
Interface Design for IT Service Management Practice

João Nabais, Alexandre Miguel Pinto
CISUC – University of Coimbra

3030-290 Coimbra, Portugal
jlnabais@student.dei.pt, ampinto@dei.uc.pt

António Cruz
SAPO – Portugal Telecom
1069-300 Lisboa, Portugal
antonio.j.cruz@telecom.pt

Jorge Cardoso
Karlsruhe Institute of Technology

76131 Karlsruhe, Germany
jorge.cardoso@kit.edu

Abstract—As the worldwide economy becomes increasingly
service-based, companies have a growing need for the adoption of
IT Service Management (ITSM) best practices, tools, and
methodologies. The Information Technology Infrastructure
Library (ITIL) is a set of best practices in ITSM and is now
highly adopted by the industry. However, implementing ITIL is
complex and costly, and enterprises that design, adopt and
provide ITSM services, often end up with different analysis
methods and designs for similar ITSM solutions.

Aiming at reducing costs and standardizing ITIL-based
implementations we propose a methodology to build ITIL
conformant interfaces for its processes and functions. This
methodology aims for the standardization and partial automation
of the construction of reusable software components that are
ITIL conformant. It promotes software reuse for ITSM /ITIL
solutions market, through the future development of ITSM
interfaces.

Keywords-ITSM, ITIL, Service, Interface design

I. INTRODUCTION
IT Service Management (ITSM) has been evolving during

the last decades. It started simply by taking advantage of new
technologies for delivering applications as part of service
offerings, supporting the business, but in the course of time it
became clear that businesses needed a more encompassing and
value creating approach. E.g., the notion of the “IT help desk”
service emerged in order to deal with frequent user issues. In
the last three decades a set of best-practices, processes and
functions was compiled into what is known today as the IT
Infrastructure Library (ITIL) [1,2]. ITIL appeared as an answer
to the need of efficiency in IT service management, based on
the service management know-how of the best and most
successful organizations [1]. When properly implemented,
ITIL allows organizations to provide services with greater
efficiency, effectiveness, quality and cost reduction [3]. As a
result, ITIL is the most adopted framework by worldwide
organizations and it is still growing. By June of 2011 it was
estimated that ITIL adoption had increased twenty percent per
annum and the number of ITIL training attendees increased at a
rate of thirty percent over the last decade [4]. ITIL provides a
set of documented best ITSM practices, but only in a

descriptive form. Companies that want to develop ITIL best
practices, either for internal use, or to be part of a service
offering, have to do it from scratch, including the development
of specific methodologies used to design, analyze and develop
specific ITSM solutions.

A. Motivation
Problem: Some concerns arise when organizations want to

fully, or partially, adopt ITIL best practices, not only because it
comes with high hiring or certification costs, but also due to the
time, effort and structural costs that ITSM implementations
imply. We propose a solution to this problem, towards a cost
reduction of ITIL practices implementation.

Contribution: Our work aims at the development of an
interface design methodology for ITSM practices. This
methodology can help ease companies’ workload throughout
the analysis of ITIL best practices (processes and functions),
the identification of ITSM process elements and of logic
operations within such practices. This work ultimately
contributes to the development of decoupled ITSM practices
oriented web-services that can serve a variety of IT consumers.

Many companies buy full ITSM solutions from third party
software vendors instead of consuming only the subset of web
services, which correspond to the strictly desired ITSM
functionalities they need. A wide range of entities will benefit
with the successful realization of this work, mostly because we
present a new way to ease ITIL/ITSM implementation allowing
an easier, and more flexible way to get value, from an ITSM
perspective.

We contribute, as well, to a normalization of the ITIL levels
motivated by the study from November 2011 [4], by the AMP
Group, which points that: “ITIL adoption levels are clearly
different around the world”. The interfaces we developed,
based in the methodology we also present, can serve as a basis
for such normalization, as companies adopting them, fully or
partially, could compare adoption levels between them with
less effort, since the fundamental practices are at least similar.

Business Impact: With our approach, ITSM consumers
can circumvent part of the efforts in time, resources and

jcardoso
Sticky Note
João Casalta Nabais, António Cruz, Alexandre Miguel Pinto, and Jorge Cardoso, Interface Design for IT Service MAnagement, 9th Iberian Conference on Information Systems and Technologies (CISTI), Barcelona, Spain, 18-21, Jun 2014.

financial costs, by adopting a set of normalized interfaces built
with the methodology proposed.

ITSM is already a business on its own right. According to
[14], “customers are outsourcing the delivery and support of
their IT Services to Telecommunications Companies (TelCos),
so TelCos are offering IT Service Management as a sellable
service”. TelCos are already playing a big role in IT service
management. They can make use of IT service components in
order to manage their sellable services, so they can act as IT
service providers as well as ITSM service providers. Also,
exposing these services as SaaS offers through Web APIs
would enable new business opportunities to service providers
and solution integrators. This kind of offerings enables the
rapid development of applications acting as clients of ITIL
services, e.g., mobile apps that can easily integrate with
Incident Management, Event Management, or Service Level
Management services, delivering extra value to the end user.
However, the IT service components can only be most
efficiently used as building blocks of ITSM services if their
behavior is unambiguously described. A fundamental
mechanism for describing the behavior of these ITSM service
components is the specification of their interfaces. Our present
work serves precisely the purpose of providing a methodology
for the specification of ITSM services, and in that sense it serve
as a catalyst for ITSM services development.

Objectives:

In partnership with Portugal Telecom/SAPO, we aim at
creating and developing a methodology for designing ITIL (or
ITSM) practices, and model and build a set of Abstract IT
service components [15] (ITIL Interfaces). Despite the fact that
such Abstract IT service components are tailored for ITSM, we
will specifically use them to map ITIL practices, and since such
are specific instances of IT service components; they can have
an associated Abstract IT service component (interface). The
template we develop associated with each interface includes a
process flow diagram schema of the respective component, a
description of the component, a cross-functional flowchart
diagram and the associated ITIL information object [12]
(Transitions: Inputs & Outputs). By having enough information
regarding transitions, processes and services, these templates
allow the usage of a “Plug-and-Process” paradigm, which
consists in “reusability, plug-replaceability [...] and
extensibility” [10].

Another benefit of this work, in the field of IT Service
Management, is a decrease of the difficulty in measuring the
ITIL adoption levels. Despite not being the central concern of
this work, it can help to lead to a standardization of ITIL
adoption levels, easing the comparison between organization
ITSM practices, since there is no need for surveys if they both
use a similar set of interfaces.

B. Methodology
We describe our methodology as a sequence of steps that

should be fulfilled in order to develop a set of artifacts that can
be used to specify a set of interface logical operations.

Firstly, an ITSM practice process must be developed,
through the analysis of ITSM practices and its elements, and it
should be specified using a notation like, e.g., BPMN [16] or

EPC or UML diagrams [18], in order document the associated
business process. After the process is specified, its elements
must be analyzed in an operational-centric way to identify
more granular logic activities within the ITSM process that will
serve as a basis for the interface operations. After these
“primitive” operations are defined, their behavior, as well as
their inputs and outputs, must be determined and the data types
needed to feed and store ITSM information must be defined.
Lastly team revisions of such interfaces must be held and the
identified improvement needs must be fulfilled.

C. Paper Structure
The rest of the paper is organized as follows. Section II

presents the Background Notion including relevant concepts, as
well as previous work developed within this scope. Section III
presents in detail the ITSM Practices Interface Design, which is
followed by Section IV describing the evaluation of the
developed methodology. Conclusions of the work are presented
with a critical review and identification of future work in
Section V.

II. BACKGROUND NOTIONS

A. Components and Interfaces
Component: Component-based Software Engineering

(CBSE) emerged, and it is described by Sommerville [5], as
“the process of defining, implementing, and integrating or
composing loosely coupled, independent components into
systems.”.

Our work takes into consideration an essential point of
CBSE: “there should be a clear separation between the
component interface and its implementation. This means that
one implementation of a component can be replaced by
another, without changing other parts of the system” [5]. This
is one of the reasons why we only provide a methodology for
interface design: because some ITSM companies might want to
develop, or change, specific component implementations, (e.g.,
in the Incident Management ITIL process, the incident
matching activity implementation might differ between two
distinct service providers).

Since we aim to provide a way to design interfaces
(software components), we begin by clarifying exactly what do
we understand by “component” in order to provide an overall
view of were ITIL specific interfaces stand, at a scientific level.
We considered the two definitions pointed out by
Sommerville’s work.

Definition 1. “A software element that conforms to a
component model and can be independently deployed and
composed without modification according to a composition
standard.” [6].

Definition 2. “A software component is a unit of
composition with contractually specified interfaces and explicit
context dependencies only. A software component can be
deployed independently and is subject to composition by third
parties.” [7].

Component as a Service: Sommerville states, regarding
the above definitions, that “both of these definitions are based
on the notion of a component as an element that is included in

a system, rather than a service that is referenced by the
system”. He also points that a “notion of a component as a
service was developed” in response to problems such as the
standards and protocols that “have hindered the uptake of
CBSE”, since they are “complex and difficult to understand”.
Therefore, if components are services, the reuse or integration
of processes will be eased, since we do not need to have
concerns, or constraints, regarding the connection of different
components using different technologies (e.g., .NET and
J2EE).

In light of the above, and since we need a definition of
component more from a service perspective, we based our
definition in the “critical characteristics” of reusable
components, pointed out by Sommerville, and come up with
the following definition:

Definition 3. A component is an independent and
executable entity that is defined by interfaces, abstracting itself
from source code, which could be referenced as an external
service or included directly in a program.

Abstract IT Component: The components, or services,
discussed above should be defined, described and specified as
Abstract IT Components, which are defined as:

Definition 4. Abstract IT Components are templates used
for specific instances of IT service components. [8].

Therefore, we adopt the methodology we present in the
sequel, to define, describe and specify components and the
related ITIL interfaces as Abstract IT Components.

ITIL Component: Fry [9] considers the 26 processes and 4
functions (Fig. 1) that one can choose in order to properly
implement ITIL. These are dubbed in his work as “ITIL 2011
components”. Fry categorizes such components into four
distinct categories:

• Action Components - “require actions of operational
nature to be performed as part of their normal
functionality”, (e.g. Service Desk, Incident Management,
Problem Management, Event Management, etc.);

• Influencing Components - “modify and influence the
way that action components perform their actions” (e.g.
Service Level Management, Service Validation and
testing, Service Catalogue Management, etc.);

• Resourcing Components - “ensure that the other
components have the resources to meet their service
commitments” (e.g. Capacity Management, Availability
Management, Transition Planning and Support, etc.);

• Underpinning Components - “provide the underpinning
facilities required by all components. Some of these
components, such as financial management, may also
serve other areas of IT.” (e.g. Financial Management, IT
Service Continuity Management, Strategy Generation,
etc.).

Taking all the above into account, we come up with the
following definition:

Figure 1. ITIL components

Definition 5. An ITIL component is a component that
fulfills and materializes all needed functionalities related to an
ITIL process or function.

ITSM Component: The notion, inspired by Fry’s work, of
“ITIL component”, can be abstracted to “ITSM Component”
and therefore an ITSM service can be considered a component
that implements ITSM (not obligatorily ITIL). Such a
component reflects a practice that some company adopts in
order to manage specific IT services.

This definition (5) does not conflict with the one provided
previously (3) for “component” since ITSM services (or
components) can be defined by interfaces and could be
referenced as external services or included directly into a
program. It is important to define component at an ITSM level,
since some companies are not interested in general best
practices (ITIL), and therefore they look for ITSM practices of
other companies in the same business sector. If such sector
specific best practices have already been specified there is no
reason to want to adopt a generic ITIL solution instead of a
proven solution, within the same business scope, generating a
win-win situation for both consumer and provider companies.

It is important to notice that an ITSM component can be
composed by an individual ITSM function or process interface
or by a set of ITSM interfaces, so the degree of atomicity can
vary from component to component. For instance, Gartner1
uses the term IT service support management (ITSSM) to refer
to a specific set of ITSM practices.

Interface: As Sommerville states [5], “the services offered
by a component are made available through an interface and all
interactions are through that interface ”and “an important part
of any design process is the specification of the interfaces
between the components in the design”. Hence, we need to
clarify what we do understand by “interface”. In order to do so
we considered the following definitions:

Definition 6. “An abstraction of the behavior of a
component that consists of a subset of the interactions of that
component together with a set of constraints describing when
they may occur. The interface describes the behavior of a
component that is obtained by considering only the interactions
of that interface and by hiding all other interactions.” [6].

1

http://www.gartner.com/it-glossary/itssm-tools-it-service-support-managementtools

Definition 7. “A contract, in a form of a collection of
operations definitions, which provides a mechanism for a clear
separation between an external and internal view of a
determined element and allows establishing “client-provider”
relationship mediated by the notion of “contract”.” [11].

Definition 8. “Interface is the description of the signatures
of a set of operations that are available to the service client for
invocation.” [10].

In light of the above we consider an interface to be:

Definition 9. An abstraction and description of the
behavior, more specifically operations (in the form of
signatures) regarding a software component, providing a clear
separation between external and internal view.

ITSM interfaces should provide information based on Fry’s
[9] Activities, Transmissions, Work Instructions and Control
and Quality metrics. Each ITIL interface is specified using a
standard template for specific ITIL components (Abstract IT
Component) and within it, information regarding the ITIL
component transmissions (inputs and outputs), in other words,
ITIL information objects.

ITIL Information Object: As Sommerville states, “The
services offered by a component are made available through an
interface and all interactions are through that interface. The
component interface is expressed in terms of parameterized
operations and its internal state is never exposed.”

Such interactions, or as Fry [9] defines it, such
transmissions, between operations, or activities, can be
performed in two ways, as input, or output. Therefore every
Abstract IT Component has present, in its interface, such
transmissions.

Kempter&Kempter[12] dub such input and output flows as
ITIL Information Objects, posteriorly reused by Wang
[13].There is a necessity of including this definition, since
“process levels are usually contemplated as a step of a separate
project before getting involved in process internal parts in
detail. Indeed, before being able to introduce detailed activities,
should be clarified what outputs need to be produced by a
process, and what inputs a process ought to expect prior
processes”.

B. Coupling and Cohesion
When implementing interfaces that, ultimately, will result

in services, certain service design principles must be kept in
mind.

As in [10] we consider “two well-known software design
guidelines: coupling and cohesion” since these “guarantee that
services are self-contained, modular and able to support service
composability”. ITIL (or ITSM)interfaces will represent
actions (atomic or not), and interactions between them, as well
as the order they follow, represented by business processes.

Coupling: In terms of service coupling “the objective is to
minimize coupling, that is, to make (self-contained) business
processes as independent as possible by not having any
knowledge of, or relying on, any other business processes”
[10].This overlaps with the definition of discrete process used
by Fry in his work [9]:“A discrete process is a stand-alone

process that can be completed in a linear fashion without
impact from another process.” As explained by de Champeaux,
Lea and Faure [18], and reused by Papazoglou and Yang [10]:
“The central tactic” for low coupling “stems from the idea of
abstract classes in object-oriented design where composite
classes and actions minimize dependencies on irrelevant
representational and computational details”.

Cohesion: In terms of cohesion, during the development of
ITIL interfaces, we must create “strong, highly cohesive
business processes, business processes whose services and
service operations are strongly and genuinely related to one
another.”[10]. Since ITIL publications already describe some
processes of the components (services), operations (activities)
and transmissions, such components and operations are already
related to one another.

If there is not a specified ITSM process, like the ones
“recommended” by ITIL publications, a custom ITSM process
must be built.

III. ITSM PRACTICES INTERFACE DESIGN
As described in SectionI.B, the interface design

methodology is divided in the following set of steps:

A) Build the ITSM Process;

B) Specify the ITSM Process Flow;

C) Identify Operations, Inputs, Outputs and Data Types;

D) Discuss and Revise the Specification.

In the next sections,we explain in detail each of these steps.

A. Build the ITSM processes
When implementing processes specific to some ITSM

practice there is a need of having a formalized process. In the
case of ITIL some of the processes are already explicitly
presented in the ITIL publications, such as Incident
Management, Problem Management, Request Fulfillment, etc.
However, if there is not a specific explicit process defined, the
person developing the interface should use a methodology to
build such process.

Some work on building an ITIL process is described by Fry
[9]. Despite it being specific for ITIL processes, it can be used
for general ITSM practices if the person building the interface
already knows the behavior of the process of such practice.

First, Fry advises to answer five key questions in order to
extrapolate the activities from an ITIL (ITSM) practice (Figure
2). Posteriorly, he provides a process describing a methodology
in order to build an ITIL (or ITSM) process(Figure 3).

Figure 2. Fry's five key questions

B. Specify the ITSM Process Flow
When we have a diagram, provided by ITIL publications or as
a result of Fry’s process design methodology, we ought to
document it. We can use a notation like BPMN [17], EPC or
UML activity diagrams or another notation that allows the
process to consist in “a number of tasks [activities] which
need to be carried out and a set of conditions which determine
the order of the tasks” [16] in order to represent such process.
It should be noticed that when doing so, in the case of the ITIL
processes present in the ITIL publications, we could go a little
further and identify activities more granularly than those
provided, through the reading of the process details. For
instance, it makes sense

Figure 3. ITIL process to build an ITSM process

when assigning an incident a priority, to fetch the values of
urgency and impact of an incident, so instead of only having
an activity in the diagram named “Incident Prioritization” it
can make sense to have another two “extra” activities named
“Assess Impact” and “Assess Urgency”. However, in this
case, the person designing the process should carefully decide
upon such cases it might make sense to leave the process
“ITIL like” and increase the specification degree of activities
at an operation centric phase (Section III.C).

C. Identify Operations, Inputs, Outputs and Data Types
In order to get an operation-centric view of ITSM activities

within an ITSM process model, it is important to look at the
activities present in the process diagram and think in which
way can we subdivide them into logic operations, and how they
are organized and ordered within a specific activity.

In order to derive operations, inputs, and outputs from the
process diagram elements, it is important to take note of any
artifacts that can be represented as variables. For instance, ITIL
Incident Management and Problem Management processes
have a section in each process that lists and covers almost
every attribute for the main record types (Incident and Problem
records). We should also analyze what needs to be inputted and
outputted from the operations.

However not only the input/output data types and ITIL
process records (such as Incidents, Problems, Changes, etc.)
should be considered, some other data types might arise. For
instance, during the reading and analysis of some ITIL process
it is important to keep a record of actions made to that process
(e.g. change of owner, categorization, etc.) and evince other
data types that should be present (e.g. owner).

To help map and subdivide ITSM activities into operations,
cross-functional diagrams should be developed. Such diagrams

link activities (or sub activities) to interface operations, their
inputs and outputs, thus providing a global view of the relations
between the elements that constitute an interface, which then
can be used as a starting point for a revision and discussion that
should take place with project stakeholders.

Figure 4 shows a partial example of a cross-functional
diagram within the ITIL scope.

Figure 4. Portion of ITIL Incident Management process Cross
Functional Diagram

Within SAPO, more specifically within the Service
Delivery Broker (S.D.B. 2) team, we identified a need to
simultaneously define a generic ITIL conformant specification,
covering the specific needs of each client (SAPO internal
teams). The method found to deal with this need was to allow
an extensibility model within the data types of each process.

Let us take a closer look at the ITIL Incident Management
and Request Fulfillment processes as both have what is
denominated Incident or Request Models (Incidents or Service
Requests that are not new to the business, which occur
frequently, and need to be dealt consistently in order to meet
agreed Service Level Agreements [2]). Each model identified
by a client has its own set of attributes. For instance, let us say
that one of the request models is a model for a password reset
request, which has an old password attribute, however this
attribute is not needed in a model that deals with the register of

2 http://sdb.sapo.pt/en/index.html

new users since a new user did not have a password before.
Therefore a need for an extensibility model arises when
designing ITSM interfaces. One solution to deal with this is to
have an external specification (e.g., materialized in an XML3or
JSON4file) related to each incident or service request where the
user can define the “extra fields” needed for the different
incidents or service requests types.

Some types of records in ITIL specifications have a solid
base common to all of them. E.g., the ITIL Incident, the
Service Request and the Request For Change all have, at least
an ID, a summary, a categorization, an urgency, an impact, a
priority and a description, so it makes sense to have a base
record with all this information and make each of the ITIL
specific data types inherit from such base record. Ultimately,
the specification of such data types can be made via an
ontology, e.g., with OWL (http://www.w3.org/TR/owl2-overview/).

D. Discuss and Revise the Specification
During the final period of this work, specifications for the

Incident Management and Problem Management were
developed (using the described methodology), discussed and
reviewed with the SAPO S.D.B. Team. A specification was
developed and it served as the basis for the Request Fulfillment
internal implementation at the company. This implementation
consists of an API to answer to the ITSM needs of the
company, more specifically activities corresponding to the
Request Fulfillment ITIL process, which will be used as part of
S.D.B. service offering.

IV. EVALUATION
In addition to the reviews described in the previous section,

the methodology was continually evaluated from a
stakeholders and User eXperience (UX) point of view.

The methodology hereby presented was continuously
evaluated against the requirements presented from all
stakeholders, including the ITIL request models and specific
requirements from each team within the company.

The user interfaces were also evaluated against
requirements from the UX team within the company. Since the
interfaces are going to be part of a solution (a web application),
feedback from the UX team was needed, and every aspect that
would structurally change or impact an interface, or its design,
was discussed and, if needed, implemented.

V. CONCLUSIONS
We believe that this first scientific approach to ITSM

interface design can take the development of ITSM interfaces
(and the solutions they are a part of) to a whole new level. Not
only from an organizational costs perspective, but we hope that
this work can start a significant scientific discussion around
ITSM interface design.

This work promotes the reuse of ITSM interfaces,
contradicting the paradigm that each organizational entity
should develop or buy its living ITSM solution silo. Reusable
ITSM interfaces allow companies to improve and enhance the

3

http://www.w3.org/XML/
4

http://www.json.org/

functionality of their ITSM processes, since ITSM practices
implementation scan be shared with several consumers instead
of one ITSM solution for each. Hence, the improvements
identified for a party are identified to all improving the
experience and quality of service of the ITSM solution overall.

Despite the fact that this work was, initially and in its
essence, an exploratory academic project, it evolved to the
point where this methodology is currently being used as the
basis for the implementation of ITIL processes interfaces
within the company we worked with, and will likely be used by
a set of teams within the organization.

VI. ACKNOWLEDGEMENTS
We would like to thank to SAPO Labs5 and the CISUC IS
Group6, whom supported this work, as well as the S.D.B. team
that made each and every part of this work to be a reality.

REFERENCES
[1] OGC - Office of Government Commerce, “The official introduction to

the ITILService Lifecycle”, The Stationery Office, UK, 2007.
[2] OGC - Office of Government Commerce, “ITIL Service Operation”,

Stationery Office, UK, 2011.
[3] R. Pereira and M. M. da Silva, “ITIL maturity model”, CISTI, pp. 1–6,

2010.
[4] R. England, “Review of recent ITILstudies”, APM Group Ltd, 2011.
[5] I. Sommerville, “Software engineering”, International Computer Science

Series, PearsonBooks, 2010.
[6] G. T. Heineman and W. T. Councill, “Definition of a software

component and its elements”, Chap. 1 in “Component-Based Software
Engineering: Putting the Pieces Together”, Addison-Wesley, Boston,
MA, 2001, pp. 5-20.

[7] C. Szyperski, D. Gruntzand S. Murer, “Component software: beyond
objectorientedprogramming”, Component software series. ACM Press,
2002.

[8] S. Dudek, F. Uebernickeland W. Brenner, “Explicating technological
and organizationalinterfaces of modular IT service components to
support the process of IT service composition.”, Procs. Intl. Workshop
on Advances in IT Service Process Engineering, pp. 7—12, 2011.

[9] M. Fry, “ITILLite - A road map to full or partial ITIL implementation”,
The Stationery Office, UK, 2010.

[10] M. Papazoglou and J. Yang, “Design methodology for web services and
business processes”, Technologies for E-Services, LNCS, Springer
Berlin Heidelberg, vol. 2444, pp. 175–233, 2002.

[11] C. Videira A. Silva, “UML, Metodologias e Ferramentas CASE”, vol. 2,
Edições Centro Atlântico, 2005

[12] S. Kempter and A. Kempter, “ITIL implementation”, It Process Maps -
http://en.itprocessmaps.com, 2008

[13] J. Wang, “How to implement ITIL successfully?”, MSc Thesis,
JÖNKÖPING INTERNATIONALBUSINESS SCHOOL, 2010

[14] J. Huang, “Should you be bi-lingual as an IT outsourcing service
provider?”, eTOM and ITIL, BPTrends, January 2005

[15] W. van der Aalst and K. M. van Hee, “Workflow Management: Models,
Methods,and Systems”, MIT Press - Cooperative information systems,
2004

[16] The Object Management Group, “Business Process Model and
Notation”, http://www.omg.org/spec/BPMN/2.0/PDF/, 2011

[17] D. de Champeaux and P. Faure, “Object-Oriented System
Development”, 1993

[18] M. Nüttgens, T. Feld, and V. Zimmermann. "Business Process Modeling
with EPC and UML Transformation or Integration?.

5 http://labs.sapo.pt/

6 https://www.cisuc.uc.pt/groups/show/is

