
2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID)

Anomaly Detection and Classification using
Distributed Tracing and Deep Learning

Sasho Nedelkoski*, Jorge Cardoso^, Odej Kao*
* Complex and Distributed IT-Systems Group, TU Berlin, Berlin, Germany

Email: {nedelkoski, odej.kao}@tu-berlin.de
iHuawei Munich Research Center, Huawei Technologies, Munich, Germany

Email: jorge.cardoso@huawei.com

Abstract—Artificial Intelligence for IT Operations (AIOps)
combines big data and machine learning to replace a broad range
of IT Operations tasks including availability, performance, and
monitoring of services. By exploiting log, tracing, metric, and
network data, AIOps enable detection of faults and issues of
services. The focus of this work is on detecting anomalies based
on distributed tracing records that contain detailed information
for the availability and the response time of the services. In
large-scale distributed systems, where a service is deployed on
heterogeneous hardware and has multiple scenarios of normal
operation, it becomes challenging to detect such anomalous cases.
We address the problem by proposing unsupervised, response
time anomaly detection based on deep learning data modeling
techniques; unsupervised dynamic error threshold approach;
tolerance module for false positive reduction; and descriptive
classification of the anomalies. The evaluation shows that the
approach achieves high accuracy and solid performance in both,
experimental testbed and large-scale production cloud.

Index Terms—AIOps; anomaly detection; service reliability;
time series; distributed tracing; autoencoders; RNNs; GRUs;
CNNs.

I . I n t r o d u c t i o n

The increasing number of IoT applications with dynamically
linked devices and their embedding in real-world (smart)
environments drive the creation of large multi-layered systems.
As a consequence, the complexity of the systems is steadily
growing up to a level, where it is impossible for human oper­
ators to oversee and holistically manage the systems without
additional support and automation. Uninterrupted services with
guaranteed latency, response times, and other QoS parameters,
are however mandatory prerequisite for many of the data-
driven and autonomous applications. Therefore, losing control
is not a feasible option for any system or infrastructure.

The large service providers are aware of the need for
always-on, dependable services and they already deployed
numberless measures by introducing additional intelligence
to the IT-ecosystem. For example, by employing network
reliability engineers (NRE), site reliability engineers (SRE),
by using automated tools for infrastructure monitoring, and
developing tools based on artificial intelligence (AIOps) for
load balancing, capacity planning, resource utilization, storage
management, and anomaly detection.

The next piece in the puzzle aims at rapidly decreasing
the reaction time in case an urgent activity of a system
administrator is necessary. That usually involves performance

978-1-7281-0912-1/19/$31.00 ©2019 IEEE
DOI 10.1109/CCGRID.2019.00038

problems, component/system failures (e.g., outages, degraded
performance), or security incidents. All these examples de­
scribe situations, where the system operates outside of the
normal, expected or pre-defined behaviour. Thus, the system
exposes that an anomaly must be detected and recognized,
before it leads to a service or a system failure.

The foundation for AIOps systems is the availability of
suitable and descriptive data, which is typically observed by
three core components: tracing, logging, and resource moni­
toring metrics. The tracing component produces events (spans)
containing information on the execution path and response
time. The logging data represents interactions between data,
files, or applications and is used to analyze specific trends
or to record events/actions for a later forensic. The resource
monitoring data reflects the current utilization and status of the
infrastructure, typically as cross-layer information regarding
CPU, memory, disk, and network throughput and latency. Most
of the current AIOps platforms apply deep learning solely
on monitoring data [1], [2], as this data is simple to collect
and interpret, but not sufficient for a holistic approach. We
aim at exploring an additional path for anomaly detection
using a second category of data, namely the tracing data
collected during the execution of system operations. Tracing
technologies [3]—[5] generate events to externalize the state
of the system by combining performance data from the end-
to-end execution path with structured and causally related
execution traces. We are confident that such data can improve
the anomaly detection, root-cause analysis, and remediation
in the system. It contains detailed information for individual
services and the causal relationship to other related services
that form part of the trace.

The focus of the study is to tackle the problem of anomaly
detection in real-world tracing data. It faces several challenges,
including the lack of labeled data, concept drift, and concept
evolution. Other major sources of difficulties emerge due
to the low signal-to-noise ratio, the presence of multiple
frequencies and multiple distributions, the large number of
distinct time series generated by microservice applications,
and the presence of concept drifts. The signal-to-noise ratio
is typically very low as many different components affect
the response time of microservices such as switches, routers,
memory capacity, CPU performance, programming languages,
thread and process concurrency, bugs, and volume of user

_ IEEE
computer

society

requests. Multiple frequencies are correlated with system and
user behaviour since request patterns are different, e.g., from
hour to hour due to business operation hours, from day to day
due to system maintenance tasks, and from month to month
due to cyclic patterns. For these reasons, the utilization of
unsupervised approaches is required. In such scenarios where
anomaly detection is being used as diagnostic tool, a degree
of additional description is required. Identifying the potential
anomaly in the service is of limited value for the operators
without having more detailed explanation.

Contributions. We provide an algorithm that adapts and
extends deep learning methods from various domains. This
work focuses on anomaly detection from tracing data in
large-scale distributed systems, but can also be used in other
applications involving anomaly detection on time series data
containing multiple normal operating scenarios. We show the
capability of the Auto-Encoding Variational Bayes (variational
autoencoder, AEVB) to learn multiple complex distributions
representing normal behavior over longer period of time and
detect anomalies by employing a dynamic, probability-based,
error threshold setting. Furthermore, we propose combination
of the threshold setting and post-processing that aims to reduce
the number of false positives. Lastly, we present a classi­
fication module and provides descriptions for the detected
anomalies.

The remaining of the paper is structured as follows. In
section n, we provide the related work for the field of anomaly
detection. In sections HI and IV, we present the preliminary
knowledge and our proposed methodology. Section V sum­
marizes the performance evaluation in terms of speed and
accuracy for different types of anomalies on both experimental
and real-world production cloud data.

II. R e l a t e d w o r k

Tracing technologies for distributed services record in­
formation about all the individual components participating
on an e.g., user request (initiator) within the system. Two
classes of solutions have been proposed to aggregate these
information so that one can associate all record entries with
a given initiator, black-box and annotation-based monitoring
schemes [3]. Black-box schemes [6]—[8] assume there are no
additional information other than the message record described
above, and use statistical regression techniques to infer that
association. Annotation-based schemes [5], [8]—[10] rely on
applications or middleware to explicitly tag every record with
a global identifier that links these message records back to
the originated request. We use the annotation based system
(Zipkin based on Dapper [3]), which relies on proper service
instrumentation.

While the anomaly detection on other categories of data like
log and metric are part of previous research [1], [2], [11]—[15],
the related work on time series and the structural anomaly
detection in trace data is still limited.

Anomaly detection for services have been studied exhaus­
tively during many years on different kinds of data. In general,

we distinguish between statistical and machine learning meth­
ods. The machine learning approaches can be divided into two
general categories [1], supervised [16]—[19] and unsupervised
[20]—[23].

Vallis et al. [24] proposed a novel approach, which builds
on Extreme Studentized Deviate test (ESD), for detecting
anomalies in long-term time series data. The approach requires
the detection of the trend component. This technique is similar
to most of the statistical methods, which have limitations when
they are applied to large systems based on service-oriented
and microservice architectures. These systems produce time
series data with high noise and with more than a single normal
behavior in the signal. Specifically, if the time series has more
than two different normal (expected) scenarios of operation,
the algorithm would not be able to capture this information.

Supervised methods use labeled data to train machine
learning models. The anomaly detection algorithms are clas­
sification models trained by data containing the information
whether the data point is an anomaly or not. For practical
usage, the labelling by experts or injection of anomalies either
is not sufficient (evolving time series, concept drifts) or may
harm the running system. Therefore, unsupervised methods are
investigated, having the positive properties of performing the
same task, but not using labeled input data.

Recently, deep learning techniques are increasingly inves­
tigated because of their success in range of domains. In
that direction, Malhotra et al. [25] used stacked recurrent
hidden layers to enable learning of higher level temporal
features. They presented a model of stacked Long Short­
Term Memory (LSTM) networks for anomaly detection in
time series. A network was trained on non-anomalous data
and used as a predictor over a number of time steps. The
resulting prediction errors were modeled as a multivariate
Gaussian distribution, which was used to assess the likelihood
of anomalous behavior. The efficacy of this approach was also
demonstrated on four datasets.

Xu et al. [26] show the usability of variational autoencoders
for anomaly detection and triggering of timely troubleshooting
problems on Key Performance Indicator (KPI) data of Web
applications (e.g., page views, number of online users, and
number of orders). They proposed Donut, an unsupervised
anomaly detection algorithm based on AEVB. Furthermore,
Hundman et al. [27] show the use of LSTM recurrent neural
networks for spacecraft anomalies on multi-variate telemetry
data.

Existing supervised and unsupervised auto-regressive ap­
proaches fail with data of small signal-to-noise ratio and
autocorrelation either by learning only the running mean or
by not preserving the order in time series. In similar direction
as of Xu et al. and Hundman et al., we combine the methods
from both and show that the integration of Gated Recurrent
Units (GRUs, simplified LSTMs) with variational autoencoder
produce results which are able to meet the accuracy and perfor­
mance requirements. Of course, the inclusion of preprocessing
and postprocessing improves the accuracy by reducing the
amount of false positives.

242

II I . P r e l i m i n a r i e s

Systems based on microservices or service-oriented archi­
tectures consists of several services connected by a network,
providing a larger system application. To monitor the user
requests with a detailed description of different participating
microservices, distributed tracing technologies are utilized.

A trace T = (Eo, E i , . . . , Ei) is represented by an enumer­
ated collection of events. Each event is represented by key-
value pairs (ki,Vi) describing the state, performance, and other
characteristics of a service at a given time tj. The events
contain contain a timestamp when the particular service was
invoked, a response time, and a http URL among the other meta
information (e.g., host IP, service name etc.). Depending on the
request, traces can have different lengths and services invoked.
The response time is one of the most important attributes of
the event, e.g., if its value which characterizes the intra-service
calls in the system suddenly increases at times ij+i, ij+2, it
may indicate a problem with the underlying distributed system.

Let us assume that we observe two traces: T i = (Euri_ai,
Euri—bi; Eurl_Cl) and T2 — (Euri_a2,E uri_b2JEuri_C2). Each
http URL recorded in the platform is a source of events. Events
of the same type are clustered together by their http URL to
form a time series TSi = (Eai,E a2).

Further, let us assume that we record the following two http
URLs from two events:

• 1.1.1.5/tag_l/group_idl/tag_2/servicel
• 1.1.1,6/tag_5/group_id2/tag_4/servicel

We use regular expression for each of the
events having http URL in form of {host
IP}/{tag_id}/{group_id}/{tag_2}/servicel and assign them to
the same cluster The same procedure is done with other events
such as those that belong to {host}/groups/{group_id}/logs.
We name such groups as endpoints and to each we assign
cluster IDs represented by the regular expression. The time
series formed by the groups of events, having the properties
as explained in Section I, are used to study the dynamics of
the system and to detect anomalies.

Anomaly detection on time series consisting of the service’s
response time can be formulated as follows: For any time
t given historical observations x t = {et- w, et~w+ i,..., et },
where w is the sliding window size and et is the event’s
response time at time t, determine whether an anomaly occurs
or not (1/0). We use a sliding window to break the time
series into fixed-size inputs, required for the autoencoder. The
sequential order of the points inside the window is important.
Therefore, we combine the AEVB with the ability of the RNNs
for extracting temporal information from sequential data.
An anomaly detection algorithm typically computes a real­
valued score indicating the certainty of having anomaly, e.g.,
p(anomaly = 1 | i n s t e a d of direcdy computing,
whether the window represents an anomaly.

A. Variational autoencoder for anomaly detection

An autoencoder is an unsupervised neural network archi­
tecture. It applies backpropagation like the standard feed

forward neural network, setting the output (target) value to be
equal to the inputs i.e. yt = x t [28]. The identity function
seems a trivial function to be learn, but by placing some
constraints, such as limiting the number of hidden units, or
putting regularization, interesting features from the data can be
extracted. A typical architecture of an autoencoder is shown in
Figure 1, where h is called latent representation or bottleneck
of the autoencoder.

Fig. 1. Architecture of an autoencoder network. The x and y can be of any
type, in this paper x = y is time series data.

By training on non-anomalous data, the autoencoder learns
and is able to produce good reconstructions on new non­
anomalous samples (low error). If we use the same model
to predict the reconstruction for an anomalous sample, then
the reconstruction error will be larger.

A variational autoencoder (AEVB) [29] is a deep neural
network architecture that can learn complex representations
from data without supervision. AEVB is composed of an
encoder and decoder, both are neural networks, and contain a
loss function. Instead of mapping the input vector onto a fixed
vector as in the usual autoencoders, the model maps any input
into a predefined distribution. Moreover, the bottleneck vector
in the variational autoencoder is replaced by two vectors of the
same size. One of them representing the mean and the other
representing the variance of the distribution. So, whenever we
need the output of the encoder in order to feed into the decoder
network, we need a sample from the distribution, defined by
the mean and standard deviation vectors that represent the
latent low-dimensional space. Let us assume that we have
a dataset X of samples from a distribution parametrized by
a ground truth generative factor. The variational autoencoder
aims to learn the marginal likelihood of the data in a generative
process:

marimize [loSPe(x \z)] (1)

Where <j> and 6 parametrize the distributions of the VAE en­
coder and the decoder respectively. Furthermore, the complete
loss function is given by:

£ (M ;x ,z) = E ^ (zW [logP9(a:|z)] -£ > a -i , (^ (z |x)||p (z))
()

The loss function, as written in (2), consists of two terms.
The first term represents the reconstruction loss, which is part

243

of any autoencoder architecture, except we have the expecta­
tion operator, because we are sampling from the distribution.
The second term is the Kullback - Leibler divergence that
ensures close mapping to a predefined distribution.

Recently, there is an increasing adoption of unsupervised,
generative machine learning models for anomaly detection.
Similarly, the variational autoencoder (AEVB) first learns the
normal scenario (one, or many) [26]. Then, conditioned on its
input is able to generate reconstructions. By setting a threshold
on the reconstruction error, we are able to classify a given
window of response time as anomaly or normal.

B. Recurrent variational autoencoder

Recurrent neural networks (RNNs) [30] are a type of neural
networks where the connections between neurons form a
directed cycle. They are capable of learning features and
long term dependencies from sequential and time-series data.
A typical architecture of the RNN is shown in Figure 2.
Each step in the unfolding is referred to as a time step,
where x t is the input at time step t. RNNs can take an
arbitrary length sequence as input, by providing the RNN a
feature representation of one element of the sequence at each
time step. st is the hidden state at time step t and contains
information extracted from all time steps up to t. The hidden
state s is updated with information of the new input x t after
each time step: st = f{U xt + W sti), where U and W are
vectors of weights and / is the non-linear activation function.
The most used RNN types in practice are RNNs with LSTM
(Long Short-Term Memory) [31] or GRU (Gated Recurrent
Unit) [32] cells, which we use in this paper as well.

° t - l o t ° t+ l

• •
V V V

* t - i * t + i

at = b + W st_! + Uxt_t
st = tanh(at)
ot = b +

Fig. 2. Architecture o f RNN.

Recurrent variational autoencoder [33] is combination
of AEVB and RNN. The encoder is a recurrent neural
network (RNN) that processes the input sequence x t =
{et- w, et- w+i, ..., et } and produces a sequence of hidden
states { h t - w , h t - w + i , - - - , h t } . The parameters of the distri­
bution over the latent code is then set as a function of h t .

The decoder, uses the sampled latent vector z to set the initial
state of a decoder RNN, which produces the output sequence
V = 2/1 > 2/2 ; • ••, Ut- The model is trained both to reconstruct the
input sequence and to learn an approximate posterior close to
the prior like in a standard variational autoencoder.

IV . R e s p o n s e T i m e A n o m a l y D e t e c t i o n

The following methods form the core components of our
unsupervised anomaly detection approach for microservice
or service oriented systems observed by distributed tracing
technology. First, the time series data is preprocessed and a
neural network model is trained on it to capture the normal
system behavior. Based on this model, the predictions for the
reconstruction are obtained. Then, a probability based, adap­
tive threshold method is used to determine whether resulting
prediction errors represent anomalies for individual services.
Further, a post-processing strategy, incorporated in a tolerance
module, is used to mitigate false positives. Lastly, we provide
anomaly pattern classification to provide descriptive and useful
analysis results. We divide the proposed methods in four core
steps or modules, that exchange the results in-between.

• time series preprocessing
• model training
• test-time prediction
• faulty pattern classification
For simplicity, we will describe the methods through the

lens of a single time series. Given K time series, the solution
scales since is meant to be applied to every time series in
parallel.

A. Time series preprocessing

This step involves two parts, preprocessing in model train­
ing and test-time prediction. The module queries the latest
N data points (events) belonging to the same cluster ID
(time series) and forwards it into a three stage pipeline: data
cleaning, normalization and noise reduction.

Tracing events are JSON objects, but in dependence of the
service instrumentation they might have a slightly different
structure. Common for all are the response time, which is
extracted for further processing. We assume that most of the
time the services in the system are in normal mode of opera­
tion. That is true in real-world systems where failures happen
rarely. However, the large amount of events in the time series
and the fact that proper training of neural networks requires
normalization, leads to obligation of having an outlier removal
technique. The presence of a strong outlier, will lead to values
clamped to zero after the normalization. Therefore, events
having response time greater than three standard deviations
from the mean are removed from the training batch. Next, we
normalize the values by using min-max scaling (0, 1) to ensure
that we stay in the positive range of values for the response
time. In contrast, using standardization might produce negative
values that do not have natural meaning when we deal with
response time (no negative time). Normalization is required
and makes the optimization function of the neural network
well-conditioned, which is key for convergence [34]. Min-max
normalization is given with the following equation:

X t - min{X)
-A-t,scaled, — / v \ . / -*r\ IpJm ax(X) — min{X)

where m in(X) and m ax(X) are saved and then used for the
normalization in test-time prediction. Lastly in the pipeline,

244

we apply smoothing for noise removal and robustness to
small deviations. The time series is convolved with Hamming
smoothing filter defined with its optimal parameters [35] and
size M as:

w(n) = 0.54 — 0.46 � cos — - J , 0 < n < M — 1 (4)

We use smoothing with size of the window M = 12, but
one can adjust the size depending on the noise.

For test-time prediction the preprocessing is executed on
each new recorded event. During test-time, the event follows
the same preprocessing steps as for the model training except
the normalization where m in (X) and m a x(X) are the saved
values during model training part.

Time series partitioning: After the steps in the prepro­
cessing, we define window size, which represents number of
points in a sliding window that needs to be considered for
evaluation. The window with the predefined size and stride is
applied to the time series. This results in training data shape
of: {N — window size, window size, 1). The data in such
format is then feed into the neural network for training. In
test-time prediction, each window size number of events are
fed to the network for prediction.

B. Model architecture

The architecture of our proposed neural network is shown
in Figure 3 and described in following.

1. response time, 2. response tim e,..., window size, response time

1. response time, 2. response t im e ,w in d o w size, response time

Fig. 3. Model architecture.

Input layer: has window size number of units, each con­
taining the response time as input. In Figure 3, we use
window size — 32.

First hidden GRU layer: contains (window size/2) 16
GRU cells for each timestep in the input window. Each of

the window size input units is fed to the corresponding GRU.
In the first timestep T = 0, the Qth response time is fed.
The abstract representation learned in the 16 GRU cells is
then propagated to the next timestep T = 1, where the 1st
response time of the window is fed and so on. Here, we have
the ability to condition the reconstruction of the next point
given the past points. In such way, that in the last timestep we
have abstract representation of the window of points, which
has salient information for that part of the time series.

Sampling layer: Represents the key part in order to be
able to learn multiple distributions (model of models). This
layer consists of (window size/A) 8 units for the mean and
for the variance. The sampling layer just performs sampling
from multivariate normal distribution with the given mean and
variance.

Repeat layer: Repeats the Sampling layer window size
times, which is needed to be fed into the last hidden (GRU)
layer.

Output/GRU layer: Here, the network takes the output from
the previous layer as input, learns abstract representation and
as output have the same window size number of input timesteps
only with the response time as feature.

1) Training details: We observed that the required number
of data points in particular time series used to produce good
model in training should be more than 1000. The training data
is split into two parts in sequential order. The smaller part or
20% goes for estimating parameters and tuning the model.
We train the model for 1000 epochs and choose the one with
the best validation score. The solution uses Adam optimizer
with learning rate of 0.001, which are the standard values for
training deep neural networks [28]. As mentioned, the error
function which we optimize is described in Section III. As last
step when the training is finished, the model is saved and used
in test-time prediction.

2) Dynamic error threshold: The difference between a
prediction and an observed parameter value vector is measured
by the mean square error (MSE) which is given with the
following equation.

M S E = . 1 . Y i x i - y i? (5)

Instead of setting a magic error threshold for anomaly detec­
tion purpose, we use the validation set for threshold setting.
For each window/sample in the validation set, we apply the
model produced by the training set and calculate the MSE
between the prediction (reconstruction) and the actual sample.
At every time step, the errors between the predicted vectors
and the actual ones in the validation group are modeled as
a Gaussian distribution. Assume that the validation data has
1000 windows of with window size = 32. The MSE for all
of them will produce array of 1000 error values. Next, we
estimate the mean and the variance for the MSE scores and
save them on the disk along with the model. These values are
used in test-time prediction. In test-time prediction if the error
between a reconstructed and an observed window of events
is within a high-level of confidence interval of the above

245

Gaussian distribution is considered as normal, otherwise as
anomaly.

C. Test-time prediction

Previously, we already showed the architecture, model train­
ing and dynamic threshold setting. After having the trained
model, this module receives data from the preprocessing
module described previously. The latest model along with the
saved training parameters are loaded, and used for prediction.
For each new event, the past values forming a window
x t = {et- w,et- w+i, ...,et } are fed as input for prediction.
The reconstruction error MSEtest and the probability under
the Gaussian are computed:

l\r ,i — 1 - P (X > M S E test) (6)

Remembering that the parameters of the probability density
function p and a 2 are computed as parameters in the training
step.

1) Tolerance: false positive reduction: In large-scale sys­
tem architectures, there are thousands of events recorded in
short period of time and there are cases where it might happen
that the response time is greater compared to the expected
time. If it is only a single anomalous point in the time series
or even few of them with increased service response time,
does not mean that anything is wrong with the service. For
example, that can be a small bottleneck in the disk usage or
in one of the many components or services. Aiming to detect
anomalies that have larger impact, enables the DevOps to pay
only attention to the most critical potential failures.

We define the tolerance and probability error threshold as
parameters. The tolerance represents the allowed number of
anomalous windows that have P{x) greater than the prob­
ability error threshold before it flags the whole period as
anomalous. In practical scenarios, the tolerance parameter
usually ranges from 1 to 100, but it is dependent on the
dynamics of the system. The probability outputs Ptest are
kept in queue with the same size (tolerance) for each new
window. Each time, a new sample is shown to the network
to be reconstructed, assigned with the probability of being
anomalous and is added to the queue, the tolerance module
checks whether the average probability:

j to le ra n ce

P m = , j ^ ' P t e s t (i) (7)tolerance '%

of all the points in the queue is greater than the error threshold.
If this is the case, the submodule flags this part of the time
series as unstable and reports an anomaly. In this way we can
deal with the problem of having too many false positives and
allow the user to set the sensitivity of the algorithm on his
or her demand. The output from the whole module is: (first
anomaly window timestamp, last anomaly window timestamp).

In our setting, we used window size = 32, hamming
smoothing window with M = 12, confidence interval under
Gaussian (error threshold = 0.99) and queue size of
tolerance = 32 windows.

D. Faulty pattern classification

Identifying the existence of an anomaly without providing
any insight into its nature is of limited value. The user may
be interested in detecting particular types of anomalies which
reflect in the time series (e.g., incremental, mean shift, gradual
increase, cylinder etc.). Here, we expect that an expert knows
the types of patterns that commonly lead to service or com­
ponent failure. Therefore, we provide a module based on one
dimensional convolutional neural networks that, given as input
a window of the event response time (e.g., 32 events), is able to
classify into one of the user defined patterns described before.
Convolutional Neural Networks (CNNs) [36] are common
deep learning technique for image, signal processing, sequence
and time series classification tasks. Typically, the architecture
of the CNN consists combination of convolutional and max­
pooling layers followed by softmax layer that distributes the
probability for a given pattern. Recently, similar work for time
series classification is found in [37].

Similar to the preprocessing module, the latest N points
from time series are queried and utilized to represent the
normal class. After that, we create a dataset which contains
normal data preprocessed using the preprocessing module
described and added to the augmented samples of predefined
patterns (translation and adding small amount of noise) by the
user.

The model architecture consists of three (convolutional,
max-pooling) layers with dropout (0.5) regularization. The last
layer, typical for multi-class classification, is fully connected
with softmax function for computing the probability distribu­
tion over the classes. The convolutional networks are naturally
invariant to translation, which makes them suitable for faulty
pattern detection with sliding window over the time series.
The network is trained using the data described and the model
is saved and used for prediction. We used again Adam opti­
mizer with optimal parameters obtained via cross validation
(ilearning rate = 0.001, number o f epochs = 200 and
batch size = 1000). The classifier triggers when the test-time
prediction detects an anomaly. The classifier module receives
the output from test-time prediction and requests the particular
time series within the provided anomalous time interval. Next,
using the trained model, we map each sliding window to the
predicted class and if the particular pattern is recognized the
module will output the name of the class in which the pattern
belongs and will flag the interval as anomalous.

V . E v a l u a t i o n

The deep learning methods are implemented in Python using
Keras [38]. The evaluation on the collected datasets were
conducted on regular personal computer with the following
specifications: GPU-NVIDIA GTX 1060 6GB, 1TB HDD, 256
SSD and Intel(R) Core(TM) i7-7700HQ CPU at 2.80GHz.
In this section, we show evaluations of separate modules
on two datasets. First, we show results on the experimental
testbed system based on microservice architecture and later
the evaluation on real large-scale production cloud data.

246

Fig. 4. Multiple distributions: We notice existence of multiple distributions that need to be learned as normal. The distribution differs from PI compared to
P2 and P3.

Anomalies
Latency increase
Kill process

..............0

Go
(2 instances)

Python
(2 instances)

Java
(Tomcat, 2 inst.)

Tracing

Node 1 Node 2 Node 3

^ ‘ nnnnlir
Network delay
Network packet loss

Fig. 5. Experimental microservice system architecture.

A. Experimental microservice system

We created an experimental microservice system to evaluate
representative anomaly scenarios for microservice architec­
tures. It allows fast preparation of experiments, known data
format, and precise control on anomalies injected in the
system. For the setup, we used 2 physical nodes and 3 virtual
machines with tracing enabled, each of them running instances
of Python, Go and Java applications respectively. The testbed
architecture is shown in Figure 5. For the anomaly injections
we used stress-ng, traffic control, and simulator parameters.

We injected timed anomalies in the physical network in
form of delay and packet loss, physical node anomalies in
form of CPU stress and event response time increase injected
directly into the event. Thus, we created 6 different scenarios
on different endpoints in the system described in following.

• Scenario 1: Baseline with no anomaly - represents the
normal operation (no anomalies) of the system and is
used to train the detection algorithms.

• Scenario 2: Increase service latency - profile 1 (injection
of latency (1 second) for duration of 15 seconds).

• Scenario 3: Increase service latency - profile 2 (injection
of latency (1, 5, 30 seconds) for duration of 30 seconds,
1 and 10 minutes on Nodes 1,2,3).

• Scenario 4: Network packet loss - Packet loss (10%, 20%,
30%) is injected on one of the network links for 1,5, 10
minutes

• Scenario 5: Network delay - Network delay (1, 2, 3 sec)
is injected on the network for 1, 5, 10 minutes.

• Scenario 6: Server process dies - One process is killed
on node 1 and 3 for 1, 5, 10 minutes.

B. Dataset: production-cloud data

Even in small, controlled experimental setups, the amount
of noise is high and the time series changes rapidly over time.
This already opposes challenges for the anomaly detection
algorithm. However, testing the approach on large-scale pro­
duction cloud data is required to show the viability of the
approach. The signal-to-noise ratio is even smaller since many
components affect the response time of microservices, the time
series evolves faster and changes its distribution over period
of time while having also some stochastic behavior.

We collected the dataset in a period of four days from a
real-world production cloud. We used only the attributes that
are open-sourced by Zipkin [39], removing all the proprietary
instrumentation. Therefore, from all of the attributes that one
event has (around 80 in total, depending on the event), we
extract only the http URL and the response time. The number
of unique http URLs was 100168 and after clustering the total
number of time series (cluster IDs/qndpoints) was 143. Out of
them, we selected three services of interest. The anonymized
names along with the count of the samples is given in Table I

TABLE I
S e l e c t e d c l u s t e r s f o r a n a l y s i s

ClusterlD Count
{host}/v l/{p_id}/cs/limits 12900
{host}/v l/{t_id}/cs/delete 2732
{host}/v2/{t_id}/servers/detail 6468

The time series, as shown in Figure 4, have high level
of noise ([0ms, 2000ms] and [0ms, 4000ms]), several distri­
butions changing over time, and no strong anomaly in both
signals except in the neighbourhood of 11500th data point in

247

 .
Fig. 6. Example of predefined patterns

...

...
event number event number

(a) (b)

Fig. 7. Detected anomalies injected for different scenarios: (a) scenario 5, and (b) scenario 6

the figure. For the evaluation, we will use the part of the time
series as normal scenario for training and then inject faults
to check the model accuracy in the rest of the series. The
presence of strong noise leads to low autocorrelation. That
means, simple sequence learning without learning the distribu­
tion (with variational autoencoder) will result in learning only
the running mean of the time series. Moreover, the distribution
is skewed negatively. Therefore, the typical log transform of
the data wont help for the model and it is omitted.

C. Results: variational recurrent model

In the following, we show the results obtained by the models
on both datasets.

1) Results: microservice system: Accuracy of the unsu­
pervised method for all 15 endpoints in our experimental
testbed across 5 different scenarios are shown in Table II. We
compute the accuracy in the following way. Let the number of
injected anomaly events be denoted with 7) and the number
of accurately detected anomalies be Ta, then the accuracy
over the injected anomalies is computed as accuracy =
The number of injected anomalies depends on each scenario
and endpoint. The missing values in Table II mean that the
anomaly did not affect those endpoints.

We note that the accuracy in normal system scenario is
greater than 99% due to the tolerance module. We show
scenario 5 and 6 graphically in Figure 7. We show that
the method successfully flags almost all anomalous events.
Overall, the results shown in the table and in the figure indicate
that the combination of generative models like variational
autoencoder with GRU units that extract temporal information
achieves solid results.

2) Results: production cloud data: Due to the low number
of production-system errors, we injected several types of
anomalies. We defined seven types of common anomalies:

TABLE II
Ac c u r a c y f o r 15 e n d po in t s in 5 a n o ma l y s c e n a r io s

Clus. ID S 2 S 3 S 4 S 5 S 6
1 - 85 95 98 99
2 - - 99 98 -

3 - - 96 99 96
4 - 99 - - -

5 - - 100 98 97
6 98 - - 86
7 - 95 98 97 -
8 - 98 - - -
9 - 92 91 99 100
10 90 95 95 99 98
11 - 96 - - -

12 85 - 83 99 97
13 95 98 - 94 99
14 99 96 - - 98
15 97 95 98 100
average 85.5 95.3 94.6 97.9 97.0

samples from normal distribution with different mean, additive
outlier, mean shift, step and decrement, incremental, temporary
change and gradual. Some of the types of anomalies can be
found in Figure 6.

The model is trained on each of the three endpoints and for
each of the endpoints we compute the accuracy of detection for
each of the patterns injected in the time series. To test the ro­
bustness of the algorithm, we evaluated it for several different
augmentations of the original patterns, including translation,
increasing the response time (e.g., R T i = 0.2 means setting
the response time of event to 0.2 of the maximum value)
and change of the size of anomaly (e.g., in gradual increase,
size = 10 means that the increase from amplitude A to
amplitude B is gradual over 10 events/data points). In Table
III, we show the aggregated results. The table summarizes the
different anomaly patterns and the needed minimum values

248

7 - * normal
• anomaly •

0.4

� normal ^ ¥ • y a .
• anomaly

i - *

re
sp

o
n

se
 t

im
e

0 2000 4000 6000 8000 10000 12000
e v e n t n u m b e r

(a)

0 2000 4000 6000 8000 10000 12000
e v e n t n u m b e r

(b)

Fig. 8. Example of successfully detected anomalies injected in {host}/vl/{p_id}/cs/limits. Gradual and mean shift anomalies are injected in (a) and (b)
respectively.

for the parameters size and R T i which lead to a detection
of the corresponding anomaly type. Further, in Figure 8a and
8b we visually illustrate some of the patterns detected in the
series. We notice that the algorithm successfully detects the
three types of anomalies injected.

t a b l e m
Re s u l t s f o r Va r ia t io n a l Re c u r r e n t Mo d e l

Pattern name Parameters
additive outlier
normal_Mean
temporary change
gradual
mean shift
step and decrement
incremental

R T i > 0.25
R T i > 0.2
R T i > 0.25
R T i > 0.3, size > 10
R T i > 0.2
R T i > 0.3, size > 10
R T i > 0.3, size > 10

3) Results: faulty pattern classification: The module can be
evaluated separately from the rest of the solution, since data
and predefined patterns as described. The dataset consists of
15 different types of patterns similar to the ones shown in
Figure 6. In practice, the user has the option to define own
patterns.

Furthermore, besides the patterns shown in Figure 6, we
produce augmentations to enrich the dataset. The augmenta­
tions are produced by using: horizontal shifts, adding small
amount of noise and amplitude shifts.

We evaluated the algorithm to see the performance and its
limits when it comes to the level of noise in the signal and
the accuracy of classification. We achieved 100% accuracy in
data with no additional noise added, 80% and 48% accuracy
when Gaussian noise was added with a = [0.05 and 0.1] re­
spectively. The convolutional neural network model accurately
classifies the tested anomaly patterns, with expected lower
accuracy obtained in noisy patterns.

TABLE IV
Pe r f o r m a n c e e v a l u a t io n in t r a in in g

#windows ms/window
60000 0.29
27000 0.28
9000 0.53
1000 1.25

4) Performance evaluation: In real-world production sys­
tems, the performance of the model in training and prediction

TABLE V
Pe r f o r m a n c e e v a l u a t io n in t e s t -t im e pr e d ic t io n

#windows ms/window
1500 0.22
1000 0.28
500 0.53
100 1.25

time is very important. Having large amounts of traces and
events generated in short period of time, requires fast predic­
tion time and timely detection of anomalies. For that reason,
we evaluate the performance of the approach. We show the
results in Tables IV and V. Lastly, imposing industrial require­
ments (prediction time < 10ms) and meeting the criteria for
performance proves that the approach is fast enough to be
used in production setting. In streaming test-time prediction
we achieve performance of 6.64ms per predicted window of
points. Of course, the prediction times can differ with reducing
or expanding the window size, but it is still within the limits
of the necessary requirements.

VI. C o n c l u s i o n a n d F u t u r e W o r k

This paper deals with an important and growing challenge:
the automation of operation and maintenance tasks of planet-
scale IT infrastructures. We experimentally demonstrate the
advantages of combining GRUs (simplified LSTMs) with
variational autoencoders (AEVB) - two deep learning models
- for learning multiple, complex data distributions underlying
time series data generated by distributed tracing systems. Our
investigation on experimental and real-world production data
with artificially injected anomalies showed that our approach
reaches accuracy greater than 90%, prediction time lower than
10ms, and robust classification of detected anomalies. The
tracing data was generated by an experimental microservice
application and by a planet-scale cloud infrastructure. These
high levels of accuracy open a new door in the field of AIOps.
Namely, the approach can be extended to also consider the
structure of distributed traces, use knowledge from cross-event
and cross-trace relations, and analyze structural trace anoma­
lies using complete trace information. These achievements
can ultimately support the development of zero-touch AIOps
solutions for the automated detection, root-cause analysis and
remediation of IT infrastructures.

249

R e f e r e n c e s

[1] F. Schmidt, A. Gulenko, M. Wallschlger, A. Acker, V. Hennig, F. Liu,
and O. Kao, ‘Tftm - unsupervised anomaly detection for virtualized
network function services,” in 2018 IEEE International Conference on
Web Services (ICWS), July 2018, pp, 187-194.

[2] A. Gulenko, F. Schmidt, A. Acker, M. Wallschlager, O. Kao,
and F. Liu, “Detecting anomalous behavior of black-box
services modeled with distance-based online clustering,” in
2018 IEEE 11th International Conference on Cloud Computing
(CLOUD), vol. 00, Jul 2018, pp. 912-915. [Online], Available:
doi.ieeecomputersociety.org/10.1109/CLOUD.2018.00134

[3] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag, “Dapper, a large-scale distributed
systems tracing infrastructure,” Google, Inc., Tech. Rep., 2010. [Online].
Available: https://research.google.com/archive/papers/dapper-2010-1 .pdf

[4] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W.
Ong, B. Schaller, P. Shan, B. Viscomi et a i , “Canopy: an end-to-end
performance tracing and analysis system,” in Proceedings o f the 26th
Symposium on Operating Systems Principles. ACM, 2017, pp. 34—50.

[5] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica,
“X-trace: A pervasive network tracing framework,” in Proceedings
o f the 4th USENIX Conference on Networked Systems Design
& Implementation, ser. NSDI’07. Berkeley, CA, USA:
USENIX Association, 2007, pp. 20-20. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1973430.1973450

[6] P. Reynolds, J. L. Wiener, J. C. Mogul, M. K. Aguilera, and A. Vahdat,
“Wap5: black-box performance debugging for wide-area systems,” in
Proceedings o f the 15th international conference on World Wide Web.
ACM, 2006, pp. 347-356.

[7] P. Bahl, R. Chandra, A. Greenberg, S. Kandula, D. A. Maltz, and
M. Zhang, “Towards highly reliable enterprise network services via
inference o f multi-level dependencies,” in ACM S1GCOMM Computer
Communication Review, vol. 37, no. 4. ACM, 2007, pp. 13-24.

[8] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, and A. Muthi-
tacharoen, “Performance debugging for distributed systems of black
boxes,” ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp.
74-89, 2003.

[9] T. Gschwind, K. Eshghi, P. K. Garg, and K. Wurster, “Webmon: A
performance profiler for web transactions,” in Advanced Issues o f E-
Commerce and Web-Based Information Systems, 2002.(WECWIS 2002).
Proceedings. Fourth IEEE International Workshop on. IEEE, 2002, pp.
171-176.

[10] P. Barham, R. Isaacs, and D. Narayanan, “Magpie:
online modelling and performance-aware systems,” in 9th
Workshop on Hot Topics in Operating Systems (HotOS-
IX). USENIX, May 2003, pp. 85-90. [Online], Avail-
able: https://www.microsoft.com/en-us/research/publication/magpie-
online-modelling-and-performance-aware-sy stems/

[11] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
o f the 2017 ACM SIGSAC Conference on Computer and Communica
tions Security. ACM, 2017, pp. 1285-1298.

[12] F. Bezerra and J. Wainer, “Algorithms for anomaly detection of traces
in logs of process aware information systems,” Information Systems,
vol. 38, no. 1, pp. 33-44, 2013.

[13] A. Brown, A. Thor, B. Hutchinson, and N. Nichols, “Recurrent neural
network attention mechanisms for interpretable system log anomaly
detection,” arXiv preprint arXiv:1803.04967, 2018.

[14] Mining Invariants from Console Logs fo r System Prob
lem Detection. USENIX, June 2010. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/mining-
invariants-from-console-logs-for-system-problem-detection/

[15] D. Battre, O. Kao, and D. Wameke, “Evaluation of network topology
inference in opaque compute clouds through end-to-end measurements,”
in 2011 IEEE 4th International Conference on Cloud Computing, July
2011, pp. 17-24.

[16] L. Breiman, “Random forests,” Machine Learning, vol. 45,
no. 1, pp. 5-32, Oct 2001. [Online]. Available:
https://doi.Org/10.1023/A:1010933404324

[17] M. Joshi, R. Agarwal, and V. Kumar, “Mining needle in a haystack:
classifying rare classes via two-phase rule induction,” ACM SIGMOD
Record, vol. 30, no. 2, pp. 91-102, 2001.

[18] M. V. Joshi, R. C. Agarwal, and V. Kumar, “Predicting rare classes: Can
boosting make any weak learner strong?” in Proceedings o f the eighth
ACM S1GKDD international conference on Knowledge discovery and
data mining. ACM, 2002, pp. 297-306.

[19] N. V. Chawla, N. Japkowicz, and A. Kotez, “Special issue on learning
from imbalanced data sets,” ACM Sigkdd Explorations Newsletter, vol. 6,
no. 1, pp. 1-6, 2004.

[20] H. Fichtenberger, M. Gille, M. Schmidt, C. Schwiegelshohn, and
C. Sohler, “Bico: Birch meets coresets for k-means clustering,” in
European Symposium on Algorithms. Springer, 2013, pp. 481-492.

[21] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, no. 7, pp. 881-892, 2002.

[22] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining. IEEE, 2008, pp. 413-
422.

[23] L. M. Manevitz and M. Yousef, “One-class svms for document clas-
sification,” Journal o f machine Learning research, vol. 2, no. Dec, pp.
139-154, 2001.

[24] O. Vallis, J. Hochenbaum, and A. Kejariwal, “A novel
technique for long-term anomaly detection in the cloud,” in
Proceedings o f the 6th USENIX Conference on Hot Topics
in Cloud Computing, ser. HotCloud’14. Berkeley, CA, USA:
USENIX Association, 2014, pp. 15-15. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2696535.2696550

[25] P. Malhotra, L. Vig, G. Shroff, and P. Agarwal, “Long short term
memory networks for anomaly detection in time series,” in Proceedings.
Presses universitaires de Louvain, 2015, p. 89.

[26] H. Xu, W. Chen, N. Zhao, Z. Li, J. Bu, Z. Li, Y. Liu, Y. Zhao, D. Pei,
Y. Feng et al., “Unsupervised anomaly detection via variational auto-
encoder for seasonal kpis in web applications,” in Proceedings o f the
2018 World Wide Web Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2018, pp. 187-196.

[27] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and
T. Soderstrom, “Detecting spacecraft anomalies using lstms and
nonparametric dynamic thresholding,” in Proceedings o f the 24th ACM
SIGKDD International Conference on Knowledge Discovery; Data
Mining, ser. KDD ’18. New York, NY, USA: ACM, 2018, pp. 387-395.
[Online], Available: http://doi.acm.org/10.1145/3219819.3219845

[28] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deepleamingbook.org.

[29] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
International Conference on Learning Representations (ICLR), 2014.

[30] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning represen-
tations by back-propagating errors,” Nature, vol. 323, no. 6088, p. 533,
1986.

[31] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[32] K. Cho, B. Van Merrienboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
Eighth Workshop on Syntax, Semantics and Structure in Statistical
Translation (SSST-8), 2014.

[33] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio,
“A recurrent latent variable model for sequential data,” in Advances in
neural information processing systems, 2015, pp. 2980-2988.

[34] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proceedings
of the 32Nd International Conference on International Conference on
Machine Learning - Volume 37, ser. ICML’15. JMLR.org, 2015, pp.
448-456.

[35] A. Nuttall, “Some windows with very good sidelobe behavior,” IEEE
Transactions on Acoustics, Speech, and Signal Processing, vol. 29, no. 1,
pp. 84-91, February 1981.

[36] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[37] B. Zhao, H. Lu, S. Chen, J. Liu, and D. Wu, “Convolutional neural
networks for time series classification,” Journal o f Systems Engineering
and Electronics, vol. 28, no. 1, pp. 162-169, 2017.

[38] F. Chollet et al., “Keras,” https://keras.io, 2018.
[39] OpenZipkin, “openzipkin/zipkin,” 2018. [Online]. Available:

https://github.com/openzipkin/zipkin

250

