
Enabling Fine-Grained Packet Loss Monitoring in
Cloud Networks

Rohan Bose ∗†, German Sviridov∗, Jorge Cardoso∗‡
∗Huawei Munich Research Center – first.last@huawei.com

†Technische Universität Dresden, Germany
‡University of Coimbra, Portugal

Abstract—Excessive network packet loss is one of the strongest
symptoms of the presence of some hardware or software-related
infrastructure anomaly. As such, multiple techniques to rapidly
and efficiently measure packet loss in physical network equip-
ment have been developed throughout the years. Yet, most of the
proposed techniques fall short in the case of cloud scenarios
which combine the presence of physical and virtual network
devices.

In this paper, we tackle the problem of providing lightweight
and fine-grained packet loss monitoring at virtual switches. We
achieve our goal by combining packet coloring, with efficient
packet loss signal extraction and aggregation entirely within the
virtual switch level. To understand its feasibility in a production
environment, the proposed system has been implemented and
evaluated in a synthetic scenario and for real-world use cases.
Our implementation on top of OvS-DPDK shows that the
proposed system achieves 95% accurate packet loss measurement
while introducing negligible switching throughput degradation.

I. INTRODUCTION

Nowadays, big cloud deployments may include thousands of
physical and millions of virtual devices within their infrastruc-
ture. With such a scale, infrastructure faults become a daily
occurrence that has to be rapidly detected and mitigated by
cloud providers. Network monitoring has been widely used for
such a task as it can span from application layer monitoring [1]
down to the monitoring of fine-grained hardware components
(e.g., optical transceivers) [2].

Packet loss is among the most important metrics monitored
by cloud providers. Typically, high in-network packet loss is
one of the main symptoms of severe infrastructure problems.
While persistent packet loss detection can be achieved at
scale with traditional techniques, transient or bursty packet
loss is notably complex to detect and debug. Due to these
difficulties, transient packet loss may persist for hours or even
days before it is eventually detected and fixed which in turn
makes it among the main contributors to SLA deterioration
for most of the cloud customers. While there exist multiple
packet loss monitoring techniques, most of the previous re-
search effort focuses on monitoring hardware network devices
and equipment [3], [4], [5]. Yet, the majority of networking
services in the cloud are nowadays deployed as virtualized
software components within general-purpose servers. When
trying to apply traditional network monitoring technologies
developed for hardware network equipment to virtual ones, one

would inevitably meet issues related to resource exhaustion
and performance degradation [6]. This is mainly due to the
limited resources dedicated to virtual network devices and the
lack of specialized hardware.

Open vSwitch (OvS) [7], and, specifically, its Data Plane
Development Kit-based (DPDK) counterpart, namely OvS-
DPDK, has been a standard for implementing virtual switches
in most of the public and private cloud deployments. While
there have been multiple proposals to provide monitoring
functionality to OvS, some problems still remain unsolved.
Among these is the possibility of performing fine-grained and
transient packet loss monitoring at the virtual network layer.

In this paper, we propose a fine-grained packet loss mon-
itoring system tailored to work on top of the OvS-DPDK.
The system uses packet coloring to try to infer the number
of packets lost during the data transfer over the network, or
within the internal OvS pipeline. The system is built to work
within the OvS-DPDK data path, which permits to monitor
all of the transient traffic, thus enabling the possibility of
detecting packet loss at the packet scale. Indeed, our system,
as opposed to providing full network coverage [5], aims at
helping cloud providers in understanding when and where
exactly particular flows experience excessive packet drop.
From our experience this information is crucial to debug cloud
customers’ issues and to pinpoint eventual anomalies related
to tenants’ applications [1] in a non-intrusive and transparent
way.

The rest of the paper is organized as follows: in Sec. II we
overview existing work in the field of packet loss monitoring.
In Sec. III we describe key concepts that enable packet loss
monitoring in virtual networks. We describe the architecture
of the proposed system in Sec. IV and evaluate our prototype
in Sec. V. Finally, we discuss limitations and future work
in Sec. VI, and draw our conclusions in Sec. VII.

II. RELATED WORK

This section provides a brief overview of the related works
in the field of packet loss monitoring.

VTrace [8] enables persistent packet loss detection for
overlay networks. The solution to detect and analyze packet
loss relies on packet coloring. For each colored packet, virtual
switches generate a per-packet-based log message that is
forwarded to a centralized data processor. Similarly, the work979-8-3503-1090-0/23/$31.00 © 2023 IEEE

2023 IEEE Global Communications Conference: Selected Areas in Communications: Cloud/edge Computing, Networking, and Data
Storage

6789

GL
O

BE
CO

M
 2

02
3

- 2
02

3
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

9-
8-

35
03

-1
09

0-
0/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
54

14
0.

20
23

.1
04

36
93

8

Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on July 23,2024 at 06:24:06 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Comparison of features for existing packet loss
monitoring solutions

Related
work

Measurement
type

Data
analysis

Log data to
controller
overhead

Virtual
switch

support

[8] Passive Centralized High Yes
[3] Active Decentralized Low No
[4] Passive Decentralized Low No
[10] Passive Centralized Moderate No
[5] Active Centralized Low No
[11] Passive Centralized Low No
This work Passive Decentralized Low Yes

in [4], utilizes packet coloring but only applies to segment
routing-based networks [9].

[3] uses active probing combined with In-band Network
Telemetry (INT) to detect packet loss and localize failures.
Each switch adds an INT header containing path information
to the probe packets which are ultimately collected and ana-
lyzed at a centralized analyzer.

LossSight [10] combines the approaches from [8], and [3]
by using an ad-hoc INT header to color packets. Each switch
sends per-packet-based logging events to a centralized con-
troller where the data is processed to extract information about
the location and extent of the packet loss.

The authors of [5] propose link-level probe-based monitor-
ing for software-defined networks. It is based on the principle
of covering all links in the network through intelligent anal-
ysis of selecting the network probe paths. While addressing
issues related to test coverage and data overhead, [5] is only
capable of providing coarse-grained per-link-based packet loss
statistics.

LossDetection [11] is a packet loss monitoring solution that
exploits TCP, and UDP protocol-related control signal data.
This information is used to extrapolate the degree of packet
loss. While providing a compact and memory-efficient data
structure for packet loss detection, the approach assumes to
be able to access the transport layer information which is not
always available or feasible in cloud deployments.

Each discussed system has some limitations in terms of
excessive data overhead, in terms of measurement granularity,
or in terms of lack of support for virtual switches. Their
comparison to our work is summarized in Tbl. I.

III. PACKET LOSS MEASUREMENT IN VIRTUAL SWITCHES

In this Section, we provide background knowledge related
to OVS-DPDK and packet marking and coloring techniques
that are later used for the design of our system.

A. OvS-DPDK

Open vSwitch (OvS) is the most popular virtual switch
implementation used in production cloud environments. OvS
is a multi-layer software switch with the ability to connect
virtualized hosts between each other and to the physical
network. With the standard version of the OvS, the kernel

is the primary data path used for packet forwarding, usually
referred to as the ”fast path”. Consequently, all packets are
processed within the kernel. This inevitably contributes to
performance limitations due to the interrupt-driven packet
processing done by the kernel network stack leading to context
switching between user space and kernel space. A user-space
alternative of OvS, namely OvS-DPDK has been introduced in
an attempt to address the limitations of the fully kernel-based
implementation. OvS-DPDK exploits the DPDK technology
to move the fast path to the user space. This led to a
considerably improved throughput for packet forwarding, yet
at the expense of increased resource utilization [12], [13].
Nevertheless, even under such architecture, any stateful per-
packet-based processing techniques (e.g., per-packet counting)
would be required to be implemented entirely within the fast
path [14]. Thus, to maintain a high level of performance
the per-packet processing logic should be highly optimized
in terms of memory access and required CPU cycles. These
considerations will later influence the design of our system
discussed in Sec. IV.

B. Alternate Marking Performance Measurement
Alternate Marking Performance Measurement (AM-

PM) [15], [16] was introduced as a method for packet
loss, delay, and jitter measurements on top of live traffic.
Due to its simplicity and popularity, the approach has
been implemented in commercial switches and is currently
supported off-the-shelf by some switch vendors.

In AM-PM, groups of packets are alternately marked (col-
ored) by changing particular values of some of the bits
belonging to the packet headers. In its simplest form, a single
bit is used to mark the packets. The value of the marking bit
can assume a value of either 0 or 1. This bit is toggled and
stays constant for a given number of packets B, namely the
batch size. After a single batch of packets, the value of the bit
is inverted for the same amount of packets. To detect the packet
loss a monitor must perform two basic operations, i.e., i)
counting the number of packets of each color, and ii) detecting
the time at which packets transition from one color to another.
The latter is usually referred to as step detection. Whenever a
step is detected the system assumes that a full batch of packets
has been received and can trigger the calculation of the actual
packet loss of the previous batch. To do so, it is sufficient to
check the value of the counter for the color of the previous
batch and to compare it against the expected number of packets
B. If exactly B packets have been observed, no packet loss
has occurred. Otherwise, the packet loss will be measured as
the difference between B and the value of the packet counter.

IV. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we discuss the architecture, the methodology,
and the design choices behind the developed packet loss
monitoring system.

A. System design
The aim of this work is to provide lightweight and fine-

grained per-flow packet loss monitoring. The ultimate goal

2023 IEEE Global Communications Conference: Selected Areas in Communications: Cloud/edge Computing, Networking, and Data
Storage

6790
Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on July 23,2024 at 06:24:06 UTC from IEEE Xplore. Restrictions apply.

Ingress
Monitoring
Point

Open
vSwitch

Datapath processing
pipeline

Marked
packets

Marked
packets

Packet loss information

Polling
Packet Loss
Events

Metric
Aggregator

Telemetry
Server

Index Bucket 1 Bucket 2

1
2 Flow

FlowFlow
Flow

Ingress
Counter
0

Ingress
Counter
1

Egress
Counter
0

Egress
Counter
1

512 Flow Flow

Egress
Monitoring
Point

Update
Ingress Flow
Counters

Update Egress
Flow Counters

Hash Table

Packet
dropped in
network

Packet dropped
in switch

Fig. 1: Core components of our design

of our system is that of assisting the debugging of particular
flows to understand exactly when packet loss occurs and to
be able to correlate it later with monitoring signals coming
from other sources. To achieve our goal we build our design
on top of four key components. These components, alongside
the overall architecture of our system, are illustrated in Fig. 1
and are as follows:

1) AM-PM packet coloring enables accurate and timely
detection of packet loss

2) Fast path-based packet counting permits to reduce
the resource overhead of the packet loss measurement
algorithm

3) Reordering-robust step detection algorithm enables
reliable results in case of severe packet reordering

4) Data summarization within the fast path permits us
to reduce the data overhead between single switches and
the telemetry server [10], [8]

In the following, we will provide an overview of how each
of the components is integrated and the rationale behind the
choices that have been made.

1) AM-PM packet coloring: We exploit AM-PM marking
strategy as the basic strategy to detect packet loss. Notably,
this choice leads to the least resource overhead as compared
to INT-based solutions. We use the IP’s DSCP field to carry
this information across different virtual and physical switches.
In our design, we assume that packets arrive already marked
at the transient switches. We consider two alternatives for the
actual location of the markers. In the first scenario, packets
are marked at the hypervisor level which permits to exploit
more resources at the expense of extending the coverage of
the system beyond just the virtual network layer. On the other
hand, we consider the possibility of packets being marked at
the ingress port of the first virtual switch. In the latter scenario,
the entirety of the tool remains constrained to the virtual
network layer at the expense of added resource overhead.

2) Fast path-based packet counting: The most resource-
demanding operation within the AM-PM system is packet
counting. While it can be done efficiently on off-the-shelf
silicon, implementing this mechanism in software poses con-

0 25 50 75 100 125 150 175
Packet index

0

1

Pa
ck

et
 ta

g
va

lu
e

Batch detection threshold

Fig. 2: Batch detection using a packet reordering-robust thresh-
old

siderable challenges due to resource constraints. We imple-
mented the packet counting algorithm within the fast path
of OvS by adding a new custom packet processing action,
namely pkt_loss_chk. The action is executed whenever a
new packet is received at the ingress or at the egress of the
packet processing pipeline. Upon matching, the action will
trigger a read of the packet color from the DSCP field and
will subsequently increment the corresponding per-flow and
per-color counter. We place two counters (namely, ”0”, and
”1” counters) both at the ingress and at the egress of the
OvS switch. This duplication of the counters permits us to
measure both the packet loss that occurred between different
network nodes, and the packet loss that occurred within the
OvS internal pipeline. The counters are packed within a set of
hash tables that enables the association of individual flows to
the corresponding counters.

3) Packet reordering-robust step detection algorithm: The
estimation of the packet loss is triggered by the transition
between batches of opposite colors. To do so, in the most
simplistic case, it is sufficient to detect the first packet that
has a different color from the color of the currently measured
batch. However, in realistic scenarios packet reordering may
lead to some of the colors arriving interleaved as shown
in Fig. 2. Under such a scenario, a simple step detection
algorithm will lead to false results. For this reason, we
implement step detection by looking at the percentage of the
received packet of a given color in the last batch (dashed
lines in Fig. 2). After a given ”safe” percentage of packets
of the next batch have been received we can assume that the
step transition has already occurred. This effectively allows
mitigation of the effect of packet reordering close to the color
transition edge.

4) Data summarization within the fast path: The step
detection algorithm effectively enables the detection of packet
losses, as, once the step has been detected, the difference
between the configured batch size and the counter value
will give us the exact amount of lost packets within two
packet batches. A separate process, namely Metric Aggregator,
running outside of the fast path, is informed every single time
a packet loss event is detected. The task of this component
is to periodically poll the flow counters to check for a packet
loss event and to transmit aggregate packet loss messages to
be sent to an external telemetry server. Effectively, a report
is only sent to the telemetry server if a packet loss has been

2023 IEEE Global Communications Conference: Selected Areas in Communications: Cloud/edge Computing, Networking, and Data
Storage

6791
Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on July 23,2024 at 06:24:06 UTC from IEEE Xplore. Restrictions apply.

detected for a batch as opposed to continuous reporting in [8].

B. Implementation

We implemented the described key components of the sys-
tem within the OvS-DPDK fast path with 1.5K lines of C code.
We use the open-source version of OvS-DPDK 2.17.90 [17].
For the step detection algorithm, we use 30% as the threshold
for triggering the detection of a step. The implementation of
the per-flow counters uses 8-bit unsigned variables which leads
to a maximum batch size of 255 packets. Furthermore, we
enforce memory alignment of counters belonging to the same
flow to maximize cache hit ratio during packet processing, and,
thus minimize the impact of the pkt_loss_chk action on
the overall performance of the virtual switch. We use a simple
hash table of 512 indices with two entries for each index, for
the storage and mapping of flow counters. The 32-bit flow
hash value in the packet metadata is used as the hash table
key for retrieving the index. The 16th most significant bit of
the 32-bit flow hash value decides the location out of the two
entries for the same index in case of a hash collision. Finally,
we implement the metric aggregator as an OvS-DPDK off-
path module and the telemetry server as a standalone module
in a separate process.

V. EVALUATION

Since the proposed approach only affects single virtual
switches we focus our evaluation on the introduced perfor-
mance overhead at a single switch. Additionally, we eval-
uate the overall correctness of the system by evaluating it
in a small, yet realistic testbed. In particular, we measure
the total throughput degradation and we verify whether the
system behaves correctly under specific real-life conditions,
e.g., variable degree of packet drop, and congestion.

A. Testbed Setup

For performance evaluation we consider a testbed running
a single OVS-DPDK switch, while for functional evaluation
we consider a testbed with 4 switches connected in a bus
topology as depicted in Fig. 3. This topology is analogous to an
overlay-underlay network setup, where terminal OvS instances
connect the guest virtual machines in different physical hosts
in an overlay network, and the underlay network consists of
multiple switches in a linear path between the 2 terminal OvS
instances.

We use DPDK libraries version 21.11.1, and Pktgen-
DPDK [18] to generate marker synthetic data flow. Experi-
ments are performed on top of an Intel Xeon Gold 6161 CPU
with 385GB of RAM. For the single-switch setup, the OVS
instance is deployed directly on the host. For the multi-switch
setup, each switch is deployed in a separate VM with 3GB
RAM and 6 logical cores.

B. Functional Correctness

In this section, we evaluate the accuracy of packet loss
measurements. For this purpose we developed a synthetic
packet dropped as a separate model within the OvS switch

Packet
Loss info

A

B

C

D

E

F

G

Telemetry
Server

VM VM VM

OvS OvS OvS OvS

VM

Fig. 3: Multi-switch evaluation setup

1 2 4 8 16 32 64 128 256
Number of observed batches B

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
la

tiv
e

es
tim

at
io

n
er

ro
r

pd = 0.001
pd = 0.005
pd = 0.01
pd = 0.1

(a) Experiments with variable ob-
served packets

0.0010.005 0.01 0.02 0.04 0.06 0.08 0.1
Actual packet loss rate pd

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Re
la

tiv
e

es
tim

at
io

n
er

ro
r

B = 100
B = 1000
B = 10000

(b) Experiments with variable
batch sizes

Fig. 4: Relative estimation error vs B and observed packets

itself. The model permits us to drop packets at both the ingress
and egress measuring points, thus enabling the emulation of
scenarios including link-level and OvS-internal packet losses
respectively.

1) Accuracy: For evaluating the accuracy of the developed
packet loss monitoring system, we employ a single-switch
setup and instrument the packet dropper with variable packet
drop probabilities pd and we measure the estimation accu-
racy of our system for variable batch sizes. We instrument
pkt_loss_chk to monitor just a single flow to avoid
interference from other flows for the packet dropper.

Fig. 4a shows the relative estimation error, alongside with
the 95% confidence interval, of the measured packet drop
probability p̂d in function of number of observed batches and
for variable pd. The lower the relative error, the higher the
accuracy of the system. Overall it is observed that the accuracy
of measurement increases with the number of observed batches
and greater batch size, with the number of observed batches
larger than 25 not bringing considerable improvement in terms
of performance. On the other hand, Fig. 4b depicts relative
estimation error for variable batch sizes. As expected, it can
be observed that accuracy improves with greater batch size
and for higher packet loss ratios.

2) Congestion detection: To understand the performance of
our system in a more complex scenario we emulate network
congestion using the multi-switch setup. We consider a hy-
pothetical scenario in which the terminal OvS instances from
Fig. 3 are connected to virtual hosts in an overlay network
and the 2 OvS instances in between are considered as part
of the underlying physical network. Packet loss monitoring

2023 IEEE Global Communications Conference: Selected Areas in Communications: Cloud/edge Computing, Networking, and Data
Storage

6792
Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on July 23,2024 at 06:24:06 UTC from IEEE Xplore. Restrictions apply.

10 20 30 40 50 60
Time (sec)

0

2000

4000

6000

8000
Cu

m
ul

at
iv

e
Pa

ck
et

s L
os

t 8680

Congestion Window
Actual total packets lost
Detected total packets lost

10 20 30 40 50 60
Time (sec)

0

3000

6000

9000

Cu
m

ul
at

iv
e

Pa
ck

et
s L

os
t10024

Congestion Window
Actual total packets lost
Detected total packets lost

10 20 30 40 50 60
Time (sec)

0

2000

4000

6000

8000

Cu
m

ul
at

iv
e

Pa
ck

et
s L

os
t 9232

Congestion Window
Actual total packets lost
Detected total packets lost

10 20 30 40 50 60
Time (sec)

0

2000

4000

6000

8000

Cu
m

ul
at

iv
e

Pa
ck

et
s L

os
t 9384

Congestion Window
Actual total packets lost
Detected total packets lost

Fig. 5: Detected packet loss over time reported at the telemetry
server for the congestion scenario (red and blue lines overlap).

is enabled only on the terminal OvS instances. The objective
is to evaluate if the system is able to detect packet loss for
flow A to G during congestion. Background traffic at a high
rate (8 Mpps) is sent on the path C → D → E, while probe
packets are sent from on the path A → B → D → F → G,
thus simulating a transient congestion scenario in the underlay
network which causes packet drops on link D. We run the
network in the absence of background traffic for 15 seconds,
after which the background traffic is turned on for 30 seconds
and then turned off again. It is expected that packet loss will
only be reported during the 30 seconds of congestion. We then
compare the reported packet loss at every time with the ground
truth packet loss obtained directly from the synthetic packet
dropper.

Fig. 5 shows 4 different runs of the experiment. It is
observed that packet loss in the network only occurs during
the congestion time (timestamp seconds: 15-45). This is cor-
rectly detected by the packet loss monitoring system at the
destination switch and coincides with this time period. Outside
this time period, there were no packet losses observed for the
monitored flow. This also concurs with no detection reported
by the packet loss monitoring system.

C. Performance evaluation

The system has also been evaluated in terms of performance
to establish that the designed concept is feasible to be used
and that the performance variations observed are relatively
tolerable in comparison to the clean version of OvS-DPDK
and its predefined OvS actions. For evaluating performance,
the throughput (in terms of bytes per second) of the system
has been measured when monitoring multiple flows. All per-
formance tests have been performed with a single-switch setup
and a batch size of 100.

We use the range functionality of the Pktgen-DPDK to gen-
erate 10,000 active flows and monitor only a subset of them.
The hash table size for storing the flow counters is defined to

64 256 512 1024 1518 8906
Packet Size

0

10000

20000

30000

40000

50000

60000

Th
ro

ug
hp

ut
 (M

bp
s)

Type
Packet Loss Action
Decrement TTL Action
No OvS Action

Fig. 6: Absolute throughput degradation for performance eval-
uation at maximum sending rate on OvS-DPDK for variable
packet size and for different packet actions

hold a maximum of 1024 elements, and out of 10,000 active
flows, thus 1024 flows are monitored on a first come first serve
basis. We consider a baseline the OvS no_action action,
i.e., the pass-through configuration. The relative performance
to the baseline throughput is calculated for both cases where
the flow rule is configured with pkt_loss_chk action and
then separately with the predefined dec_ttl OvS action.
These two cases are compared relative to the baseline. Both
actions are compared to the baseline values also to prove there
is inherent degradation in switching throughput when an action
is configured for a flow in OvS-DPDK in comparison to when
no actions are configured. Note that for all cases, the output
action is enabled to output the packet to a certain port.

Fig. 6 depicts the absolute average throughput in terms of
Mbps alongside 95% confidence intervals for variable packet
size and for different OvS actions enabled. It can be seen
that the throughput grows considerably as the packet size
increases, which is in line with previous findings [19]. At the
same time, it can be observed that both the dec_ttl and
pkt_loss_chk actions introduce some performance penalty
when enabled. The dec_ttl action observes a maximum
degradation in throughput performance of 5% with a packet
size of 64 bytes, and minimum degradation in throughput
performance of 1.1% with 8906-byte packet size, against
baseline values. When enabling the pkt_loss_chk action
we observed an additional maximum degradation of 3% with
64-byte packets and a minimum of 0.8% with 8906-byte
packets with respect to the dec_ttl scenario. Additionally,
we observed that the value of the batch size does not affect
the forwarding performance of the switch and just affects the
accuracy of the packet loss estimation.

Following this evaluation, we assessed the root cause of the
performance degradation by analyzing the resource utilization
of the machine running our modified version of OvS. Tbl. II
depicts the effects of memory cache misses on the L1 and LLC
caches and the measured normalized throughput. All values are
normalized with respect to the no_action scenario.

A considerable increase in the rate of LLC-load misses and
LLC-store misses can be seen when hash table entries are

2023 IEEE Global Communications Conference: Selected Areas in Communications: Cloud/edge Computing, Networking, and Data
Storage

6793
Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on July 23,2024 at 06:24:06 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Cache and throughput statistics for our experiments
Hash
table
size

Normalized
L1-dcache
miss rate

Normalized
LLC-load
miss rate

Normalized
LLC-store
miss rate

Normalized
throughput

4 1.00 1.00 1.08 0.99
1024 1.01 1.00 1.12 0.97
2048 1.01 1.01 1.25 0.96
8192 1.02 1.07 2.49 0.87
16384 1.04 1.10 4.22 0.82
32768 1.10 1.14 8.06 0.76
65536 1.18 1.20 16.55 0.69

increased from 2048 to 8192. This also is in direct correlation
with the significant drop in throughput. As the hash table size
is increased even further, both LLC metrics show a directly
correlated increase. A similar trend is also observed for the
rate of L1-dcache misses with an increase in hash table size.
However, we believe the LLC misses to be the main culprit for
the performance degradation, as these are directly translated
to memory accesses in the RAM.

VI. DISCUSSION AND FUTURE WORK

Our evaluation shows that the proposed system can measure
packet loss with high accuracy and low overhead. Neverthe-
less, we acknowledge that there are certain limitations and
further possible improvements to be done.

When more than 1024 flows are monitored simultaneously,
a degradation of the forwarding throughout can be observed
which was found to be related to the increased cache miss
rate in our evaluation. A possible future work would target
the use of more memory-efficient data structures, such as
sketches [20], to maximize the cache hit ratio at the expense
of some accuracy. Alternatively, some off-path monitoring
techniques, such as the one proposed in [21] could be explored.

Additionally, an issue that has not been addressed in this
work is active flow selection. Automatically identifying which
flows to monitor and how to trigger the analysis requires fur-
ther investigation. Nevertheless, we noticed that the proposed
system is already able to address some of the critical scenarios
that can manifest themselves in production environments. In-
deed, when combined with other measurement metrics such as
L7 metrics, by instrumenting our system with the monitoring
of specific suspect flows, we able to pinpoint the exact time
and location within the network of excessive packet loss.

VII. CONCLUSION

In this paper, we propose a low data overhead and fine-
grained packet loss monitoring system for virtual switches.
To achieve this goal, we exploit the traditional AM-PM
scheme by carefully integrating it within the OvS-DPDK data
path. Our solution has been successfully implemented and
evaluated in an emulated environment with multiple instances
of virtual switches. The evaluation showed that our design
is able to achieve 95% accuracy for packet loss estimation

while incurring a performance degradation for the switches’
throughput in the range of 2-3%.

Following the evaluation results, we are confident about
the possibility of applying our design in production cloud
environments after introducing further optimizations. Indeed,
we believe the developed system can help both cloud service
providers to quickly detect and measure packet losses with
a further understanding of the location and root cause of the
fault.

REFERENCES

[1] B. Arzani, S. Ciraci, B. T. Loo, A. Schuster, and G. Outhred, “Taking
the blame game out of data centers operations with netpoirot,” in ACM
SIGCOMM, 2016.

[2] P. Notaro, Q. Yu, S. Haeri, J. Cardoso, and M. Gerndt, “An optical
transceiver reliability study based on sfp monitoring and os-level metric
data,” in IEEE CCGrid, 2023.

[3] C. Jia, T. Pan, Z. Bian, X. Lin, E. Song, C. Xu, T. Huang, and Y. Liu,
“Rapid detection and localization of gray failures in data centers via
in-band network telemetry,” in IEEE NOMS, 2020.

[4] P. Loreti, A. Mayer, P. Lungaroni, S. Salsano, R. Gandhi, and C. Filsfils,
“Implementation of accurate per-flow packet loss monitoring in segment
routing over ipv6 networks,” in IEEE HPSR, 2020.

[5] X. Zhang, Y. Wang, J. Zhang, L. Wang, and Y. Zhao, “Ringlm: A link-
level packet loss monitoring solution for software-defined networks,”
IEEE JSAC, 2019.

[6] S. Lee, K. Levanti, and H. S. Kim, “Network monitoring: Present and
future,” Computer Networks, 2014.

[7] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and
implementation of open vswitch,” in NSDI, 2015.

[8] C. Fang, H. Liu, M. Miao, J. Ye, L. Wang, W. Zhang, D. Kang, B. Lyu,
S. Zhu, P. Cheng et al., “Towards automatic root cause diagnosis of
persistent packet loss in cloud overlay network,” IEEE/ACM TON, 2022.

[9] C. Filsfils, P. Camarillo, J. Leddy, D. Voyer, S. Matsushima, and Z. Li,
“Segment routing over ipv6 (srv6) network programming,” Internet
Requests for Comments, 2021.

[10] L. Tan, W. Su, W. Zhang, H. Shi, J. Miao, and P. Manzanares-Lopez, “A
packet loss monitoring system for in-band network telemetry: Detection,
localization, diagnosis and recovery,” IEEE TNSM, 2021.

[11] H. Wu, Y. Liu, S. Ni, G. Cheng, and X. Hu, “Lossdetection: Real-time
packet loss monitoring system for sampled traffic data,” IEEE TNSM,
2022.

[12] Q.-H. Nguyen and Y. Kim, “Performance of ovs-dpdk in container
networks,” in IEEE ICTC, 2020.

[13] W. Tu, Y.-H. Wei, G. Antichi, and B. Pfaff, “Revisiting the open vswitch
dataplane ten years later,” in SIGCOMM, 2021.

[14] P. Chaignon, K. Lazri, J. François, T. Delmas, and O. Festor, “Oko:
Extending open vswitch with stateful filters,” in SOSR, 2018.

[15] T. Mizrahi, G. Navon, G. Fioccola, M. Cociglio, M. Chen, and
G. Mirsky, “Am-pm: Efficient network telemetry using alternate mark-
ing,” IEEE Network, 2019.

[16] G. Fioccola, A. Capello, M. Cociglio, L. Castaldelli, M. Chen, L. Zheng,
G. Mirsky, and T. Mizrahi, “Alternate-marking method for passive and
hybrid performance monitoring,” Internet Requests for Comments, 2018.

[17] “Open vswitch - source.” [Online]. Available: https://github.com/
openvswitch/ovs

[18] “Pktgen-dpdk packet generator.” [Online]. Available: https:
//pktgen-dpdk.readthedocs.io/en/latest/

[19] P. Emmerich, D. Raumer, S. Gallenmüller, F. Wohlfart, and G. Carle,
“Throughput and latency of virtual switching with open vswitch: A
quantitative analysis,” Journal of Network and Systems Management,
2018.

[20] M. Charikar, K. Chen, and M. Farach-Colton, “Finding frequent items
in data streams,” in ICALP. Springer, 2002.

[21] T. Zhang, L. Linguaglossa, M. Gallo, P. Giaccone, and D. Rossi,
“Flowatcher-dpdk: Lightweight line-rate flow-level monitoring in soft-
ware,” IEEE TNSM, 2019.

2023 IEEE Global Communications Conference: Selected Areas in Communications: Cloud/edge Computing, Networking, and Data
Storage

6794
Authorized licensed use limited to: b-on: Universidade de Coimbra. Downloaded on July 23,2024 at 06:24:06 UTC from IEEE Xplore. Restrictions apply.

