Nonintrusive Monitoring of Microservice-based
Systems

Féabio Pina, Jaime Correia, Ricardo Filipe, Filipe Araujo and Jorge Cardoso
CISUC, Dept. of Informatics Engineering
University of Coimbra
Coimbra, Portugal
fpina@student.dei.uc.pt, jaimec@dei.uc.pt, rafilipe @dei.uc.pt, filipius@uc.pt, jcardoso@dei.uc.pt

Abstract—Breaking large software systems into smaller func-
tionally interconnected components is a trend on the rise. This
architectural style, known as “microservices”, simplifies develop-
ment, deployment and management at the expense of complexity
and observability. In fact, in large scale systems, it is particularly
difficult to determine the set of microservices responsible for
delaying a client’s request, when one module impacts several
other microservices in a cascading effect. Components cannot
be analyzed in isolation, and without instrumenting their source
code extensively, it is difficult to find the bottlenecks and trace
their root causes. To mitigate this problem, we propose a much
simpler approach: log gateway activity, to register all calls to
and between microservices, as well as their responses, thus
enabling the extraction of topology and performance metrics,
without changing source code. For validation, we implemented
the proposed platform, with a microservices-based application
that we observe under load. Our results show that we can extract
relevant performance information with a negligible effort, even
in legacy systems, where instrumenting modules may be a very
expensive task.

Index Terms—Black-box monitoring; Gateway; Microservices

I. INTRODUCTION

Microservice modules have become a trend in the develop-
ment of distributed system. This new paradigm evolved due to
a number of factors. First, standard monolithic systems were
difficult to maintain, deploy, develop and scale. Hence, there
was the need to decompose these vertical systems in modules
that are function-oriented and that could be handled sepa-
rately, in terms of development and management. Secondly,
microservice architectures are better suited for deployment and
operation in Docker [1] or other containers. Finally, method-
ologies in product development, such as Agile or DevOps,
with smaller teams that work independently, are more aligned
with microservice architectures. Therefore, microservices have
tremendous benefits in term of development, operation, avail-
ability and scalability, and have thus become a standard for
large-scale systems.

Despite the aforementioned benefits, there are some chal-
lenges to tackle. One of these challenges is monitoring. In old
monolithic systems, monitoring was restricted to the system,
with a stable infrastructure and little elasticity. In microservice
systems, administrators have to pinpoint the root cause of the

978-1-5386-7659-2/18/$31.00 (©2018 IEEE

anomaly in hundreds or thousands of machines, with services
that have high elasticity and communicate with each other.
This huge increase in complexity, creates a herculean task for
administrators.

There are some monitoring tools, that due to their proven ca-
pabilities in standard systems, were also adopted in microser-
vice architectures. These tools — e.g. Nagios or Zabbix
—, normally monitor several infrastructure metrics, such as
CPU or memory usage, and include dashboards to provide
an overview of the system, with functionalities to notify
administrators when some rule or threshold is violated.

Other monitoring platforms, such as New Relic [2] or Dyna-
trace [3] are intrinsically coupled to the programming language
and system to monitor, but offer an overall overview of the
infrastructure. Other interesting approaches are Kibanal[4]
or Grafana [5]. Kibana is used primarily to analyze logs
and Grafana is more prepared to analyze and create visual-
izations of system metrics such as CPU or I/O utilization.

Since there is communication between several microser-
vices, a more powerful monitoring technique consists of
instrumenting all the modules, creating traceability for a
particular request. Tracing normally propagates a correlation
identifier that can be used to determine the flow through
several microservices. In other words, tracing allows system
administrators to determine the entire workflow of applica-
tions. There are some frameworks that help to implement
tracing, such as ZipKin [6], Opentracing [7] or Dapper [8].
Despite the benefits, tracing brings two major drawbacks.
First, all microservices must have tracing implemented and be
responsible to send the data to a central point. This platform
gathers, processes and aggregates the raw data. Therefore,
developers have to focus, not only on the business algorithm,
but also on monitoring and operation of the microservice.
Secondly, the central point may be a system bottleneck, due to
the large number of records. In fact, tracing systems normally
purge older samples or save only a small percentage of data.

Bearing in mind the aforementioned solutions, one could
think that administrators have all the tools to monitor systems.
However, in reality, operators use a plethora of platforms and
frameworks, some of them adopted from monolithic systems.
These tools only give insights of what is happening in the sys-
tem, and is the administrators’ responsibility to endure the hard

task to navigate through several dashboards and notifications
to identify the problem. Hence, microservices have introduced
a new paradigm to develop distributed systems, with well
defined functions and boundaries, but still use monitoring
techniques similar to what we could find in older architectures.

The approach we propose here is completely “black-box”,
decoupling monitoring functionalities from function-oriented
microservices. It is a solution that is neither invasive, nor
disruptive, as it requires no adaptations on the microservice
level. As a consequence, it is a good solution to already
implemented production systems. To achieve this, we used and
adapted a gateway from Netflix, named Zuul [9], to collect
metrics from the requests made by the microservices. Based
in metrics such as response time, origin and destination of the
requests, we aggregated the raw data in a concise output with
relevant information, such as average response time, topology
and overall service characterization.

Our results show that we can obtain relevant and useful
information to system administration, even though we use
a non intrusive approach methodology. We do not need to
instrument microservices or add agents to the infrastructure,
resorting only to components already needed by microservices
modules. Therefore, the solution presented is useful, viable —
specially in very dynamic and elastic systems —, and aligned
with microservice methodology.

The rest of the paper is organized as follows. Section II
describes the problem we tackle and the method we used to
solve it. Section III describes the experimental settings. In
Section IV we present and evaluate the meaning of the results,
the strengths of this approach and its limitations. Section V
presents the related work. Finally, Section VI concludes the
paper and describes future directions.

II. PROPOSED METHODOLOGY

In this paper we tackle the problem of monitoring mi-
croservice architectures. In vertical solutions, monitoring is
easier, because the application does not change that much over
time. Microservice systems evolved from new development
methodologies, such as Agile or DevOps and new deployment
techniques, such as containers. System monitoring did not
follow this evolution and is still based on the applications and
techniques for monolithic systems. In Section V, we discuss
how major worldwide technological companies are struggling
with this fact, being forced to create customized platforms
for their needs. Indeed, monitoring is a complex and difficult
problem in highly dynamic systems.

We analyzed the monitoring problem from a different per-
spective. A typical approach for monitoring would consists
of instrumenting or adding agents in as much layers as
possible, from hosts to middleware, up to the application
layer. Refer to Figure 1, which shows a sequence of three
microservices, where some function in A invokes a function
in B, which invokes a function in C. To bring the infor-
mation of the interdependent invocations to the monitoring
system, messages must carry some identifier that allows their

microservice A microservice B microservice C

!
— idx
B . Source)
Source : : code - R Source
code . : ! K code
. N ——
o o
.
PRI A A A A 4

Tracing System

Fig. 1: Tracing of microservices application (optimizations to
reduce tracing messages omitted).

correlation, for example, an HTTP header with the same
identifier (idx = tdy). Unfortunately, this involves changing
the source code of the application. While this technique creates
several monitoring points, these are also additional points of
failure and maintenance that couple monitoring with business
logic. This goes against the microservice methodology, which
follows the premise of function-oriented fine-grained modules.
To eliminate the need for instrumentation, we follow a non-
traditional approach. Knowing that microservices resort to
a gateway to make service discovery and redirect requests,
we added the capability to collect some monitoring metrics
to this gateway. The idea is to make the gateway gather
information, such as response time, IP and port of origin and
destination, and the identification of the function that was
invoked. This approach brings advantages, such as decoupling
the monitoring system from the application without hindering
system scalability, because the gateway and associated services
are horizontally scalable.

In the next subsections we describe our methodology in
more detail. First, we present the architecture, and how we
incorporate our solution in Netflix modules. Secondly, we go
through the metrics we can collect in the gateway and discuss
the information dashboards we can build with standard tools.
Finally, we present how we implemented and distributed the
tool.

A. Architecture

In a microservice infrastructure, it is a common approach to
solve the service discovery problem with a gateway. Hence, it
is very appealing to take advantage of this module to observe
the system. We resorted to three Netflix components: Zuul,
Ribbon and Eureka, responsible for gateway, load balancing
and registry of scalable service, respectively. These services
allow us to gather metrics outside of the critical path, being

TABLE 1. COLLECTED METRICS

[Metric [Type |
Start Time Long
End Time Long
Duration Long
Origin IP String
Origin Port Integer
Destination Service String
Destination Instance String
Destination IP String
Destination Function | String

an advantage to monitor microservice systems. In Figure 2,
we present the high level architecture.

Our methodology has four components, that are aligned
with microservice best practices, such as service discovery or
containerization. First, the module “Metric Storage” gathers
metrics collected by the customized Zuul application. These
metrics are response time — in requests between services or
directly from the client —, IP and port of origin and destina-
tion of the request, and function invoked on the destination
microservice. This module, also acts as a backend to the
“Frontend” module, where we display relevant information
such as response times, topology and characterization of
services.

The other two modules are associated with “Service Re-
gistry” and “Failure Detection”. In this paper, we focused
on docker containers [1], given its popularity. By analyzing
containerization, data description of containers and how the
container manager works, it is possible to fully automate
the process of registry and failure detection. This give us
a tremendous advantage, since we do not need container
instrumentation. In this case, our module is notified when a
change occurs in the containers, such as creation, destruction
or state change, through an agent associated to the container
manager. Bearing in mind that we also observe HTTP results,
it is also possible to implement a module responsible for
failure detection. This module combines information from the
HTTP results with container status, to add capabilities to our
system of autonomous maintenance and recovery. When an
instance fails, it is possible to remove or restart this instance,
without needing administration supervision or microservice
instrumentation. It is also relevant to mention that the com-
ponents involved in monitoring are horizontally scalable, and
therefore do not harm performance or availability of the
application. Since we remove the instrumentation necessary
of systems like the one of Figure 1, the processes responsible
for extraction and processing of the metrics are outside of
the critical path, and consequently do not create any sort of
overhead.

B. Collected Metrics

We present in Table I the metrics collected in our “Metric
Storage” module. For each request, regardless of the origin
(either another microservice or a client), we save metrics
associated to the origin and destination of the request.

Beside standard plots with averages and quartiles, e.g., as in
box-plots, this raw information allows us to create high-level
information about the system. For example, it is possible to
dynamically extract topological information and characterize
the level of interaction among different microservices. Ad-
ditionally, we can also calculate response times and load of
each microservice, inferring maximum capacity and quality-
of-service of each module, to ensure correct dimensioning.

For the frontend layer of our monitoring system, we used
Grafana [5], an open platform for analytics and monitoring,
highly flexible and customizable. To display a few more
complex plots, we used as a complement, graphics generated
using the R language — a common standard in the academic
field, for simulation and analysis, incorporating the output on
Grafana.

C. Implementation

To validate our method, we made a fully nonintrusive
implementation for the docker swarm container manage-
ment platform. The source-code and deployment instructions
are available on GitHub [10] as open-source. Additionally,
it also contains the sample microservice application used in
our experimental validation, of Section III. The tool is easily
deployable in a system with Docker and Swarm Manager
installed. Since the monitoring tool needs an overlay net-
work [11], the system must have this network created and
configured, to ensure the correct operation of our approach.

Afterwards, the only parametrization needed is the name
of the overlay network. The remaining parameters may be
defined with the default values without loss of functionality.
To use our monitoring solution, one could download the
repository, define the overlay network in our configuration
file and run the installation script that will automatically
generate and deploy a docker—-compose manifest file. The
Service Registry component, described in Subsection II-A,
will subscribe to the docker event API and be notified
of container creation, destruction and state change. As such,
service registration on the gateway will be done automatically,
requiring no collaboration from the services themselves. This
is possible because each container already carries the relevant
metadata, such as name and service port.

The monitoring solution includes the user-customizable
frontend module, with Grafana. Furthermore, we developed
and included a custom plug-in, written in R, to generate more
complex visualizations, such as chord diagrams [12]. Our raw
data storage module, uses influxDB and MySQL databases.
In Table II we present the overall containers associated (and
deployed) with the tool. Once installed in a Docker Swarm
container manager, all other applications deployed on it will
automatically use our gateway for service discovery and mon-
itoring, as long as they are in the same overlay network.

Figure 3 shows an example dashboard, extracted during the
experimental stage. In this case, we show the charts described
in Section IV, such as histograms and chord diagrams.

Docker Swarm

Gateway (Zuul) a

FrontEnd I
Failure detector “+r=»Swarm Manager
I

@ Jul 15,2018 00:41:38 to Jul 15,2018 00:5032 &

\
|
! I
[i |
[1 I
| 1 I
! Service Discovery e o = = Load Balancing - - I |
| (Eureka) @ (Ribbon) I m i
! N i | Metric Stora Service Regist [
H | ge ervice Registry k |
i LIS [! i !
! 1 T oo -2 C | / i
! 1 1 1 i
! | ’ i
I Y User Containers i
1

|
! []
\v
N
Fig. 2: System components
28 MY DASHBOARD - M v e & < Q>
All > All~ All~ All=
Registered Services Registered Instances Request Number Chord
o0
5 10

Services Information

1000146 efecd222acds 5001 music-songs

10.00.147 Oee0f279dfa1l 5001 music-songs

10.00.149 19¢1f3476e5d 5002 music-playlists

1000150 8c2d6bsci122d 5002 music-playlists

1000152 289acad3671f 5003 music-auth

1000.153 2ccdBb2ebbed 5003 music-auth

1000155 e15aafbge2eq 5004 music-aggr

0045
10.00.156

40164e6de38b 5004 music-aggr

= request.count

10.00.160 d96370b8bfdf 5000 music-users

Request Distribution

43:30

0045 o047 00:48 00:49 0050

0 7 40 42see0K

Request Heatmap

50
I oms . ! ' I ' I\ [| [| [| [[(| | | | | | | |}
omBla_ _ 00:42 00:42: 0 0 00:44:00 04300 00:49:30

004430 004500 004530 004600 004630 004700 004730 004800 004830 004300 004930 005000 00:50:30

Fig. 3. Sample user-customizable frontend.

TABLE II. Tool Containers

[Container | Description
Eureka Service Discovery
Zuul Gateway

Service Registry Manages containers life-cycle, in associa-

tion with Eureka

InfluxDB Time-series scalable DB
MySql DB
Grafana Frontend

Chord Plugin Generates chord visualizations

III. EXPERIMENTAL SETUP

In this section we present the experimental setup used,
the changes made to Netflix modules, and our microservice
application. First, concerning the infrastructural modules, used
by the test application, we rely on modules that are stable.
To do load balancing, we used Ribbon. This module gives
us several advantages, such as the available load balancing
algorithms, the use of REST interfaces, but most importantly,

an off-the-shelf integration with the remaining support mod-
ules from Netflix. Hence, integration with the discovery and
registry module — Eureka —, is made, allowing a more
agile instantiation and implementation of our methodology.
Aligned with Ribbon and Eureka, we also used the Netflix
gateway — Zuul —, that uses Ribbon internally. Zuul gets the
service location through a query to Eureka, and then routing
requests to the correct service. Since requests have to pass
through Zuul, this module allow us to have a clear vision
regarding traffic between microservices and gather monitoring
information to a central point.

The other component of our experimental setup is the
application that allows us to test the monitoring method. The
application that we implemented is related to music and has
five microservices with well defined functions. The application
allows its clients to manage users, playlists and songs. On
Table III, we identify the overall endpoints associated to
each microservice, respective invocations methods and a brief

TABLE III. MICROSERVICE AND FUNCTIONS AVAILABLE

microservice [functionality request type description

Authentication_MS / A GET SysFem Healthcheck A
/login POST Validate user credentials and create token
/ GET System Healthcheck
/login POST Validate user credentials

Users_MS lusers GET Get user info
/users POST Create user
/users/{id} DELETE Remove user
/users/{id} PUT Update user
/ GET System Healthcheck
/playlists GET Get playlists associated to a user
/playlists POST Create playlist

Playlists_MS /playlists/{id} GET Get playlist
/playlists/{id } PUT Update playlist
/playlists/songs/{id } DELETE Remove a specific music from a playlist
/playlists/songs/{id } GET Get music info associated to a playlist
/playlists/songs/{id } POST Add music to playlist
/ GET System Healthcheck
/songs GET Get music info
/songs POST Create music info

Songs_MS - - .
/songs/convert/{id} GET Convert music from mp3 extension to wav
/songs/criteria GET Get music list based on some criteria
/songs/{id} DELETE Remove music
/songs/{id} PUT Update music

Aggregator_MS / : ' GET System Hea'lth.check _ '
/playlists/songs/{id } GET Get all music info associated to a playlist

description.

Since we wanted to collect raw information about the
requests, but without instrumenting microservices, we changed
the Zuul source code to register information concerning origin
and destination of each request. We save the following infor-
mation: microservice that made the request, start time, end
time, IP and Port of the request origin, microservice instance
that processed the request, and function that was invoked. With
this information, we were able to extract relevant information
about the system, such as topology or average response times,
decomposed by microservice and function. As mentioned, we
did not need any kind of instrumentation on the source code of
the application (i.e., we only changed the infrastructure). The
raw data is then pre-processed and redirected to a MySQL
database that makes part of our “system metric” module.

The software was installed in a virtual environment run-
ning Ubuntu 16.04. The virtual machine had 8 vCores,
with 22 GiB of RAM. All components were installed
with standard parametrization, except the Zuul parame-
ter sensitive—headers. This configuration allows us to
propagate the authentication token through all microservices
without any kind of manipulation from the gateway.

To simulate load on the system, we used Apache JMe-
ter [13]. We configured this load tool with 10 threads, and
a launching period of 120 seconds. Each thread ran during
10 minutes with the following loop: 1) Create User; 2) Au-
thenticate; 3) Get user; 4) Update user; 5) Add song; 6) Get
song; 7) Update song; 8) Convert song; 9) Add playlist;
10) Get playlist; 11) Update playlist; 12) Add music to playlist;
13) Get music from playlist; 14) Get all musics from playlist;
15) Delete music from playlist; 16) Delete playlist; 17) Delete
song; 18) Delete user.

TABLE IV. SOFTWARE USED

[Component | Observations [Version |
Zuul Gateway 1.4.4
Eureka Service discovery 1.4.4
Ribbon Load balancer 1.4.4
MariaDB DB used by microservices 10.3.7
MySQL DB used by the frontend 8.0
JMeter Load testing tool 4.0

In Table IV we present the open-source components used
in the experiment and respective versions.

e N _._._. Music Application _ _ _
i FrontEnd i - ~
! Failure detector | (Aggregator MS \
i i
i
i i
i i ! [od
| Metric Storage Service Registry | | :
! | Auth MS
[v !
X i
i e
[
i
: Users MS
! -3
i a D
Service Discovery| ¢ — — i
(Eureka) i
P, i PlayLists MS
S i i
i # -=-> !
i
i
i
! i
i Songs MS i
i - i
: e L i
i
! i
\ 7/

Fig. 4. System architecture

Our ultimate goal with this experiment is very simple: un-
derstand the limits, benefits and disadvantages of our “black-
box” nonintrusive monitoring tool. Figure 4 summarizes the
entire system, with application, infrastructure, including the
monitoring tool and a load generator.

Request Times (ms)

Destination Microservice

Request Time Milliseconds

B

—_—

1

agg auth-m: playlist

Fig. 5. Boxplot of response time by microservice

aggr-ms

Fig. 6. Application graph

IV. RESULTS

In this section, we present the results of gathering monitor-
ing data from the API gateway. This technique allows us to
extract raw data from microservice interactions and, therefore,
create a set of metrics and charts with relevant information for
administrators, without the need of instrumentation or agents
at hosts level. In this paper, we present 5 visualizations that
combined, give us a clear vision of the system.

Concerning the frontend application, we divided visualiza-
tion into 3 distinct charts. First, we need to understand what
microservices have a higher variance in the response time. To
get this data — see Figure 5 —, we opted for a boxplot chart.
This kind of graphic allows us to have compressed information
in only one visualization. Figure 5 was created based on data
extracted from our MySQL database. It is relevant to mention
that although we are presenting response time distributions of
microservices, it is possible for the user to drill-down, and
visualize the same distribution by destination function inside
each microservice.

Regarding dependencies between microservices, we resort
to a graph. This representation allows us to present topology
and dependencies between modules. In Figure 6, we can easily

see the relations between the different microservices, and the
direct accesses from clients.

Having response times distribution in boxplot charts for
each microservice (and function) and dependencies between
microservices in graph visualization, there is still a crucial
aspect missing, to understand the health of the system: mi-
croservice and function importance in the system. To achieve
this, we resort to chord diagrams, based on the work of Gu et
al. [12]. This kind of graphic allows us to see more complex
relations between entities. Graph nodes are arranged along a
circle, and the importance of their interactions is proportional
to the width of the connecting arcs. We use arrows to provide
information of which side receives the call, and colors to
simplify interpretation. For instance, in Figure 7a, we can
see the number of requests, and in Figure 7b latency. In
a very large system, a chord graph comprising everything
would probably be difficult to read. Hence, to improve diagram
interpretation, administrators can select what microservices to
display, as seen in Figure 3. For instance, in Figure 7c we
see latency, without requests made by the clients, since these
requests can have a huge impact on the graph and make other
interactions less visible.

Taking into consideration Figure 7a, an administrator would
verify that microservice playlist-ms would be the origin
or destination of around 28, 000 requests. From these, around
3,000 were requests from playlist-ms to songs-ms,
21,000 requests made directly by clients and around 3,000
from the aggr—-ms microservice. This way, we have a vision
of the playlist—ms microservice relevance in the overall
system. Additionally, the same analysis could be made for
latency. The box-plots, combined with the dependency graph
and the chord diagram, give us a good idea of the system
capacity, module importance and response time distribution
by microservice or function.

An interaction of a system administrator with the monitoring
system could go this way: the administrator would first look to
Figure 5. This box-plot, provides a clear understanding of what
services have higher response times. It is easily observable
that the service songs—ms has the highest response times
of all modules. The second module with higher response
times is aggr—ms. Nevertheless, an administrator would try to
understand the importance that the songs-ms microservice
has in the system. Although it has a higher response time
compared with other microservices, an administrator should
look to the remaining Figures. With Figure 6, he can see
that songs-ms receives invocations directly from the client,
aggr-ms and playlists-ms, so, there is a large system
dependency on the songs-ms microservice. Furthermore,
we notice that the latency of songs-ms depends on who
is invoking it, presenting a much higher latency for client-
initiated invocations. This would show that either they are
invoking different functions or there is some anomaly. An
administrator - using our application - can then drill down
and see granular invocation data for further analysis.

The last information that an administrator needs is the num-
ber of requests and latency in the calls between microservices.

(a) Frequency

(b) Latency

songs-ms
1

sw-siesn

o o
playlists-ms

o
s
K
ay,
Uyl

(c) Latency without Client

Fig. 7. Chord diagrams

Even though songs-ms has a high response time, and is a
key module in terms of dependencies, we need to understand
if the number of requests that go through songs-ms is
relevant in the overall number of requests processed by the
system. To have this information, we can look to Figure 7a
and 7c. We can see that songs—ms is an important destination
of requests, specially from client and aggr-ms. In fact,
looking to Figure 7c, we can see that aggr-ms dependencies
(songs-ms and playlists-ms) have low latencies, so
they are not a bottleneck.

Given that Figure 7a shows the aggr—-ms service makes
roughly twice as many invocations as it gets, it leads to the
conclusion that latency is a result of multiple requests, possibly
serially or with low parallelism. Therefore, an administrator
with these visualizations would have two possible solutions:
drill-down the boxplot of songs-ms by function, to check if
there is any offending function, and/or try to improve the way
aggr-ms invokes dependencies. It is important to remember
that all this information is achievable with no instrumentation
or agents in the infrastructure.

When we compare our approach to current monitoring
tools for microservices, we can see some benefits, as well as
disadvantages. One of the disadvantages, is related to tracing.
We do not have the granularity that tracing offers, to under-
stand the workflow of specific requests. Hence, we may miss
some information concerning causality between microservices.
Nevertheless, if we have a widespread distribution of requests,
we can still estimate the workflow. On the other hand, our
module is far less intrusive, as it does not have the overhead
to develop instrumentation or deploy agents in the system.
Additionally, our solution could be implemented in legacy
systems in a very agile way, something that is probably beyond
reach of tracing-based solutions.

V. RELATED WORK

Since our work is tangential to distinct research fields,
and is a very active topic, we divided related work between

industry and academic solutions. Additionally, we present
some work that despite not being directly related to ours, is
complementary.

First, concerning industrial approaches, we have software
from Netflix. Netflix has several modules for monitoring and
instrumentation. Vector [14], is a framework that allows a
creation of dashboards with metrics, such as CPU or network
utilization. The module forces the existence of an agent —
named Performance Co-Pilot (PCP) —, on each host or
application to monitor. Another system is Atlas [15]. This
platform is focused on big data and time series. The goal
is to apply prediction methods, to understand the evolution
of metrics and real time analysis. Although powerful, this
platform requires instrumentation of microservices. Another
very similar approach is Prometheus [16], an open-source
monitoring solution that also requires instrumentation.

Application Performance Monitoring (APM) tools, based in
instrumentation or agents, allow the creation of dashboards and
the definition of notifications to administrators, when some
threshold is violated. For example, Dynatrace [3] and oth-
ers [2], [4], [5], [17] have some features related to microservice
infrastructures. However, all these tools are mostly focused
on displaying information, and are much less concerned with
intrusiveness than we are. Spotify uses a similar approach
to Netflix. They had the need for a customized monitoring
infrastructure that creates dashboards and time series. Once
again, each machine runs an agent to send information to a
central point [18]. Additionally, there are some open-source
projects, like IOVisor [19], that detects performance problems
in thousands of virtual machines.

Looking into academic contributions, in [20], the authors
give some guidelines on how to build and monitor a microser-
vice platform. The availability of instrumentation or agents to
collect information from hosts and applications is assumed.
In [21], the authors present a monitoring dashboard, but once
again based on agents and service instrumentation.

In [22], the authors use a distinct approach, where each mi-
croservice is responsible for its own elasticity and scalability.

The modules save the information about CPU utilization and
response times. Although this has some benefits, the authors
do not focus on the “domino effect”, or chain reaction that
may occur as components interact.

In [23], the authors propose a methodology to create “mon-
itoring as a Service”, based on containers, where agents are
associated with the microservice container. In this architecture,
there is a one-on-one relationship between agent and container
that may cause some overhead and scalability issues. Addition-
ally, monitoring is associated with the container, in disfavor of
the workflow that exists between modules. In [24], the access
point of each container is changed to monitor the network.
Hence, it has a kind of “man-in-the-middle” approach having
no consideration about the application.

Our methodology is different from all the previous ones in
at least two aspects. Some tools referred before aim to create
dashboards and notifications, based on the premise that agents
or tracing is available in the system. This kind of tools does
not aim to decrease system intrusiveness, focusing only in
visualizations and data presentation. Other approaches instru-
ment the system, creating frameworks coupled to containers,
microservices or the network, but they do not give information
about application workflows.

Tracing, one of the most used approaches of this kind,
gives the capability to understand the flow of a specific
request. However, there are some disadvantages: developers
have to instrument each microservice and focus not only on
the business algorithms, but also on monitoring. Unfortunately,
this merges source code with quite distinct goals.

Unlike previous work, our method is driven by simplicity.
It gives the ability to monitor a system, without agents, in-
strumentation or development overhead. Nevertheless, results
achieved in terms of data visualization are quite impressive,
enabling system administrators to grasp crucial aspects of the
system with minimal effort.

VI. CONCLUSIONS AND FUTURE WORK

Monitoring and operating distributed systems is a difficult
task for administrators. With microservice technologies this
task has become more complex than ever, due to elasticity
and system dynamics. The majority of monitoring solutions
were designed for older architectures, therefore lacking any
considerations regarding the new paradigm.

In this paper we proposed a new approach for monitoring,
without any instrumentation or probes in the system. We aimed
to analyze the limits of a “black-box” approach, using only
some of the infrastructural modules already deployed in a
microservice architecture. We recurred to Netflix modules,
customizing the gateway, to gather raw data from microservice
invocations. Results show that our solution involves minimal
configuration efforts to be integrated in the system and to
produce relevant information to administrators.

As future work, there are several directions that we want to
further investigate. First, we want to improve our open-source

tool in terms of automated analysis, such as critical path enu-
meration and anomaly detection, to give administrators more
information about high level behavior. Finally, we think it
would be very helpful to generate models capable of predicting
system and microservice capacity to help administrators with
dimensioning and SLA assurance.

ACKNOWLEDGMENT

This work was partially carried out under the project
PTDC/EEI-ESS/1189/2014 — Data Science for Non-
Programmers, supported by COMPETE 2020, Portugal 2020-
POCI, UE-FEDER and FCT.

We would also like to express our gratitude to the INCD
- Infraestrutura Nacional de Computa¢do Distribuida, for
providing access to their computational resources.

REFERENCES

[1] Docker. https://www.docker.com/what-docker. Retrieved June, 2018.

[2] New Relic. https:/newrelic.com. Retrieved May, 2018.

[3] Dynatrace. https://www.dynatrace.com/platform/. Retrieved May, 2018.

[4] Kibana. https://www.elastic.co/products/kibana/. Retrieved May, 2018.

[5] Grafana. https:/grafana.com/. Retrieved May, 2018.

[6] Zipkin. http://zipkin.io/. Retrieved June, 2018.

[7]1 Opentracing. http://opentracing.io/. Retrieved May, 2018.

[8] Benjamin H Sigelman, Luiz Andre Barroso, Mike Burrows, Pat Stephen-
son, Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag.
Dapper, a large-scale distributed systems tracing infrastructure. Techni-
cal report, Google, Inc, 2010.

[9]1 Zuul. https://github.com/Netflix/zuul. Retrieved May, 2018.

[10] Github — monitoring_ms. https://github.com/fabiopina/monitoring_ms.
Retrieved June, 2018.

Docker overlay network. https://docs.docker.com/network/overlay/. Re-
trieved June, 2018.

Zuguang Gu, Lei Gu, Roland Eils, Matthias Schlesner, and Benedikt
Brors. circlize implements and enhances circular visualization in r.
Bioinformatics, 30(19):2811-2812, 2014.

Papers — Apache JMeter” M | http://jmeter.apache.org/. Retrieved: May,
2018.

Vector. https://github.com/Netflix/vector. Retrieved May, 2018.

Atlas. https://github.com/Netflix/atlas. Retrieved May, 2018.
Prometheus. https://prometheus.io/. Retrieved June, 2018.
Appdynamics. https://www.appdynamics.com. Retrieved May, 2018.
Spotify. https://labs.spotify.com/2015/11/17/monitoring-at-spotify-
introducing-heroic/. Retrieved June, 2018.

ITovisor. https://www.iovisor.org/. Retrieved May, 2018.

S. Haselbock and R. Weinreich. Decision guidance models for microser-
vice monitoring. In 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), pages 54-61, April 2017.

B. Mayer and R. Weinreich. A dashboard for microservice monitoring
and management. In 2017 IEEE International Conference on Software
Architecture Workshops (ICSAW), pages 66—-69, April 2017.

Giovanni Toffetti, Sandro Brunner, Martin Blochlinger, Florian Dudouet,
and Andrew Edmonds. An architecture for self-managing microservices.
In Proceedings of the 1st International Workshop on Automated Incident
Management in Cloud, AIMC 15, pages 19-24, New York, NY, USA,
2015. ACM.

Augusto Ciuffoletti. Automated deployment of a microservice-based
monitoring infrastructure. Procedia Computer Science, 68:163 — 172,
2015. 1st International Conference on Cloud Forward: From Distributed
to Complete Computing.

F. Moradi, C. Flinta, A. Johnsson, and C. Meirosu. Conmon: An
automated container based network performance monitoring system.
In 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pages 54—62, May 2017.

(11]

[12]

[13]
(14]
[15]
[16]
(17]
(18]
[19]
[20]
[21]

[22]

(23]

[24]

