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Abstract—Artificial Intelligence for IT Operations (AIOps) 
combines big data and machine learning to replace a broad range 
of IT Operations tasks including availability, performance, and 
monitoring of services. By exploiting log, tracing, metric, and 
network data, AIOps enable detection of faults and issues of 
services. The focus of this work is on detecting anomalies based 
on distributed tracing records that contain detailed information 
for the availability and the response time of the services. In 
large-scale distributed systems, where a service is deployed on 
heterogeneous hardware and has multiple scenarios of normal 
operation, it becomes challenging to detect such anomalous cases. 
We address the problem by proposing unsupervised, response 
time anomaly detection based on deep learning data modeling 
techniques; unsupervised dynamic error threshold approach; 
tolerance module for false positive reduction; and descriptive 
classification of the anomalies. The evaluation shows that the 
approach achieves high accuracy and solid performance in both, 
experimental testbed and large-scale production cloud.

Index Terms—AIOps; anomaly detection; service reliability; 
time series; distributed tracing; autoencoders; RNNs; GRUs; 
CNNs.

I . I n t r o d u c t i o n

The increasing number of IoT applications with dynamically 
linked devices and their embedding in real-world (smart) 
environments drive the creation of large multi-layered systems. 
As a consequence, the complexity of the systems is steadily 
growing up to a level, where it is impossible for human oper­
ators to oversee and holistically manage the systems without 
additional support and automation. Uninterrupted services with 
guaranteed latency, response times, and other QoS parameters, 
are however mandatory prerequisite for many of the data- 
driven and autonomous applications. Therefore, losing control 
is not a feasible option for any system or infrastructure.

The large service providers are aware of the need for 
always-on, dependable services and they already deployed 
numberless measures by introducing additional intelligence 
to the IT-ecosystem. For example, by employing network 
reliability engineers (NRE), site reliability engineers (SRE), 
by using automated tools for infrastructure monitoring, and 
developing tools based on artificial intelligence (AIOps) for 
load balancing, capacity planning, resource utilization, storage 
management, and anomaly detection.

The next piece in the puzzle aims at rapidly decreasing 
the reaction time in case an urgent activity of a system 
administrator is necessary. That usually involves performance
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problems, component/system failures (e.g., outages, degraded 
performance), or security incidents. All these examples de­
scribe situations, where the system operates outside of the 
normal, expected or pre-defined behaviour. Thus, the system 
exposes that an anomaly must be detected and recognized, 
before it leads to a service or a system failure.

The foundation for AIOps systems is the availability of 
suitable and descriptive data, which is typically observed by 
three core components: tracing, logging, and resource moni­
toring metrics. The tracing component produces events (spans) 
containing information on the execution path and response 
time. The logging data represents interactions between data, 
files, or applications and is used to analyze specific trends 
or to record events/actions for a later forensic. The resource 
monitoring data reflects the current utilization and status of the 
infrastructure, typically as cross-layer information regarding 
CPU, memory, disk, and network throughput and latency. Most 
of the current AIOps platforms apply deep learning solely 
on monitoring data [1], [2], as this data is simple to collect 
and interpret, but not sufficient for a holistic approach. We 
aim at exploring an additional path for anomaly detection 
using a second category of data, namely the tracing data 
collected during the execution of system operations. Tracing 
technologies [3]—[5] generate events to externalize the state 
of the system by combining performance data from the end- 
to-end execution path with structured and causally related 
execution traces. We are confident that such data can improve 
the anomaly detection, root-cause analysis, and remediation 
in the system. It contains detailed information for individual 
services and the causal relationship to other related services 
that form part of the trace.

The focus of the study is to tackle the problem of anomaly 
detection in real-world tracing data. It faces several challenges, 
including the lack of labeled data, concept drift, and concept 
evolution. Other major sources of difficulties emerge due 
to the low signal-to-noise ratio, the presence of multiple 
frequencies and multiple distributions, the large number of 
distinct time series generated by microservice applications, 
and the presence of concept drifts. The signal-to-noise ratio 
is typically very low as many different components affect 
the response time of microservices such as switches, routers, 
memory capacity, CPU performance, programming languages, 
thread and process concurrency, bugs, and volume of user
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requests. Multiple frequencies are correlated with system and 
user behaviour since request patterns are different, e.g., from 
hour to hour due to business operation hours, from day to day 
due to system maintenance tasks, and from month to month 
due to cyclic patterns. For these reasons, the utilization of 
unsupervised approaches is required. In such scenarios where 
anomaly detection is being used as diagnostic tool, a degree 
of additional description is required. Identifying the potential 
anomaly in the service is of limited value for the operators 
without having more detailed explanation.

Contributions. We provide an algorithm that adapts and 
extends deep learning methods from various domains. This 
work focuses on anomaly detection from tracing data in 
large-scale distributed systems, but can also be used in other 
applications involving anomaly detection on time series data 
containing multiple normal operating scenarios. We show the 
capability of the Auto-Encoding Variational Bayes (variational 
autoencoder, AEVB) to learn multiple complex distributions 
representing normal behavior over longer period of time and 
detect anomalies by employing a dynamic, probability-based, 
error threshold setting. Furthermore, we propose combination 
of the threshold setting and post-processing that aims to reduce 
the number of false positives. Lastly, we present a classi­
fication module and provides descriptions for the detected 
anomalies.

The remaining of the paper is structured as follows. In 
section n, we provide the related work for the field of anomaly 
detection. In sections HI and IV, we present the preliminary 
knowledge and our proposed methodology. Section V sum­
marizes the performance evaluation in terms of speed and 
accuracy for different types of anomalies on both experimental 
and real-world production cloud data.

II. R e l a t e d  w o r k

Tracing technologies for distributed services record in­
formation about all the individual components participating 
on an e.g., user request (initiator) within the system. Two 
classes of solutions have been proposed to aggregate these 
information so that one can associate all record entries with 
a given initiator, black-box and annotation-based monitoring 
schemes [3]. Black-box schemes [6]—[8] assume there are no 
additional information other than the message record described 
above, and use statistical regression techniques to infer that 
association. Annotation-based schemes [5], [8]—[10] rely on 
applications or middleware to explicitly tag every record with 
a global identifier that links these message records back to 
the originated request. We use the annotation based system 
(Zipkin based on Dapper [3]), which relies on proper service 
instrumentation.

While the anomaly detection on other categories of data like 
log and metric are part of previous research [1], [2], [11]—[15], 
the related work on time series and the structural anomaly 
detection in trace data is still limited.

Anomaly detection for services have been studied exhaus­
tively during many years on different kinds of data. In general,

we distinguish between statistical and machine learning meth­
ods. The machine learning approaches can be divided into two 
general categories [1], supervised [16]—[19] and unsupervised 
[20]—[23].

Vallis et al. [24] proposed a novel approach, which builds 
on Extreme Studentized Deviate test (ESD), for detecting 
anomalies in long-term time series data. The approach requires 
the detection of the trend component. This technique is similar 
to most of the statistical methods, which have limitations when 
they are applied to large systems based on service-oriented 
and microservice architectures. These systems produce time 
series data with high noise and with more than a single normal 
behavior in the signal. Specifically, if the time series has more 
than two different normal (expected) scenarios of operation, 
the algorithm would not be able to capture this information.

Supervised methods use labeled data to train machine 
learning models. The anomaly detection algorithms are clas­
sification models trained by data containing the information 
whether the data point is an anomaly or not. For practical 
usage, the labelling by experts or injection of anomalies either 
is not sufficient (evolving time series, concept drifts) or may 
harm the running system. Therefore, unsupervised methods are 
investigated, having the positive properties of performing the 
same task, but not using labeled input data.

Recently, deep learning techniques are increasingly inves­
tigated because of their success in range of domains. In 
that direction, Malhotra et al. [25] used stacked recurrent 
hidden layers to enable learning of higher level temporal 
features. They presented a model of stacked Long Short­
Term Memory (LSTM) networks for anomaly detection in 
time series. A network was trained on non-anomalous data 
and used as a predictor over a number of time steps. The 
resulting prediction errors were modeled as a multivariate 
Gaussian distribution, which was used to assess the likelihood 
of anomalous behavior. The efficacy of this approach was also 
demonstrated on four datasets.

Xu et al. [26] show the usability of variational autoencoders 
for anomaly detection and triggering of timely troubleshooting 
problems on Key Performance Indicator (KPI) data of Web 
applications (e.g., page views, number of online users, and 
number of orders). They proposed Donut, an unsupervised 
anomaly detection algorithm based on AEVB. Furthermore, 
Hundman et al. [27] show the use of LSTM recurrent neural 
networks for spacecraft anomalies on multi-variate telemetry 
data.

Existing supervised and unsupervised auto-regressive ap­
proaches fail with data of small signal-to-noise ratio and 
autocorrelation either by learning only the running mean or 
by not preserving the order in time series. In similar direction 
as of Xu et al. and Hundman et al., we combine the methods 
from both and show that the integration of Gated Recurrent 
Units (GRUs, simplified LSTMs) with variational autoencoder 
produce results which are able to meet the accuracy and perfor­
mance requirements. Of course, the inclusion of preprocessing 
and postprocessing improves the accuracy by reducing the 
amount of false positives.
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II I . P r e l i m i n a r i e s

Systems based on microservices or service-oriented archi­
tectures consists of several services connected by a network, 
providing a larger system application. To monitor the user 
requests with a detailed description of different participating 
microservices, distributed tracing technologies are utilized.

A trace T =  (Eo, E i , . . . ,  Ei) is represented by an enumer­
ated collection of events. Each event is represented by key- 
value pairs (ki,Vi) describing the state, performance, and other 
characteristics of a service at a given time tj. The events 
contain contain a timestamp when the particular service was 
invoked, a response time, and a http URL among the other meta 
information (e.g., host IP, service name etc.). Depending on the 
request, traces can have different lengths and services invoked. 
The response time is one of the most important attributes of 
the event, e.g., if its value which characterizes the intra-service 
calls in the system suddenly increases at times ij+i, ij+2, it 
may indicate a problem with the underlying distributed system.

Let us assume that we observe two traces: T i =  (Euri_ai, 
Euri—bi; Eurl_Cl) and T2 — (Euri_a2,E uri_b2JEuri_C2). Each 
http URL recorded in the platform is a source of events. Events 
of the same type are clustered together by their http URL to 
form a time series TSi =  (Eai,E a2).

Further, let us assume that we record the following two http 
URLs from two events:

• 1.1.1.5/tag_l/group_idl/tag_2/servicel
• 1.1.1,6/tag_5/group_id2/tag_4/servicel

We use regular expression for each of the 
events having http URL in form of {host 
IP}/{tag_id}/{group_id}/{tag_2}/servicel and assign them to 
the same cluster The same procedure is done with other events 
such as those that belong to {host}/groups/{group_id}/logs. 
We name such groups as endpoints and to each we assign 
cluster IDs represented by the regular expression. The time 
series formed by the groups of events, having the properties 
as explained in Section I, are used to study the dynamics of 
the system and to detect anomalies.

Anomaly detection on time series consisting of the service’s 
response time can be formulated as follows: For any time 
t given historical observations x t =  {et- w, et~w+ i,..., et }, 
where w is the sliding window size and et is the event’s 
response time at time t, determine whether an anomaly occurs 
or not (1/0). We use a sliding window to break the time 
series into fixed-size inputs, required for the autoencoder. The 
sequential order of the points inside the window is important. 
Therefore, we combine the AEVB with the ability of the RNNs 
for extracting temporal information from sequential data. 
An anomaly detection algorithm typically computes a real­
valued score indicating the certainty of having anomaly, e.g., 
p(anomaly = 1 | i n s t e a d  of direcdy computing, 
whether the window represents an anomaly.

A. Variational autoencoder for anomaly detection

An autoencoder is an unsupervised neural network archi­
tecture. It applies backpropagation like the standard feed

forward neural network, setting the output (target) value to be 
equal to the inputs i.e. yt = x t [28]. The identity function 
seems a trivial function to be learn, but by placing some 
constraints, such as limiting the number of hidden units, or 
putting regularization, interesting features from the data can be 
extracted. A typical architecture of an autoencoder is shown in 
Figure 1, where h is called latent representation or bottleneck 
of the autoencoder.

Fig. 1. Architecture of an autoencoder network. The x  and y  can be of any 
type, in this paper x  =  y  is time series data.

By training on non-anomalous data, the autoencoder learns 
and is able to produce good reconstructions on new non­
anomalous samples (low error). If we use the same model 
to predict the reconstruction for an anomalous sample, then 
the reconstruction error will be larger.

A variational autoencoder (AEVB) [29] is a deep neural 
network architecture that can learn complex representations 
from data without supervision. AEVB is composed of an 
encoder and decoder, both are neural networks, and contain a 
loss function. Instead of mapping the input vector onto a fixed 
vector as in the usual autoencoders, the model maps any input 
into a predefined distribution. Moreover, the bottleneck vector 
in the variational autoencoder is replaced by two vectors of the 
same size. One of them representing the mean and the other 
representing the variance of the distribution. So, whenever we 
need the output of the encoder in order to feed into the decoder 
network, we need a sample from the distribution, defined by 
the mean and standard deviation vectors that represent the 
latent low-dimensional space. Let us assume that we have 
a dataset X  of samples from a distribution parametrized by 
a ground truth generative factor. The variational autoencoder 
aims to learn the marginal likelihood of the data in a generative 
process:

marimize [loSPe(x \z )] (1)

Where <j> and 6 parametrize the distributions of the VAE en­
coder and the decoder respectively. Furthermore, the complete 
loss function is given by:

£ ( M ;x ,z )  = E ^ (zW [logP9(a:|z)] -£ > a -i , ( ^ ( z |x )||p (z ))
( )

The loss function, as written in (2), consists of two terms. 
The first term represents the reconstruction loss, which is part
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of any autoencoder architecture, except we have the expecta­
tion operator, because we are sampling from the distribution. 
The second term is the Kullback -  Leibler divergence that 
ensures close mapping to a predefined distribution.

Recently, there is an increasing adoption of unsupervised, 
generative machine learning models for anomaly detection. 
Similarly, the variational autoencoder (AEVB) first learns the 
normal scenario (one, or many) [26]. Then, conditioned on its 
input is able to generate reconstructions. By setting a threshold 
on the reconstruction error, we are able to classify a given 
window of response time as anomaly or normal.

B. Recurrent variational autoencoder

Recurrent neural networks (RNNs) [30] are a type of neural 
networks where the connections between neurons form a 
directed cycle. They are capable of learning features and 
long term dependencies from sequential and time-series data. 
A typical architecture of the RNN is shown in Figure 2. 
Each step in the unfolding is referred to as a time step, 
where x t is the input at time step t. RNNs can take an 
arbitrary length sequence as input, by providing the RNN a 
feature representation of one element of the sequence at each 
time step. st is the hidden state at time step t and contains 
information extracted from all time steps up to t. The hidden 
state s is updated with information of the new input x t after 
each time step: st =  f{U xt + W sti), where U and W are 
vectors of weights and /  is the non-linear activation function. 
The most used RNN types in practice are RNNs with LSTM 
(Long Short-Term Memory) [31] or GRU (Gated Recurrent 
Unit) [32] cells, which we use in this paper as well.

° t - l o t ° t+ l

• •
V V V

* t - i  * t + i

at = b + W  st_! + Uxt_t 
st = tanh(at) 
ot = b +

Fig. 2. Architecture o f RNN.

Recurrent variational autoencoder [33] is combination 
of AEVB and RNN. The encoder is a recurrent neural 
network (RNN) that processes the input sequence x t =  
{et- w, et- w+i, ..., et } and produces a sequence of hidden 
states { h t - w , h t - w + i , - - - , h t } .  The parameters of the distri­
bution over the latent code is then set as a function of h t . 

The decoder, uses the sampled latent vector z  to set the initial 
state of a decoder RNN, which produces the output sequence 
V =  2/1 > 2/2 ; • ••, Ut- The model is trained both to reconstruct the 
input sequence and to learn an approximate posterior close to 
the prior like in a standard variational autoencoder.

IV . R e s p o n s e  T i m e  A n o m a l y  D e t e c t i o n

The following methods form the core components of our 
unsupervised anomaly detection approach for microservice 
or service oriented systems observed by distributed tracing 
technology. First, the time series data is preprocessed and a 
neural network model is trained on it to capture the normal 
system behavior. Based on this model, the predictions for the 
reconstruction are obtained. Then, a probability based, adap­
tive threshold method is used to determine whether resulting 
prediction errors represent anomalies for individual services. 
Further, a post-processing strategy, incorporated in a tolerance 
module, is used to mitigate false positives. Lastly, we provide 
anomaly pattern classification to provide descriptive and useful 
analysis results. We divide the proposed methods in four core 
steps or modules, that exchange the results in-between.

• time series preprocessing
• model training
• test-time prediction
• faulty pattern classification
For simplicity, we will describe the methods through the 

lens of a single time series. Given K  time series, the solution 
scales since is meant to be applied to every time series in 
parallel.

A. Time series preprocessing

This step involves two parts, preprocessing in model train­
ing and test-time prediction. The module queries the latest 
N  data points (events) belonging to the same cluster ID 
(time series) and forwards it into a three stage pipeline: data 
cleaning, normalization and noise reduction.

Tracing events are JSON objects, but in dependence of the 
service instrumentation they might have a slightly different 
structure. Common for all are the response time, which is 
extracted for further processing. We assume that most of the 
time the services in the system are in normal mode of opera­
tion. That is true in real-world systems where failures happen 
rarely. However, the large amount of events in the time series 
and the fact that proper training of neural networks requires 
normalization, leads to obligation of having an outlier removal 
technique. The presence of a strong outlier, will lead to values 
clamped to zero after the normalization. Therefore, events 
having response time greater than three standard deviations 
from the mean are removed from the training batch. Next, we 
normalize the values by using min-max scaling (0, 1) to ensure 
that we stay in the positive range of values for the response 
time. In contrast, using standardization might produce negative 
values that do not have natural meaning when we deal with 
response time (no negative time). Normalization is required 
and makes the optimization function of the neural network 
well-conditioned, which is key for convergence [34]. Min-max 
normalization is given with the following equation:

X t -  min{X)
-A-t,scaled, — / v \  . / -*r\ IpJm ax(X) — min{X)

where m in(X )  and m ax(X ) are saved and then used for the 
normalization in test-time prediction. Lastly in the pipeline,
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we apply smoothing for noise removal and robustness to 
small deviations. The time series is convolved with Hamming 
smoothing filter defined with its optimal parameters [35] and 
size M  as:

w(n) = 0.54 — 0.46 � cos — -  J , 0 < n < M  — 1 (4)

We use smoothing with size of the window M  = 12, but 
one can adjust the size depending on the noise.

For test-time prediction the preprocessing is executed on 
each new recorded event. During test-time, the event follows 
the same preprocessing steps as for the model training except 
the normalization where m in (X ) and m a x(X ) are the saved 
values during model training part.

Time series partitioning: After the steps in the prepro­
cessing, we define window size, which represents number of 
points in a sliding window that needs to be considered for 
evaluation. The window with the predefined size and stride is 
applied to the time series. This results in training data shape 
of: {N  — window size, window size, 1). The data in such 
format is then feed into the neural network for training. In 
test-time prediction, each window size number of events are 
fed to the network for prediction.

B. Model architecture

The architecture of our proposed neural network is shown 
in Figure 3 and described in following.

1. response time, 2. response tim e,..., window size, response time

1. response time, 2. response t im e ,w in d o w  size, response time

Fig. 3. Model architecture.

Input layer: has window size number of units, each con­
taining the response time as input. In Figure 3, we use
window size — 32.

First hidden GRU layer: contains (window size/2) 16 
GRU cells for each timestep in the input window. Each of

the window size input units is fed to the corresponding GRU. 
In the first timestep T  = 0, the Qth response time is fed. 
The abstract representation learned in the 16 GRU cells is 
then propagated to the next timestep T  = 1, where the 1st 
response time of the window is fed and so on. Here, we have 
the ability to condition the reconstruction of the next point 
given the past points. In such way, that in the last timestep we 
have abstract representation of the window of points, which 
has salient information for that part of the time series.

Sampling layer: Represents the key part in order to be 
able to learn multiple distributions (model of models). This 
layer consists of (window size/A) 8 units for the mean and 
for the variance. The sampling layer just performs sampling 
from multivariate normal distribution with the given mean and 
variance.

Repeat layer: Repeats the Sampling layer window size 
times, which is needed to be fed into the last hidden (GRU) 
layer.

Output/GRU layer: Here, the network takes the output from 
the previous layer as input, learns abstract representation and 
as output have the same window size number of input timesteps 
only with the response time as feature.

1) Training details: We observed that the required number 
of data points in particular time series used to produce good 
model in training should be more than 1000. The training data 
is split into two parts in sequential order. The smaller part or 
20% goes for estimating parameters and tuning the model. 
We train the model for 1000 epochs and choose the one with 
the best validation score. The solution uses Adam optimizer 
with learning rate of 0.001, which are the standard values for 
training deep neural networks [28]. As mentioned, the error 
function which we optimize is described in Section III. As last 
step when the training is finished, the model is saved and used 
in test-time prediction.

2) Dynamic error threshold: The difference between a 
prediction and an observed parameter value vector is measured 
by the mean square error (MSE) which is given with the 
following equation.

M S E  = . 1 . Y i x i  -  y i?  (5)

Instead of setting a magic error threshold for anomaly detec­
tion purpose, we use the validation set for threshold setting. 
For each window/sample in the validation set, we apply the 
model produced by the training set and calculate the MSE 
between the prediction (reconstruction) and the actual sample. 
At every time step, the errors between the predicted vectors 
and the actual ones in the validation group are modeled as 
a Gaussian distribution. Assume that the validation data has 
1000 windows of with window size = 32. The MSE for all 
of them will produce array of 1000 error values. Next, we 
estimate the mean and the variance for the MSE scores and 
save them on the disk along with the model. These values are 
used in test-time prediction. In test-time prediction if the error 
between a reconstructed and an observed window of events 
is within a high-level of confidence interval of the above
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Gaussian distribution is considered as normal, otherwise as 
anomaly.

C. Test-time prediction

Previously, we already showed the architecture, model train­
ing and dynamic threshold setting. After having the trained 
model, this module receives data from the preprocessing 
module described previously. The latest model along with the 
saved training parameters are loaded, and used for prediction. 
For each new event, the past values forming a window 
x t =  {et- w,et- w+i, ...,et } are fed as input for prediction. 
The reconstruction error MSEtest and the probability under 
the Gaussian are computed:

l\r ,i  — 1 - P ( X >  M S E test) (6)

Remembering that the parameters of the probability density 
function p  and a 2 are computed as parameters in the training 
step.

1) Tolerance: false positive reduction: In large-scale sys­
tem architectures, there are thousands of events recorded in 
short period of time and there are cases where it might happen 
that the response time is greater compared to the expected 
time. If it is only a single anomalous point in the time series 
or even few of them with increased service response time, 
does not mean that anything is wrong with the service. For 
example, that can be a small bottleneck in the disk usage or 
in one of the many components or services. Aiming to detect 
anomalies that have larger impact, enables the DevOps to pay 
only attention to the most critical potential failures.

We define the tolerance and probability error threshold as 
parameters. The tolerance represents the allowed number of 
anomalous windows that have P{x) greater than the prob­
ability error threshold before it flags the whole period as 
anomalous. In practical scenarios, the tolerance parameter 
usually ranges from 1 to 100, but it is dependent on the 
dynamics of the system. The probability outputs Ptest are 
kept in queue with the same size (tolerance) for each new 
window. Each time, a new sample is shown to the network 
to be reconstructed, assigned with the probability of being 
anomalous and is added to the queue, the tolerance module 
checks whether the average probability:

j to le ra n ce

P m  =  , j ^  '  P t e s t ( i )  (7)tolerance '%

of all the points in the queue is greater than the error threshold. 
If this is the case, the submodule flags this part of the time 
series as unstable and reports an anomaly. In this way we can 
deal with the problem of having too many false positives and 
allow the user to set the sensitivity of the algorithm on his 
or her demand. The output from the whole module is: (first 
anomaly window timestamp, last anomaly window timestamp).

In our setting, we used window size = 32, hamming 
smoothing window with M  = 12, confidence interval under 
Gaussian (error threshold = 0.99) and queue size of 
tolerance =  32 windows.

D. Faulty pattern classification

Identifying the existence of an anomaly without providing 
any insight into its nature is of limited value. The user may 
be interested in detecting particular types of anomalies which 
reflect in the time series (e.g., incremental, mean shift, gradual 
increase, cylinder etc.). Here, we expect that an expert knows 
the types of patterns that commonly lead to service or com­
ponent failure. Therefore, we provide a module based on one 
dimensional convolutional neural networks that, given as input 
a window of the event response time (e.g., 32 events), is able to 
classify into one of the user defined patterns described before. 
Convolutional Neural Networks (CNNs) [36] are common 
deep learning technique for image, signal processing, sequence 
and time series classification tasks. Typically, the architecture 
of the CNN consists combination of convolutional and max­
pooling layers followed by softmax layer that distributes the 
probability for a given pattern. Recently, similar work for time 
series classification is found in [37].

Similar to the preprocessing module, the latest N  points 
from time series are queried and utilized to represent the 
normal class. After that, we create a dataset which contains 
normal data preprocessed using the preprocessing module 
described and added to the augmented samples of predefined 
patterns (translation and adding small amount of noise) by the 
user.

The model architecture consists of three (convolutional, 
max-pooling) layers with dropout (0.5) regularization. The last 
layer, typical for multi-class classification, is fully connected 
with softmax function for computing the probability distribu­
tion over the classes. The convolutional networks are naturally 
invariant to translation, which makes them suitable for faulty 
pattern detection with sliding window over the time series. 
The network is trained using the data described and the model 
is saved and used for prediction. We used again Adam opti­
mizer with optimal parameters obtained via cross validation 
(ilearning rate =  0.001, number o f  epochs =  200 and 
batch size =  1000). The classifier triggers when the test-time 
prediction detects an anomaly. The classifier module receives 
the output from test-time prediction and requests the particular 
time series within the provided anomalous time interval. Next, 
using the trained model, we map each sliding window to the 
predicted class and if the particular pattern is recognized the 
module will output the name of the class in which the pattern 
belongs and will flag the interval as anomalous.

V . E v a l u a t i o n

The deep learning methods are implemented in Python using 
Keras [38]. The evaluation on the collected datasets were 
conducted on regular personal computer with the following 
specifications: GPU-NVIDIA GTX 1060 6GB, 1TB HDD, 256 
SSD and Intel(R) Core(TM) i7-7700HQ CPU at 2.80GHz. 
In this section, we show evaluations of separate modules 
on two datasets. First, we show results on the experimental 
testbed system based on microservice architecture and later 
the evaluation on real large-scale production cloud data.
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Fig. 4. Multiple distributions: We notice existence of multiple distributions that need to be learned as normal. The distribution differs from PI compared to 
P2 and P3.
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Fig. 5. Experimental microservice system architecture.

A. Experimental microservice system

We created an experimental microservice system to evaluate 
representative anomaly scenarios for microservice architec­
tures. It allows fast preparation of experiments, known data 
format, and precise control on anomalies injected in the 
system. For the setup, we used 2 physical nodes and 3 virtual 
machines with tracing enabled, each of them running instances 
of Python, Go and Java applications respectively. The testbed 
architecture is shown in Figure 5. For the anomaly injections 
we used stress-ng, traffic control, and simulator parameters.

We injected timed anomalies in the physical network in 
form of delay and packet loss, physical node anomalies in 
form of CPU stress and event response time increase injected 
directly into the event. Thus, we created 6 different scenarios 
on different endpoints in the system described in following.

• Scenario 1: Baseline with no anomaly - represents the 
normal operation (no anomalies) of the system and is 
used to train the detection algorithms.

• Scenario 2: Increase service latency - profile 1 (injection 
of latency (1 second) for duration of 15 seconds).

• Scenario 3: Increase service latency - profile 2 (injection 
of latency (1, 5, 30 seconds) for duration of 30 seconds, 
1 and 10 minutes on Nodes 1,2,3).

• Scenario 4: Network packet loss - Packet loss (10%, 20%, 
30%) is injected on one of the network links for 1,5, 10 
minutes

• Scenario 5: Network delay - Network delay (1, 2, 3 sec) 
is injected on the network for 1, 5, 10 minutes.

• Scenario 6: Server process dies - One process is killed 
on node 1 and 3 for 1, 5, 10 minutes.

B. Dataset: production-cloud data

Even in small, controlled experimental setups, the amount 
of noise is high and the time series changes rapidly over time. 
This already opposes challenges for the anomaly detection 
algorithm. However, testing the approach on large-scale pro­
duction cloud data is required to show the viability of the 
approach. The signal-to-noise ratio is even smaller since many 
components affect the response time of microservices, the time 
series evolves faster and changes its distribution over period 
of time while having also some stochastic behavior.

We collected the dataset in a period of four days from a 
real-world production cloud. We used only the attributes that 
are open-sourced by Zipkin [39], removing all the proprietary 
instrumentation. Therefore, from all of the attributes that one 
event has (around 80 in total, depending on the event), we 
extract only the http URL and the response time. The number 
of unique http URLs was 100168 and after clustering the total 
number of time series ( cluster IDs/qndpoints) was 143. Out of 
them, we selected three services of interest. The anonymized 
names along with the count of the samples is given in Table I

TABLE I
S e l e c t e d  c l u s t e r s  f o r  a n a l y s i s

ClusterlD Count
{host}/v l/{p_id}/cs/limits 12900
{host}/v l/{t_id}/cs/delete 2732
{host}/v2/{t_id}/servers/detail 6468

The time series, as shown in Figure 4, have high level 
of noise ([0ms, 2000ms] and [0ms, 4000ms]), several distri­
butions changing over time, and no strong anomaly in both 
signals except in the neighbourhood of 11500th data point in
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Fig. 7. Detected anomalies injected for different scenarios: (a) scenario 5, and (b) scenario 6

the figure. For the evaluation, we will use the part of the time 
series as normal scenario for training and then inject faults 
to check the model accuracy in the rest of the series. The 
presence of strong noise leads to low autocorrelation. That 
means, simple sequence learning without learning the distribu­
tion (with variational autoencoder) will result in learning only 
the running mean of the time series. Moreover, the distribution 
is skewed negatively. Therefore, the typical log transform of 
the data wont help for the model and it is omitted.

C. Results: variational recurrent model

In the following, we show the results obtained by the models 
on both datasets.

1) Results: microservice system: Accuracy of the unsu­
pervised method for all 15 endpoints in our experimental 
testbed across 5 different scenarios are shown in Table II. We 
compute the accuracy in the following way. Let the number of 
injected anomaly events be denoted with 7) and the number 
of accurately detected anomalies be Ta, then the accuracy 
over the injected anomalies is computed as accuracy =
The number of injected anomalies depends on each scenario 
and endpoint. The missing values in Table II mean that the 
anomaly did not affect those endpoints.

We note that the accuracy in normal system scenario is 
greater than 99% due to the tolerance module. We show 
scenario 5 and 6 graphically in Figure 7. We show that 
the method successfully flags almost all anomalous events. 
Overall, the results shown in the table and in the figure indicate 
that the combination of generative models like variational 
autoencoder with GRU units that extract temporal information 
achieves solid results.

2) Results: production cloud data: Due to the low number 
of production-system errors, we injected several types of 
anomalies. We defined seven types of common anomalies:

TABLE II
Ac c u r a c y  f o r  15 e n d po in t s  in  5 a n o ma l y  s c e n a r io s

Clus. ID S 2 S 3 S 4 S 5 S 6
1 - 85 95 98 99
2 - - 99 98 -

3 - - 96 99 96
4 - 99 - - -

5 - - 100 98 97
6 98 - - 86
7 - 95 98 97 -
8 - 98 - - -
9 - 92 91 99 100
10 90 95 95 99 98
11 - 96 - - -

12 85 - 83 99 97
13 95 98 - 94 99
14 99 96 - - 98
15 97 95 98 100
average 85.5 95.3 94.6 97.9 97.0

samples from normal distribution with different mean, additive 
outlier, mean shift, step and decrement, incremental, temporary 
change and gradual. Some of the types of anomalies can be 
found in Figure 6.

The model is trained on each of the three endpoints and for 
each of the endpoints we compute the accuracy of detection for 
each of the patterns injected in the time series. To test the ro­
bustness of the algorithm, we evaluated it for several different 
augmentations of the original patterns, including translation, 
increasing the response time (e.g., R T i = 0.2 means setting 
the response time of event to 0.2 of the maximum value) 
and change of the size of anomaly (e.g., in gradual increase, 
size = 10 means that the increase from amplitude A to 
amplitude B is gradual over 10 events/data points). In Table 
III, we show the aggregated results. The table summarizes the 
different anomaly patterns and the needed minimum values
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Fig. 8. Example of successfully detected anomalies injected in {host}/vl/{p_id}/cs/limits. Gradual and mean shift anomalies are injected in (a) and (b) 
respectively.

for the parameters size and R T i which lead to a detection 
of the corresponding anomaly type. Further, in Figure 8a and 
8b we visually illustrate some of the patterns detected in the 
series. We notice that the algorithm successfully detects the 
three types of anomalies injected.

t a b l e  m
Re s u l t s  f o r  Va r ia t io n a l  Re c u r r e n t  Mo d e l

Pattern name Parameters
additive outlier
normal_Mean
temporary change
gradual
mean shift
step and decrement
incremental

R T i > 0.25
R T i > 0.2
R T i  >  0.25
R T i  >  0.3, size  >  10
R T i  >  0.2
R T i  >  0.3, size  >  10 
R T i  >  0.3, size  >  10

3) Results: faulty pattern classification: The module can be 
evaluated separately from the rest of the solution, since data 
and predefined patterns as described. The dataset consists of 
15 different types of patterns similar to the ones shown in 
Figure 6. In practice, the user has the option to define own 
patterns.

Furthermore, besides the patterns shown in Figure 6, we 
produce augmentations to enrich the dataset. The augmenta­
tions are produced by using: horizontal shifts, adding small 
amount of noise and amplitude shifts.

We evaluated the algorithm to see the performance and its 
limits when it comes to the level of noise in the signal and 
the accuracy of classification. We achieved 100% accuracy in 
data with no additional noise added, 80% and 48% accuracy 
when Gaussian noise was added with a  =  [0.05 and 0.1] re­
spectively. The convolutional neural network model accurately 
classifies the tested anomaly patterns, with expected lower 
accuracy obtained in noisy patterns.

TABLE IV
Pe r f o r m a n c e  e v a l u a t io n  in  t r a in in g

#windows ms/window
60000 0.29
27000 0.28
9000 0.53
1000 1.25

4) Performance evaluation: In real-world production sys­
tems, the performance of the model in training and prediction

TABLE V
Pe r f o r m a n c e  e v a l u a t io n  in  t e s t -t im e  pr e d ic t io n

#windows ms/window
1500 0.22
1000 0.28
500 0.53
100 1.25

time is very important. Having large amounts of traces and 
events generated in short period of time, requires fast predic­
tion time and timely detection of anomalies. For that reason, 
we evaluate the performance of the approach. We show the 
results in Tables IV and V. Lastly, imposing industrial require­
ments (prediction time < 10ms) and meeting the criteria for 
performance proves that the approach is fast enough to be 
used in production setting. In streaming test-time prediction 
we achieve performance of 6.64ms per predicted window of 
points. Of course, the prediction times can differ with reducing 
or expanding the window size, but it is still within the limits 
of the necessary requirements.

VI. C o n c l u s i o n  a n d  F u t u r e  W o r k

This paper deals with an important and growing challenge: 
the automation of operation and maintenance tasks of planet- 
scale IT infrastructures. We experimentally demonstrate the 
advantages of combining GRUs (simplified LSTMs) with 
variational autoencoders (AEVB) -  two deep learning models 
-  for learning multiple, complex data distributions underlying 
time series data generated by distributed tracing systems. Our 
investigation on experimental and real-world production data 
with artificially injected anomalies showed that our approach 
reaches accuracy greater than 90%, prediction time lower than 
10ms, and robust classification of detected anomalies. The 
tracing data was generated by an experimental microservice 
application and by a planet-scale cloud infrastructure. These 
high levels of accuracy open a new door in the field of AIOps. 
Namely, the approach can be extended to also consider the 
structure of distributed traces, use knowledge from cross-event 
and cross-trace relations, and analyze structural trace anoma­
lies using complete trace information. These achievements 
can ultimately support the development of zero-touch AIOps 
solutions for the automated detection, root-cause analysis and 
remediation of IT infrastructures.
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