” scheduler. Such a master

56 KOCHUT ET AL.

Table 1. Types of dynamic modifications available in ORBWork.

Change type Change type After the change

AND to OR Join Incremental A single predecessor tasks needs to be completed in order to execute
a given task

OR to AND Join Immediate All of the predecessor tasks need to be completed in order to execute
a given task

AND to OR Split Immediate A single successor task will be activated after a given task completes

OR to AND Split Immediate All successor tasks will be activated after a given task completes

Add AND Incremental One more task will be activated after a given task completes
Transition

Add OR Immediate One more task may be activated after a given task completes
Transition

Delete Transition Incremental A given transition will not be attempted (either AND or OR)

Add Object Incremental One more data object will be transferred along a given transition
Transfer

Delete Object Incremental A data object will not be transferred along a given transition
Transfer

Parameter Incremental An incoming data object will be assigned to a different parameter
Mapping Change of a given task

Parameter Type Incremental A given task will accept a new data object type for a given parameter
Change

Task Type Change Incremental A different task type (e.g. automatic instead of human) will be invoked

Task Invocation Composite A different task will be invoked (but within the same task type)
Change

Insertion of a Task Composite A new task will be performed, if enabled

Deletion of a Task Composite A given task will not be performed

scheduler controls a number of individual task schedulers that share the same heavyweight
process. This allows the administrator to control the utilization of the participating host even
further, while having many individual operating system-level processes (task schedulers)
could potentially burden the host system.

The distributed design of ORBWork offers no single point of failure for an ongoing
workflow instance. Since the individual task schedulers cooperate in the scheduling of
workflow instances, a failure of a single scheduler does not bring the whole system down,
and other existing workflow instances may continue execution.

The error handling and recovery framework for ORBWork [84] has also been defined
in a scalable manner. All errors are organized into error class hierarchies, partitioning the
recovery mechanism across local hosts, encapsulating and handling errors and failures as
close to the point of origination as possible, and minimizing the dependence on low-level
operating system-specific functionality of the local computer systems. Complementary
work on exception handling, especially on finding alternatives to deal with exceptions, is
described in [55].

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 57

3. Discovering protein-protein interactions

With the completion of the sequencing of the human genome and that of other model
systems a major new direction has been the characterization of the proteome, the collection
of all proteins in the cell, to figure out what cells are doing besides data storage. The genetic
blueprint is here. The genome is known. What functions does the genome encode and
program through the Central Dogma?

One new direction is to identify all of the proteins produced by the genetic blueprint. In
this way we obtain a task list for the organism. This effort has led in a number of directions
because in many ways protein structure is much richer than that of DNA. One direction
is simply to isolate and characterize all the proteins in the cell. Isolating proteins allows
biochemists to examine their function.

From here several directions can be chosen. One direction has been identifying the
structures of all proteins in the cell [77]. High-throughput methods for obtaining molecular
structures on all proteins are being developed. These molecular structures provide valuable
insights into how proteins carry out their tasks. Proteins, unlike DNA, have a vast repertoire
of structures to carry out the diversity of functions.

Once the proteins are identified and characterized, a second interest is how they assemble
into the molecular machines that carry out the work in the cell. Some of these larger
cooperative structures in cell have names like the transcriptosome, splicesome, proteasome,
ribosome, cytoskeleton, mitochondrion, circadian clock, spindle, and MAP kinase cascades
to carry out basic processes in the cell like transcription, RNA splicing, translation, energy
metabolism, cell division, and signaling [82].

Identifying all of the protein-protein interactions is fundamental to searching for connec-
tions relevant to a particular process, such as the link qa-1Sp/qa-1Fp in the biological circuit
of figure 1. Knowing which proteins work together is part of specifying the biological circuit
describing a particular biological process. The collection of protein-protein interactions can
be visualized as a map, in which proteins are the nodes and the edges are the interactions
(figure 5). A protein-protein interaction network or map then represents a search grid on
which biological circuits are constructed. The map tells the researcher what connections he
or she may need to consider in the circuit.

Figure 5. Protein-protein interaction map of S. cerevisiae from [44] visualized as a “protein mobile”.

58 KOCHUT ET AL.

We refer to this Calder-like visualization of a protein-protein interaction map as a
“protein mobile”. The goal of this paper is to describe a distributed automated workflow to
generate this protein mobile accessible over the Web [26, 52]. The example shown is part of
the protein-protein interaction map for the yeast S. cerevisiae [44]. Eight composite steps
comprise the workflow to generate such a map.

Step 1(GetGenes). In eukaryotic systems like humans a major complication is identifying
all of the genes that produce the proteins. The complication is that genes in eukaryotes
contain regions of DNA called introns, which are not transcribed. The introns are cut out
of primary transcript to form mature transcript. A geneticist can isolate all the RNAs in a
cell and reverse the process of transcription with the enzyme reverse transcriptase to make
complementary DNAs or cDNAs that identify correctly what DNA sequence is ultimately
used to make a protein. These cDNAs can be used to create a library of clones called a
cDNA library. The first step in the process of identifying all protein-protein interactions
is to make a large cDNA library that contains most of the genes in the organism with the
introns conveniently spliced out. Ultimately, this cDNA library can be used to make the
proteins needed to test for interactions among them.

The main limitation of this strategy to get to the DNA sequence encoding a protein
is that cDNA libraries typically do not have all of the genes. Alternative strategies are
resorted to. One of these is computational. A large clone is sequenced, and algorithms
for gene identification are utilized based on the grammar of DNA to identify genes [52].
Then the genes are extracted directly from the clone by a technique known as polymerase
chain reaction, a way to amplify a specific region of DNA from a DNA source like a
clone.

Step 2 (GenExpLib sub-workflow). The next step is to build an interaction detector. A
standard way to detect interactions is the yeast S. cerevisiae 2-hybrid system. The goal
is to use proteins in the cell to reconstitute a transcriptional activator like GAL4 in S.
cerevisiae and to hook up the transcription factor to a collection of reporter genes which
come on only when the protein-protein interaction is present. The GAL4 gene has two
parts, an activation domain (AD) and a binding domain (BD). The AD-domain interacts
with another protein to turn on transcription. The binding domain binds to the DNA to
activate transcription. The reporter genes are put downstream of the AD-domain to report
transcription.

To test for an interaction, one cDNA is fused to the AD-domain. Another cDNA is
fused to the BD-domain. If the two cDNAs ultimately produce proteins that interact, then
the activation domain (AD) will be brought together with the binding domain (BD) to
reconstitute the GAL4 protein, and transcription will be initiated. The library of cDNAs
fused to the AD-domains is referred to as the library of prey clones. They are the key
that enters the lock. The library of cDNAs fused to the BD-domains is referred to as the
library of bait clones. They are the lock waiting for the key. When the bait and prey come
together through the protein-protein interaction, the GAL4 protein is reconstituted, and
transcription initiates. In summary, Step 2 is to build the bait and prey libraries.

Step 3 (GenExpLib sub-workflow). Neurospora crassa has ∼11,000 genes, and it is not
possible to screen one by one for the 121,000,000 possible interactions. Instead we use

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 59

the fact that most proteins do not interact with each other. Instead of screening each pair
of potential interactors one at a time, we create pools of bait or prey. There are three
pooling strategies that have been used to date.
96 prey encounter 96 bait. In this strategy pools of 96 bait and 96 prey clones are
created separately, and the pools are ultimately tested against each other [44]. Each such
experiment tests for one or more interactions in a pool of ∼10,000 interactions. In this way
[44] screened about 10% of the 36,000,000 possible interactions in the yeast S. cerevisiae.
1 prey encounters an array of all baits. In this strategy all bait clones are robotically
arrayed on solid media where the individual proteins are expressed [80]. In the case of
N. crassa, this would mean arraying up to 11,000 different genes on solid media and
introducing one prey at each point on the array to test for the interaction. This approach
is more easily automated than the first strategy.
All prey encounter 96 baits. In this strategy a mixture of all prey clones in the prey
library is created and then tested against a plate of of 96 baits [80]. The entire prey library
is allowed to interact with each of the 96 baits individually. This protocol constitutes a
high-throughput screen. The plates of 96 baits can be processed robotically. The pool of
prey is large. This allowed the creation of the first protein-protein interaction map for the
yeast S. cerevisiae [80]. The limitation is that there are many more false positives in this
screen than strategies 1 or 2. This strategy provides a rough sketch of the map, while the
first or second strategy provide detailed sketching.

In that there is a mixture of strategies available, the workflow needs to be adaptive. First,
the entire portrait of the protein-protein interaction map needs to be obtained, and then the
details need to be sketched in. As interesting connected subsets in the map are uncovered,
likely to correspond to interesting molecular machines, a switch needs to be made to a
more detailed sketching process. Also, the workflow needs to be adaptive in the sense that
new technologies will come on line to detect protein-protein interactions more effectively,
and these new technologies need to be introduced into the workflow. Finally, each detector
is characterized in part by its false positive rate and false negative rate in detecting
interactions. As researchers gain more experience in building these maps, there will be
an evolution in quality standards that will also mandate alterations in the workflow.

Step 3 of the workflow is to create the bait and prey pools of cDNAs, which are
ultimately used to test for a protein-protein interaction.

Step 4 (IDRemGen and InterMating). In Step 4, the bait and prey pools of clones are
brought together to detect the interaction. The mechanism for bringing them together is
called an interaction mating [41]. A female strain (α) of the yeast S. cerevisiae is trans-
formed with the pool of bait clones; a male strain (a) of the yeast S. cerevisiae is trans-
formed with the pool of prey clones. Transformation is the process of introducing for-
eign DNA into a host; the strains of S. cerevisiae are then capable of expressing the
proteins of interest. The female and male strains are mated to bring the bait and prey
pools together. In strategy 2 this means simply pinning robotically each bait strain on
the solid media with the prey strain. Those grid points with the reporter genes on can
be visually scored on the array. Step 4 is the interaction mating bringing bait and prey
together. The resulting images of the arrays or the positives on plates can be digitally
captured.

60 KOCHUT ET AL.

A number of controls are introduced at this point to confirm the interaction. Three
reporter genes exist downstream of the BD (‘bait’) gene, and each of the reporters give a
vote on whether or not the interaction is real. A separate experiment highlights the vote
of each reporter gene. In strategy 2, for example, three arrays need to be generated, one
for each reporter gene to score visually whether or not a particular reporter gene votes
yes to the interaction.

It is possible to alter the threshold of the detector for one reporter gene simply by adding
an inhibitor called 3AT to poison the protein product of one reporter gene. The presence
of the inhibitor means that the detected protein-protein interaction must be stronger to
counteract the effects of the inhibitor. In strategy 2, each threshold selected as indexed by
the 3AT concentration used in the solid media operates the detector at a different threshold.

Lastly, different protein pairs may or may not interact in the yeast S. cerevisiae. It is
possible to repeat the whole experiment in a different host like E. coli in order to reduce
false negatives in the interaction detector.

As a consequence, the workflow is inherently adaptive depending on the structure of
the protein-protein interaction map, the interesting features in the uncovered map, and
what regions of the table of all possible interactions are missing.

Step 5 (RobotPickColonies). In Step 5, we need to identify what genes are positive in
the pools. In strategy 1, we do not know which of the 96 prey reacted with which
of the 96 baits. The positives are robotically picked. The DNA of the positives is
extracted and sequenced. By comparing the resulting sequences of the bait and prey
clones, we can positively identify the partners that are interacting. These sequences
are sometimes referred to as Interaction Sequence Tags (ISTs), and they allow screen-
ing for the protein-protein interactions based on the availability of the genomic se-
quence of the organism of interest. Step 5 is the identification of the interactors by
sequencing.

Step 6 (FGDB). In Step 6, the interactors identified through their ISTs are loaded into
the Fungal Genome Database FGDB [50]. The FGDB database is web-accessible at
http://gene.genetics.uga.edu to the scientific community to make use of the information.
Step 6 involves storing, retrieving, releasing, and sharing the ISTS over the Web from
FGDB.

Step 7 (Layout). Once the ISTs are available, the data are ready to be assembled into a
protein-protein interaction map. The strongly connected components in the graph will
allow the identification of putative protein complexes. Several algorithms for laying out
these maps have been coded in Java and tested [88]. While the ISTs can be stored as tables
of all the directional pairwise interactions in a relational database, the only way to begin
to make sense of this information is graphically. A critical intermediate step in visualiza-
tion is assembling the graph describing the protein-protein interactions and highlighting
its features on the graph. The nodes of the graph are proteins, and the directed edges
are the interactions. The graph captures the biology and is ultimately rendered in various
forms like the protein mobile in figure 5, which is of great interest to biologists. There
are many difficult algorithmic problems with identifying this graph. Interacting with the
graph is believed to be key to locating biologically relevant clusters. Step 7 is assembling
the protein-protein interaction map as represented in a graph.

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 61

Step 8 (J3DV). The last step in the workflow is visualizing the protein-protein interaction
map over the Web. To this end a Java-based server was created to provide the interface
between FGDB and Java objects for map rendering [26]. Second, a Java 3D client soft-
ware was created to visualize the map [79, 88]. The map is rendered over the Web and
provides a view of the data allowing adaptation of the workflow and interpretation of the
protein-protein interaction mapping data. The last step is visualizing the protein-protein
interaction map before returning to Step 1 to continue map construction.

Each of the composite tasks above contain about 10 individual tasks, and so in
Strategy 3, for example, it would be necessary to execute an instance through the work-
flow about 500 times. Each instance has at least one control. We are talking about
managing the execution of ∼75,000 tasks with an automated workflow. The tasks them-
selves are distributed between several experimental locations and over several com-
puters and robots. For example, the libraries are generated in one laboratory, and the
robots are located in a different laboratory. The FGDB is located on one server, and
the map assembly routine is located on a different server. Image capture involves other
workstations.

4. IntelliGEN: Workflow for protein-protein interaction discovery

IntelliGEN is a comprehensive system for genomic data and process management. It im-
plements the overall workflow, as described above. It reuses in part two of our earlier
works: (b) GeneFlow [34] build as part of a laboratory information system for managing
distributed high throughput sequencing, which supports steps 6 through 8 of the overall
workflow, and (b) graphical tools to visualize the mapping and sequencing data [33]. The
graphical database tools also support XML messaging to exchange genomic information
with other databases and applications [87]. While earlier workflow systems have been used
to automate laboratory experiments [16, 29], we believe that current advances in adaptive
workflow technologies can improve dramatically the quality of experiments by optimizing
laboratory workflows.

In the near term, the core objective of the proposed system is running protein-protein
interaction mapping workflows. However, we plan to use the system in other types of
genomic workflows to automate identification of a biological circuit. The rest of this section
contains a brief discussion of the specific capabilities of IntelliGEN. The architecture of
IntelliGEN is shown in figure 6.

IntelliGEN’s workflow network is presented in figure 7 (GeneFlow is a subworkflow
of this workslow; its tasks are not shown), and a subset of this workflow is used to pro-
cess the ISTs (Interaction Sequence Tags). These workflow networks are presented here
as screen shots of METEOR’s Builder service. The top-level protein interaction workflow
includes some high-level network tasks (which include further tasks, acting as subwork-
flows), such as GetGenes, GenExpLib, IdRemGen, InterMating, and RobotPickColonies.
These high-level steps correspond to getting genes from a cDNA library or cosmid library,
generating expression libraries by recombinational cloning, eliminating spontaneously ac-
tivating genes from the mapping experiments, performing interaction matings and finally
robotically screening (picking) positive interactions, respectively. These tasks are further

62 KOCHUT ET AL.

WORKFLOW
DESIGNER

FUNGAL GENOME
DATABASE

CORE

TASK

TASK

WEB

DB

MOBILE
TASK

MANAGER

TASK

TASK
MANAGER

TASK
MANAGER

TASK
MANAGER

MOBILE
TASK

QUALITY
MONITOR

METEOR-ORBWork
FUNGAL GENOME

PROCESS MANAGER

XML MAPPING
TOOL

QUALITY METRIC
SPECIFICATION

TOOL

INTELLIGENT ADAPTATION
& SIMULATION AGENTS

Figure 6. IntelliGEN architecture.

Figure 7. Graphical design tool displaying top-level protein interaction workflow.

divided into several sub-tasks. As an illustration, the internal tasks of GetGenes are depicted
in figure 8.

The GetGenes subworkflow may be initiated by obtaining genes from our cDNA libraries
or from our cosmid libraries [49]. The subsequent steps include the following activities:

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 63

Figure 8. The details of GetGenes sub-workflow.

Clones are chosen from a library for protein-protein interaction mapping. If we elect to get
genes from the cosmid libraries, genes are identified [52]. DNA is extracted from the cosmid;
a particular gene amplified by PCR and recombinationally cloned into a Gateway entry
vector pENTR 1A; alternatively, a cDNA collection in a Gateway entry vector is accessed,
a plate pulled, and the associated genes being processed with their associated BLAST reports
are displayed (not shown). All of these activities require numerous software components and
a laboratory information system is used to track micro-titer plates and data, forwarding the
relevant information to the follow-up tasks in the workflow. As data are tracked, an adaptive
component is needed to suggest corrective action when a failure occurs during the workflow
so that the throughput is sustained, or when a new interesting interaction is discovered.

In Table 2, we list some of the well-known biological software systems used in the
protein interaction workflow. The individual tasks in this workflow are spread across sev-
eral UNIX servers at UGA in two laboratories and a central location. The ASSEMBLY 1

Table 2. Commonly used biological software systems incorporated in IntelliGEN.

ASSEMBLY X Phred [25] Base calling

Phrap Sequence assembly

Consed [30] Editing and primer design

HTG Submission Sequin Submits sequence to NCBI

ANNOTATION BLAST [4] Sequence similarity search

GeneMark.hmm Gene identification

64 KOCHUT ET AL.

Figure 9. Screen shot of the protein-protein interaction layout tool.

and ASSEMBLY 2 sub-workflows are executed on separate servers. The annotation sub-
workflow, which is computation intensive, is executed on a 32 processor SGI Origin 2000
server. The remaining tasks run on another server. Roles were created for sequence finisher,
submitter, and annotator. The Web interface to METEOR creates URL’s for each role with
links to all tasks associated with that role.

In the final step of the workflow, in which a researcher is creating the protein-protein
interaction map, we use a software system to assist the researcher in constructing the map. A
screen shot of the tool (invoked automatically by IntelliGEN) is presented as an illustration
in figure 9.

IntelliGEN incorporates subsystems for quality measurement and intelligent adaptation.
These two novel components are briefly described in the following two sections.

4.1. Quality of service management

Workflow systems have been used to support various types of processes for more than a
decade now. Workflows modeling genomic applications, such as protein interaction map-
ping, require the specification of Quality of Service (QoS) items such as products to be
delivered, deadlines, quality of products, quality of information (e.g., accurate protein in-
teraction maps), reliability, and cost of services [17].

Low-level script-based applications or other traditional workflow approaches do not
permit flexible specification and realization of such quality requirements. Thus, they are
less suitable for mission critical applications such as a protein interaction workflow. A vital
goal is the ability to construct and deploy truly dependable workflows with continuous
availability and predictable QoS metrics.

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 65

The management of QoS metrics directly impacts the success of genomic experiments.
Therefore, when experiments are created or managed using workflows, the underlying
workflow system must accept the specifications and be able to estimate, monitor, and control
the QoS of processes.

For genomic laboratories, being able to characterize workflows based on QoS has four
direct advantages. First, it allows laboratories to translate their experiments into their pro-
cesses more efficiently, since workflow can be designed according to QoS metrics. Second,
it allows for the selection and execution of workflows based on their QoS, to better follow
experimental strategies. Third, it makes possible the monitoring of workflows based on
QoS. QoS monitoring allows adaptation strategies to be triggered when undesired metrics
are identified or threshold values violated. Fourth, it allows for the evaluation of alternative
strategies when adaptation is necessary. The environment has an important impact on the
strategies, methodologies, and structure of genetic workflows. Thus, in order to complete
a workflow according to the initial QoS requirements, the workflow will likely be adapted,
modified, and rescheduled, due to unexpected progress delays, or technical conditions.
When adaptation is necessary, a set of potential alternatives is generated with the objective
of changing a workflow, such as its QoS continues to meet initial requirements. For each
alternative, prior to actually carrying out the adaptation, it is necessary to estimate its impact
on the QoS of the modified workflow.

We have enhanced our workflow system to support processes constrained by QoS require-
ments, such as the protein interaction workflow. The enhancements include the development
and support of a comprehensive QoS model and the implementation of methodologies (a
mathematical model and simulation) to compute and predict workflow QoS. We have de-
veloped a stochastic workflow reduction algorithm (SWR) for the step-by-step computation
of QoS metrics.

One of the main modules, the Quality Monitor, oversees the execution of the workflows
and checks the quality of produced data according to QoS specifications. If the quality
drops below a certain threshold the Intelligent Adaptation subsystem is invoked to suggest
corrective actions and adapt the workflow (as described in the following subsection) so that
the initial QoS requirements can be met.

The quality monitor displays QoS metrics in several formats. It is possible to color code
the protein-protein interaction by whether or not a particular link is supported by two or
more experiments, the number of votes for the interaction by the 4 reporters, and the number
of controls satisfied in figure 5 [88]. Another possibility is the traditional quality control
chart with the measures of quality on the y-axis and the course of the experiment (i.e., plate
number in the high-throughput screen) on the x-axis. In the high-throughput screen, quality
measures include false negative and false positive rates per plate, the average number of
positive votes per positive from one bait plate, the number of controls satisfied per bait
plate, and estimated coverage.

4.2. Adaptation

Traditional WfMSs are adequate to support workflows with a defined structure and with no
need to account for ad hoc deviations or dynamic extensions at run-time [70]. But, recently

66 KOCHUT ET AL.

there has been an increasing demand in developing WfMSs with dynamic capabilities,
with a special emphasis to dynamic changes at the instance level. This makes sense since
there are in reality very few workflows that are static (i.e. without a need to change their
structures over time). As workflow processes are instantiated, changes in the environment
or in previous activities may invalidate the current workflow instances, requiring adaptation
procedures to be carried out. It is therefore important to be able to continuously repair or
improve the execution of a workflow process [11].

A critical challenge for the IntelliGEN management system is its ability to respond
effectively to changes. Changes may range from ad-hoc modifications of the process for a
single experiment due to a control failing, improvement in the process to incorporate a new
technique or instrument, or to a restructuring of the process to improve its efficiency. For
example, it may happen that gene identification evolves to the point that gene extraction
from an available cosmid library becomes feasible [41, 49] as opposed to extracting genes
from a cDNA library. As a result, the run-time process used in practice is often much more
variable than the process specified at design-time. It has been our experience in physical
mapping and sequencing that workflows are constantly being improved. If the researchers
are forced to bypass the workflow management system quite frequently, the system becomes
more a liability than an asset. Thus, in ORBWork system we have implemented a layer that
permits the realization of dynamic change of instances in a consistent manner [18]. The
implemented module guarantee that all consistency constraints that have been ensured prior
to a dynamic change are also ensured after the workflow instances have been modified [70].

When adaptation is required in the protein-protein interaction workflow, it is necessary to
evaluate alternatives with the objective of changing the workflow such as its QoS continues
to meet initial requirements. Adaptation procedures are evaluated based on their impact on
workflow QoS that include: (1) time of execution; (2) cost of execution; (3) and quality
of execution. The application of a specific adaptation procedure is constrained with the
objectives set by the initial project and includes: (1) time remaining; (2) budget remaining;
(3) and current measures of quality like coverage, false positive rate, and false negative rate.

Some of the changes include the type of screen, the controls to be executed, the 3AT
concentration, and the type of interaction trap. To make today’s workflow management
systems more flexible, it is crucial to know what kinds of changes need to be supported.
Changes can be triggered by developments outside the management system, i.e., the con-
text/environment. There are three basic types of external circumstances that may trigger a
change in the protein-protein interaction workflow: (1) discovery (e.g., of a new molecular
machine), (2) changing quality standards (i.e., the change is triggered by refinements to
the map of quality standards), (3) changing technology for detecting protein-protein in-
teractions (i.e., due to the development of new technologies or changes in the technical
infrastructure). A change can also be triggered by developments inside the system. These
changes are not initiated by the environment, but by problems detected inside the man-
agement system itself (e.g., logical design errors or technical problems). It is important to
classify the type of changes that may occur. Thus, we characterize changes as either ad-hoc
or evolutionary changes:

• Ad-hoc changes may be the result of an error, an exception, a rare event, or special demands
created by the presence of a promiscuous protein. Ad-hoc changes affect only one case

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 67

(i.e., one bait plate) or a selected group of cases (a selected group of plates). They occur
on an individual or selective basis. In general, it is not necessary to change the workflow
definition, since the same change will likely not be needed again. An example of an ad-
hoc change is the need to skip a task in case of an emergency (i.e., the reagent 5FOA was
degraded or the PCR kit failed). This type of change is often initiated by some external
factor. Typical problems related to ad-hoc changes are deciding what kinds of changes
are allowed and the fact that it is impossible to foresee all possible ad-hoc changes.

• Evolutionary changes are of a structural nature. From a certain moment in time, the
workflow changes for all new instances created. It is possible that the existing running
instances may be influenced. An evolutionary change is applied to a workflow as a re-
sult of the adoption of a new mapping strategy, reengineering efforts, or a permanent
alteration of external conditions (e.g., a change of interaction trap). Evolutionary change
is typically initiated by a researcher to improve efficiency, quality or responsiveness to
the community, or is forced by improved quality standards. As an example, we have
two strategies for creating the protein-protein interaction map. One strategy involves
the high throughput screen and the other the clone-by-clone screen. They differ on the
basis of the size of the bait and prey pools being interrogated. The high-throughput
screen is estimated to take 31 weeks to finish with a pool size of 96 baits vs. the whole
AD-library, but it is 3-fold less sensitive than the clone-by-clone screen. In contrast, we
can perform only about 650 clone-by-clone screens in a year. Once the map is sketched by
the high-throughput screen, we want to turn to the clone-by-clone screen to color in the
finer details of the map. Alternatively, once a human observer finds interesting clusters
by the high throughput screen, more sensitive (although slower) clone-by-clone screens
may be interjected to respond to community interest. Adaptive workflows can then be
used to adjust the overall experimental strategy for finding protein-protein interactions
using a task replacement policy.

Both ad-hoc and evolutionary changes are possible at entry time or and on-the-fly to run-
ning instances. Customizing the process definition for a single case before the processing is
started corresponds to an ad-hoc change at entry time. If such a customization is also allowed
after a workflow processing is started, we define it as an on-the-fly change. If evolutionary
changes are only possible at entry time, then only the new cases that are started after the
change took place have to run according to the updated workflow definition; all other cases
run according to the old workflow definition. On-the-fly evolutionary changes are more
difficult to handle since for each running workflow instance it must be decided how to deal
with the change [3]. It is especially difficult to introduce changes while workflow instances
are being processed. For workflow instances that are active (started, but not finished) at the
time of the change the transactional tasks (possibly subworkflows) can be rolled back, and
restarted under the new plan, or the instances in progress be allowed to continue under the
modified workflow.

4.3. System performance

The nature of the protein-protein interaction workflow is that all of the tasks are of long
duration. As an example, each of the high-throughput screens involves processing 500 “bait”

68 KOCHUT ET AL.

Table 3. Approximate timings for individual workflow steps.

Task Time Comments

Step 1 Overnight Mix of automatic and manual (human) tasks

Step 2 1 day A manual task

Step 3 Less than 1 day A manual task

Step 4 4–5 days A manual task

Step 5 1–2 days Performed by a robot

Step 6 1 day Largely automatic; sequence assembly and BLAST searches

Step 7 Several minutes Human with computer assistance

library plates in a 2-hybrid screen for interactions. Unassisted (manual) processing typically
takes one month per plate. Using IntelliGEN, we are able to process up to 16 plates per
week, which translates to 64-fold productivity gain.

Table 3 illustrates the duration of the individual steps of in the workflow. The times
are for an individual work item, which in the case of the protein-protein interactions is
processing of a single plate. As easily seen, the system overhead introduced by IntelliGEN
is negligible in comparison to the task processing time. Task activation time is below one
second.

In addition, our estimate is that it will take approximately 75,000 task executions to
complete the project, which will take roughly 3 years. This translates to about 75 tasks per
day, on average, a rather small number.

5. Conclusions and future research

We have successfully applied workflow technology to a large genomic project of mapping
protein-protein interactions of fungi. We have built on the success of our previous workflow
project for sequencing for N. crassa. It is an ongoing project and changes are made to
both the workflow engine, and the workflow specification, as necessitated by the laboratory
work. Because of the fact that we used our distributed and dynamic enactment system
ORBWork, it is possible to make changes to the deployed system. In the near future, we
intend to experiment with adding to IntelliGEN agents capable of performing adaptive
changes without human involvement.

The use of workflows and workflow systems to conduct and coordinate genomic ex-
periments in a heterogeneous and distributed environment has an immediate operational
requirement: the management of workflow quality of service. The experiments cannot be
undertaken while ignoring the importance of quality of service measurements. When adap-
tation is required, an adaptation agent will use QoS information—such as the time and
the cost of each task, and the final quality standards to be achieved [17]—to select a set
of adaptation strategies to be applied to a workflow requiring changes. In the case that
the intelligent agent is attempting to maximize coverage given the budget and time con-
straints, it will be necessary to invoke a simulation agent. A protein-protein interaction can
be simulated as previously described [63]. The proposed strategy can be applied to many

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 69

simulations of the protein-protein interaction map, and an average coverage of the networks
can be estimated. In this way, different proposed workflows can be evaluated with respect
to coverage.

References

1. W. Aalst and T. Basten, “Inheritance of workflows: An approach to tackling problems related to change,”
Computing Science Reports 99/06, Eindhoven University of Technology, Eindhoven, 1999.

2. W. Aalst and K. Hee, Workflow Management: Models, Methods, and Systems, MIT Press: Cambridge, MA,
2002.

3. W. Aalst and S. Jablonski, “Dealing with workflow change: Identification of issues and solutions,” International
Journal of Computer Systems, Science, and Engineering, vol. 15, no. 5, pp. 267–276, 2000.

4. S. Altschul, T. Madden, A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. Lipman, “Gapped BLAST
and PST-BLAST: A new generation of protein database search programs,” Nucleic Acis Research, vol. 25,
pp. 3389–3402, 1997.

5. M. Ansari, L. Ness, M. Rusinkiewicz, and A. Sheth, “Using flexible transactions to support multisystem
telecommunication applications,” in Proceedings of the 18th Intl. Conference on Very Large Data-bases,
Aug. 1992, pp. 65–76.

6. J. Arnold, Editorial. Fungal Genetics and Biology, vol. 21, pp. 254–257, 1997.
7. J. Arnold and M.T. Cushion, “Constructing a physical map of the Pneumocystis genome,” J. Euk. Microbiol.,

vol. 44, p. 8S, 1997.
8. B. Arpinar, J. Miller, and A. Sheth, “An efficient data extraction and storage utility for XML documents,”

39th ACM Southeast Conference, Athens, GA, March 2001, pp. 293–295.
9. G.W. Beadle and E.L. Tatum, “Genetic control of biochemical reactions in Neurospora,” in Proceedings of

the National Academy of Sciences, USA, vol. 27, pp. 499–506, 1941.
10. J.W. Bennett and J. Arnold, “Genomics of fungi. The Mycota VIII,” in Biology of the Fungal Cell, Howard

and Gow (Eds.), Springer-Verlag: NY, 2001, pp. 267–297.
11. P.M. Berry and K.L. Myers, “Adaptive process management: An AI perspective,” in ACM Conference on

Computer Supported Cooperative Work, Seattle, Washington, 1998.
12. U.S. Bhalla and R. Iyengar, “Emergent properties of networks of biological signaling pathways,” Science,

vol. 283, pp. 381–387, 1999.
13. S.M. Bhandarkar and J. Arnold, “Parallel simulated annealing on the hypercube for chromosome recon-

struction, invited paper,” in Proc 14th IMACS World Congress on Computational and Applied Mathematics,
Atlanta, GA, vol. 3, pp. 1109–1112, 1994.

14. S.M. Bhandarkar, S. Chirravuri, S. Machaka, and J. Arnold, “Parallel computing for chromosome reconstruc-
tion via ordering of DNA sequences,” Parallel Computing, vol. 24, pp. 1177–1204, 1998.

15. S.M. Bhandarkar, S.A. Machaka, S.S. Shete, and R.N. Kota, “Parallel computation of a maximum likelihood
estimator of a physical map,” Genetics, vol. 157, pp. 1021–1043, 2001.

16. A.J. Bonner, A. Shrufi, and S. Rozen, “LabFlow-1: A Database benchmark for high-throughput workflow
management,” in Proceedings, Fifth International Conference on Extending Database Technology (EDBT),
Avignon, France, March 1996, pp. 463–478. Springer-Verlag, Lecture Notes in Computer Science, vol. 1057.

17. J. Cardoso, J. Miller, and A. Sheth, “Workflow quality of service: Its specification and computation,” Technical
Report, LSDIS Lab, Computer Science, University of Georgia, April 2002.

18. Y. Chen, “Design and implementation of dynamic process definition modifications in OrbWork enactment
system,” Masters Thesis, UGA, 2000.

19. A. Cichocki and M. Rusinkiewicz, “Migrating workflows,” Advances in Workflow Management Systems and
Interoperability, Istanbul, Turkey, 1997.

20. A.J. Cuticchia, J. Arnold, H. Brody, and W.E. Timberlake, “CMAP: Contig mapping and analysis package:
A relational database for chromosome reconstruction,” CABIOS, vol. 8, pp. 467–474, 1992.

21. R.H. Davis, Neurospora Contributions of a Model Organism, Oxford University Press, New York, 2000.
22. J.L. DeRisi, V.R. Iyer, and P.O. Brown, “Exploring the metabolic and genetic control of gene expression on

a genomic scale,” Science, vol. 278, pp. 680–686, 1997.

70 KOCHUT ET AL.

23. L. Dogac, A. Kalinechenko, T. Ozsu, and A Sheth (Eds.), “Workflow management systems and interoperabil-
ity,” NATO ASI Series F, vol. 164, Springer Verlag: Berlin, 1998, p. 524.

24. C. Ellis, K. Keddara, and G. Rozenberg, “Dynamic changes within workflow systems,” in Proc. of the Conf.
on Organizational Computing Systems (COOCS’95), 1995.

25. B. Ewing and P. Green, “Base calling of automated sequencer traces using Phred II: Error probability,” Genome
Research, vol. 8, pp. 186–194, 1998.

26. X. Fang, J. Arnold, and J.A. Miller, “J3DV: A java-based 3D database visualization tool,” Software—Practice
and Experience, vol. 32, no. 5, pp. 443–463, 2002.

27. R.F. Geever, L. Huiet, J.A. Baum, B.M. Tyler, V.B. Patel, B.J. Rutledge, M.E. Case, and N.H. Giles, “DNA
sequence, organization and regulation of the qa gene cluster of Neurospora crassa,” J. Mol. Biol., vol. 207,
pp. 15–34, 1989.

28. D. Georgakopoulos, M. Hornick, and A. Sheth, “An overview of workflow management: From process
modeling to infrastructure for automation,” Distributed and Parallel Databases Journal, vol. 3, no. 2, pp. 119–
153, 1995.

29. N. Goodman, S. Rozen, and L.D. Stein, “The labflow system for workflow management in large scale biology
research laboratories,” in 6th Int. Conf. on Intelligent Systems for Molecular Biology, Montreal, Canada,
AAAI Press: Menlo Park, 1998, pp. 69–77.

30. D. Gordon, C. Abajian, and P. Green, “Consed: A graphical tool for sequence finishing,” Genome Research,
vol. 8, pp. 195–202, 1998.

31. N. Guimaraes, P. Antunes, and A. Pereira, “The integration of workflow systems and collaboration tools,”
Advances in Workflow Management Systems and Interoperability, Istanbul, Turkey, 1997.

32. D. Hall, “New computational tools for genome mapping,” Ph.D. Dissertation, University of Georgia, 1999.
33. R.D. Hall, S. Bhandarkar, and J. Arnold, “ODS2: A multi-platform software application for creating integrated

physical and genetic maps,” Genetics, vol. 157, pp. 1045–1056, 2001a. Also in Hall, RD “New computational
tools for genome mapping,” Ph.D. Dissertation, University of Georgia, 1999.

34. R.D. Hall, J.A. Miller, J. Arnold, K.J. Kochut, A.P. Sheth, and M.J. Weise, “Using workflow to
build an information management system for a geographically distributed genome sequencing initia-
tive,” in Genomics of Plants and Fungi, R.A. Prade and H.J. Bohnert (Eds.), Marcel Dekker: New York,
in press.

35. D. Hall, J. Miller, M. Weise, J. Arnold, K. Kochut, and A. Sheth, “Using workflow to build an informa-
tion management system for a geographically distributed genome initiative,” submitted. In Hall, RD “New
computational tools for genome mapping,” Ph.D. Dissertation, University of Georgia, 1999.

36. Y. Han and A. Sheth, “On adaptive workflow modeling,” in 4th International Conference on Information
Systems Analysis and Synthesis, Orlando, Florida, July 1998.

37. C. Hensinger, M. Reichert, Th. Bauer, Th. Strzeletz, and P. Dadam, “ADEPTworkflow—Advanced workflow
technology for the efficient support of adaptive, enterprise-wide processes,” in Conference on Extending
Database Technology, Konstanz, Germany, March 2000.

38. T. Hermann, “Workflow management systems: Ensuring organizational flexibility by possibilities of
adaptation and negotiation,” in Proc. of the Conf. on Organizational Computing Systems (COOCS’95),
1995.

39. D. Hollingsworth, “The Workflow Reference Model,” The Workflow Management Coalition, 1994.
40. http://gene.genetics.uga.edu. Fungal Genome Resource.
41. J.R. Hudson, E.P. Dawson, K.L. Rushing, C.H. Jackson, D. Lockshon, D. Conover, C. Lanciault, J.R. Harris,

S.J. Simmons, R. Rothstein, and S. Fields, “The complete set of predicted genes from Saccharomyces cerevisiae
in a readily usable form,” Genome Research, vol. 7, pp. 1169–1173, 1997.

42. C.A. Hutchison, S.N. Peterson, S.R. Gill et al., “Global transposon mutagenesis and a minimal Mycoplasma
genome,” Science, vol. 286, pp. 2165–2169, 1999.

43. International Human Genome Sequencing Consortium, “Initial sequencing and analysis of the human
genome,” Nature, vol. 409, pp. 860–918, 2001.

44. T. Ito, K. Tashiro, S. Muta, R. Ozawa, T. Chiba, M. Nishizawa, K. Yamamoto, S. Kuhara, and Y. Sakaki,
“Toward a protein-protein interaction map of the budding yeast: A comprehensive system to to examine two-
hybrid interactions in all possible combinations between the yeast proteins,” PNAS USA, vol. 97, pp. 1143–
1147, 2000.

INTELLIGEN: A DISTRIBUTED WORKFLOW SYSTEM 71

45. S. Jablonski, K. Stein, and M. Teschke, “Experiences in workflow management for scientific computing,”
in Proceedings of the Workshop on Workflow Management in Scientific and Engineering Applications (at
DEXA97), Toulouse, France, 1997.

46. JDO, “Java data object expert group,” Java Data Object. 2000. JSR000012, Version 0.8.
http://java.sun.com/aboutJava/communityprocess/review/jsr012/index.html.

47. J. Kececioglu, H.-P. Lenhof, K. Mehlhorn, P. Mutzel, K. Reinert, and M. Vingron, “A polyhedral approach to
sequence alignment problems,” Discrete Applied Mathematics, vol. 104, pp. 143–186, 2000.

48. J.D. Kececioglu and E.W. Myers, “Combinatorial algorithms for DNA sequence assembly,” Algorithmica,
vol. 13, pp. 7–51, 1995.

49. H.S. Kelkar, J. Griffith, M.E. Case, S.F. Covert, R.D. Hall, C.H. Keith, J.S. Oliver, M.J. Orbach, M.S. Sachs,
J.R. Wagner, M.J. Weise, J. Wunderlich, and J. Arnold, “The Neurospora crassa genome: Cosmid libraries
sorted by chromosome,” Genetics, vol. 157, pp. 979–990, 2001.

50. K.J. Kochut, J. Arnold, J.A. Miller, and W.D. Potter, “Design of an object-oriented database for reverse
genetics,” in Proceedings, First International Conference on Intelligent Systems for Molecular Biology, L.
Hunter, D. Searls, and J. Shavlik (Eds.), AAAI Press: Menlo Park, CA, 1993, pp. 234–242.

51. K.J. Kochut, A.P. Sheth, and J.A. Miller, “Optimizing workflows,” Component Strategies, vol. 1, pp. 45–57
(SIGS Publications), 1999.

52. E. Kraemer, J. Wang, J. Guo, S. Hopkins, and J. Arnold, “An analysis of gene-finding approaches for
Neurospora crassa,” Bioinformatics, vol. 17, pp. 901–912, 2001.

53. N. Krishnakumar and A. Sheth, “Managing heterogeneous multi-system tasks to support enterprise-wide
operations,” Distributed and Parallel Databases Journal, vol. 3, no. 2, 1995.

54. K. Lee, J.J. Loros, and J.C. Dunlap, “Interconnected feedback loops in the Neurospora Circadian system,”
Science, vol. 289, pp. 107–110, 2000.

55. Z. Luo, A. Sheth, K. Kochut, and B. Arpinar, “Exception handling for conflict resolution in cross-
organizational workflows,” Technical Report, LSDIS Lab, Computer Science, University of Georgia,
April 2002.

56. Z. Luo, A. Sheth, K.J. Kochut, and J.A. Miller, “Exception handling in workflow systems,” Applied Intel-
ligence: The International Journal of AI, Neural Networks, and Complex Problem-Solving Technologies,
vol. 13, no. 2, pp. 125–147, 2000.

57. R. McClatchey, J.-M. Le Geoff, N. Baker, W. Harris, and Z. Kovacs, “A distributed workflow and product
data management application for the construction of large scale scientific apparatus,” Advances in Workflow
Management Systems and Interoperability, Istanbul, Turkey, 1997.

58. METEOR project home page, http://lsdis.cs.uga.edu/proj/meteor/meteor.html
59. J.A. Miller, J. Arnold, K.J. Kochut, A.J. Cuticchia, and W.D. Potter, “Query driven simulation as a tool for

genetic engineers,” in Proceedings of the International Conference on Simulation in Engineering Education,
Newport Beach, CA, 1991, pp. 67–72. Also at http://chief.cs.uga.edu/∼miller/papers

60. D. Miller, J. Guo, E. Kraemer, and Y. Xiong, “On-the-fly calculation and verification of consistent steering
transactions,” in Proceedings of the Supercomputing Conference (SC2001), Denver, Colorado, 2001.

61. J. Miller, D. Palaniswami, A. Sheth, K. Kochut, and H. Singh, “WebWork: METEOR’s web-based workflow
management system,” Journal of Intelligent Information Systems (JIIS), vol. 10, pp. 186–215, 1998.

62. J.A. Miller, A. Sheth, K.J. Kochut, and X. Wang, “CORBA-based run time architectures for workflow man-
agement systems,” Journal of Database Management, Special Issue on Multidatabases, vol. 7, no. 1, pp. 16–27,
1996.

63. J.A. Miller, A. Sheth, K.J. Kochut, X. Wang, and A. Murugan, “Simulation modeling with workflow tech-
nology,” in Proceedings of the 1995 Winter Simulation Conference, Dec. 1995, pp. 612–619. Also at
http://chief.cs.uga.edu/∼miller/papers.

64. OMG 2001. OMG, UML Resources Page, http://www.omg.org/technology/uml.
65. D.D. Perkins, “Neurospora: The organism behind the molecular revolution,” Genetics, vol. 130, pp. 687–701,

1992.
66. D.D. Perkins, “Neurospora crassa genetic maps,” in Genetic Maps: Locus Maps of Complex Genomes, S.J.

O’Brien (Ed.), Cold Spring Harbor Press: Cold Spring Harbor, NY, pp. 3.11–3.20, 1993.
67. D.D. Perkins, M.A. Sachs, and A. Radford, “The neuorspora compendium chromosomal loci,” Academic

Press: New York.

72 KOCHUT ET AL.

68. D.D. Perkins, B.C. Turner, and E.G. Barry, “Strains of Neurospora collected from nature,” Evolution, vol. 30,
pp. 281–313, 1976.

69. R.A. Prade, J. Griffith, K. Kochut, J. Arnold, and W.E. Timberlake, “In vitro reconstruction of the
Aspergillus(=Emericella) nidulans genome,” in Proceedings of the National Academy of Sciences USA,
vol. 94, pp. 14564–14569, 1997.

70. M. Reichert and P. Dadam, “ADEPTflex—Supporting dynamic changes of workflows without losing control,”
Journal of Intelligent Information Systems—Special Issue on Workflow Managament, vol. 10, no. 2, pp. 93–
129, 1998.

71. J. Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Modeling Language Reference Manual, Addison-
Wesley: Reading, MA, 1998.

72. A. Sheth, “From contemporary workflow process automation to adaptive and dynamic work activity coor-
dination and collaboration,” in Proceedings of the Workshop on Workflows in Scientific and Engineering
Applications, Toulouse, France, 1997.

73. A. Sheth, W. Aalst, and I. Arpinar, “Processes driving the networked economy,” IEEE Concurrency, vol. 7,
no. 3, pp. 18–31, 1999.

74. A. Sheth and K.J. Kochut, “Workflow applications to research agenda: Scalable and dynamic work coordina-
tion and collaboration systems,” Workflow Management Systems and Interoperability, A. Dogac et al. (Eds.),
Springer Verlag: Berlin, 1998, pp. 35–60.

75. A. Sheth, K.J. Kochut, J.A. Miller, D. Worah, S. Das, D. Lin, D. Pallaniswami, J. Lynch, and I. Shevchenko,
“Supporting state-wide immunization tracking using multi-paradigm workflow technology,” in Proceedings
of the 22nd International Conference on Very Large Data Bases, Bombay, India, 1996, pp. 263–273.

76. A. Sheth, D. Worah, K.J. Kochut, J.A. Miller, K.E. Zheng, D. Palaniswami, and S. Das, “The METEOR
workflow management system and its use in prototyping significant healthcare applications,” in Proceedings
Toward an Electronic Patient Record Conference (TEPR ’97), vol. 2, Nashville, TN, 1997, pp. 267–278.

77. J. Skolnick, J.S. Fetrow, and A. Kolinski, “Structural genomics and its importance for gene function analysis,”
Nature Biotechnology, vol. 18, pp. 283–287, 2000.

78. S.H. Strogatz, “Exploring complex networks,” Nature, vol. 410, pp. 268–276, 2001.
79. Tian, Hui, “Storage management issues for high performance database visualization,” in Proceedings of the

39th Annual Southeastern ACM Conference, Athens, Georgia, March 2001, pp. 251–256.
80. P. Uetz, L. Glot, G. Cagney, T.A. Mansfield, R.S. Judson, J.R. Knight, D. Lockshon, V. Narayan, M. Srinivasan,

P. Pochart, A. Qureshi-Emili, B. Godwin, D. Conover, T. Kalbfleish, G. Vijayadamodar, M. Yang, M. Johnston,
S. Fields, and J.M. Rothberg, “A comprehensive analysis of protein-protein interactions in Sacharomyces
cerevisiae,” Nature, vol. 403, pp. 623–627, 2001.

81. J.C. Venter, M.D. Adams, and E.W. Myers et al., “The sequence of the human genome,” Science, vol. 291,
pp. 13040–1351, 2001.

82. M. Vidal, “Protein-protein interactions,” Encyclopedia of Genetics, Academic Press, vol. 3, pp. 1551–1552,
2002.

83. R.T. Watson, G.M. Zinkhan, and L.F. Pitt, “Object-orientation: A new perspective on strategy,” Paper read at
Academic Industry Working Conference on Research Challenges, April 27–29, 2000 at Buffalo, NY.

84. D.Worah, A. Sheth, K. Kochut, and J. Miller, “An error handling framework for the ORBWork workflow
enactment service of METEOR,” Technical Report, LSDIS Lab. Department of Computer Science, University
of Georgia.

85. Workflow Management Coalition Standards, http://www.aiim.org/wfmc/mainframe.htm
86. S. Wu, A. Sheth, J.A. Miller, and Z. Luo, “Authorization and access control of application data in work-

flow systems,” Journal of Intelligent Information Systems: Integrating Artificial Intelligence and Database
Technologies (JIIS), vol. 18, no. 1, pp. 71–94, 2002.

87. Z. Xu, B. Lance, C. Vargas, B. Arpinar, S. Bhandarkar, E. Kraemer, K. Kochut. J. Miller, J. Wagner, M. Weise,
J. Wunderlich, J. Stringer, G. Smulian, M. Cushion, and J. Arnold, “Mapping by sequencing the Pneumocystis
genome using the ODS3 tool,” Genetics, in press.

88. Y. Zhang, “A visualization system for protein interaction mapping using Java 3D technology,” Masters Thesis,
UGA, 2001.

