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ABSTRACT 

Business process models are considered to be a good mechanism 

for communication among stakeholders and are a key instrument 

in the analysis and design of information systems. It is therefore 

important to design business process models with a high level of 

quality, which can be discovered through measurement 

application. Several measurement initiatives exist in the literature, 

but these measures are only useful in real world decision making 

if we also have criteria with which to establish the goodness of 

models. We consider that measures with thresholds and decision 

criteria form indicators. Indicators allow us to make decisions by 

using the values of the measures which models should not exceed 

to ascertain whether the model is good in practice. In this paper 

we present the initial empirical results from which thresholds for 

the Control-Flow Complexity measure applied in BPMN models 

have been obtained according to the Bender method. Our findings 

reveal that there are different levels of understandability 

depending on the number of decision nodes: a very easily 

understandable model would have no more than 6 xor nodes, 1 or 

nodes and 1 and nodes, versus the 46 xor nodes, 14 or nodes and 

7 and nodes which would constitute a model with a very difficult 

level of understandability. 

Categories and Subject Descriptors 

D.2.8 [Software Engineering]: Metrics – Process metrics 

General Terms 

Measurement and Experimentation. 

Keywords 

Business process, measurement, thresholds, indicators. 

1. INTRODUCTION 
Measurement is an important discipline in any type of 

engineering, and measurement activities are a good means to 

allow organizations to obtain useful information, and to help them 

plan and carry out improvement efforts [1]. Measurement also 

helps to provide objective information about process and project 

performance, process capability and product and service quality. 

Process capability is extremely important for organizations 

because “the quality of products and services is largely 

determined by the quality of the processes used to develop, 

deliver and support them”[2]. 

Several measurement initiatives with which to obtain information 

about process quality exist, most of which are shown in [3]. This 

study reveals that the majority are applied to conceptual models 

(approximately 77% of the initiatives studied) owing to the fact 

that models are used for process reengineering and other business-

oriented tasks. The study also reveals that business process 

measurement is still an immature subject as a result of limited 

empirical validation and the lack of thresholds with which to 

analyze measurement results. 

In this paper we contribute towards resolving the lack of 

thresholds for business process measures. Researchers have 

worked on thresholds for others disciplines and all of them agree 

on the importance of their definition. Henderson-Sellers 

emphasizes the practical utility of thresholds by stating that “an 

alarm would occur whenever the value of a specific internal 

measure exceeded some predetermined value”[4]. The idea of 

extracting thresholds is to use them to identify unsafe design 

structures, thus enabling engineers to gauge the threshold values 

to avoid obtaining hazardous structures [5]. The problem of 

determining appropriate threshold values is made even more 

difficult by many factors that may vary from experiment to 

experiment [6]. The identification of such threshold values, 

therefore, requires methods for quantitative risk assessment [7]. 

In order to deal with the issues identified above, in this paper we 

use a quantitative methodology based on the logistic regression 

curve (Bender methodology) [7] to extract thresholds for 

Cardoso’s Control-Flow complexity measure (CFC) [8] when 

applied to BPMN models [9]. This measure is described as 

follows: 

 

The value of  CFCAND-split(a) is 1 for each and-split in the 

process (since all the transitions from the gateway are executed in 

parallel, thus reaching the same state space when they are 
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finalized), the value of  CFCXOR-split(a) is calculated as the fan 

out of the split (since only one transition can be executed from it 

but could be any of the possibilities, so the reachable state space 

is therefore the sum of all the transitions), and the value of  

CFCOR-split(a) is the result of calculating 2n-1 where n is the fan 

out of the split (since the execution of the transitions could 

correspond to one, some, or all, so the state space corresponds to 

all the possible combinations between the transitions to be 

executed). The fan out of the split corresponds to the number of 

transitions that start from it. 

The statistical method used to extract threshold values is the 

“Bender method” defined in [7]. As a result, we obtained 

threshold values for the CFC measure, which constitutes an 

indicator, as was described in [10]: “an indicator is a measure that 

is derived from other measures using an analysis model with 

associated decision criteria, which are used to determine the level 

of confidence in a given result”. 

This paper is organized as follows. In Section 2 we describe work 

related to business process measurements and thresholds. In 

Section 3 the work method, results and the main lessons learned 

and implications regarding business process modeling, are 

explained. In Section 4 we present a practical example of using 

the thresholds discovered in BPMN models. Finally, in Section 5, 

we close with some of the conclusions drawn from this research. 

2. RELATED WORKS 
Various proposals concerning business process measurement can 

be found in the literature (see Table 1), but to the best of our 

knowledge there are, to date, no proposals in which  threshold 

values are defined.  

Some of the measures shown in Table 1 have been validated, and 

some practical usefulness has therefore been obtained. However, 

it is also important to know more about the decisions that will be 

made with the values of the measures.   

This aspect is more mature in the field of software process 

measurement, since some proposals concerning thresholds for 

well known software engineering measures already exist. 

However, there is no consensus on the threshold values for 

software measures and perhaps not even for what the best 

methods to use in extracting these values are. Some proposals for 

thresholds are derived from experience [24-26], but the lack of 

scientific support has led to disputes about their values. Some 

authors, on the other hand, have used statistical techniques to 

obtain thresholds. For example, Shatnawi [27] extracted 

thresholds for Object Oriented (OO) measures in order to study 

the relationship between OO and error-severity categories. In this 

research the author identified thresholds for Coupling between 

Objects (CBO), Response for Class (RFC), Weighted Methods 

Complexity (WMC), Depth of Inheritance Hierarchy (DIT), 

Number of Child Classes (NOC) and Lack of Cohesion of 

Methods (LCOM), that can be used to differentiate high-risk 

error-proneness classes in the ordinal categorization from the no-

error classes. The author also validated the Bender method, and 

found that there are effective thresholds for the measures 

analyzed. 

Another piece of research was carried out by Benlarbi et al [28]. 

The authors’ purpose was to predict which classes were likely to 

contain a fault through the use of Chidamber and Kemerer 

measures [29]. Their findings indicate that there is no value for 

the studied measures in which the fault-proneness changes from 

being steady to rapidly increasing. However, these results are only 

valid for the measures used by the authors, and other models may 

potentially lead to different results. In [30], the authors have used 

the Bender method and others to extract threshold values, and 

have compared the results of each method. They conclude that 

methods based on regression models are a useful tool with which 

to extract threshold values. The use of this method or of others 

depends on the available data. 

 Table 1. Measures for business process models 

Source Measurable Concept Notation 

Vanderfeesten et al 

[11], [12] 

Coupling, cohesion, 

connectivity level 

Petri net 

Rolón et al. [13] Understandability and 

modifiability 

BPMN 

Mendling [14] Error probability EPC 

Cardoso [15]  complexity Graph 

Jung [16] Entropy Petri net 

Gruhn and Laue 

[17], [18] 

complexity UML, 

BPMN, EPC 

Rozinat and van der 

Aalst [19] 

compliance model-logs Simulation 

Logs  

Laue and Mendling 

[20] 

Structuredness EPC 

Meimandi and 

Abdul Azim [21] 

Activity, control-flow, 

data-flow and resource 

complexity 

BPEL 

Bisgaard and van 

der Aalst [22] 

Extended Control Flow 

Complexity, extended 

cyclomatic metric and 

structuredness  

WF-net 

Huan and Kumar 

[23] 

Goodness of models’ 

respect execution logs 

Simulation 

logs  

3. APPROXIMATION OF THE 

THRESHOLD VALUES 
In this section, we describe the steps followed to obtain a first 

approximation of threshold values for the CFC measure. The 

experimental data used as input is that of the Bender method. The 

results are then obtained. Finally, we show some of the 

conclusions about the thresholds extracted in this work. 

 

3.1 Experimental Data 
The data input used to extract thresholds values has been 

generated in 3 experiments with the intention of evaluating which 

model factors affect the understandability of models described 

with BPMN. More details about these experiments are shown in 

[31] and a summary is presented in Table 2. 

The experimental material consisted of 15 BPMN models with a 

set of comprehension tasks. Each subject was evaluated according 

to the time taken, the number of correct answers and efficiency 

(relation between time and correct answers) when carrying out 
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these tasks. A personal opinion about how difficult it was to 

understand each model was also requested, with the subjects using 

a value of between 1 and 5, where 1 represented very easy and 5 

very difficult. Table 3 shows the CFC values for all 15 models, 

the median of personal opinion of all the subjects with regard to 

each model, and the median value between experiments. 

Table 2. Context of experiments 

Exp 1 Exp 2 Exp 3 

UCLM, Spain 

22 subjects (pre 

and post graduates) 

UCLM, Spain 

40 subjects 

(pregraduates) 

UCLM, Spain, 

9 subjects 

(postgraduates) 

Table 3. CFC value and subjective opinion for each model 
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1 0 0 0 0 1 1 1 1 

2 0 0 0 0 1 1 1 1 

3 2 0 0 2 1 1 1 1 

4 2 0 0 2 3 3 3 3 

5 4 0 0 4 3 2 2.5 2,5 

6 4 0 0 4 3 3 3 3 

7 5 0 0 5 2.5 2 3 2,5 

8 6 1 0 7 3 3 3 3 

9 8 0 0 8 3 3 3 3 

10 8 0 0 8 4 3.5 4 4 

11 9 0 0 9 3 3 3 3 

12 22 3 0 25 3 3 3 3 

13 18 6 1 25 3 3 3 3 

14 25 3 3 31 3 3 3 3 

15 23 9 1 33 4 4 4 4 

 

The personal opinion and the complexity of the models – using 

CFC values - are directly related. That is to say, the experimental 

subjects stated that the models were complex when these models 

had a high value of CFC. This means that the CFC measure is 

good at predicting the understandability of business process 

conceptual models. These results were extracted from a 

correlation analysis described in previous works [36]. 

3.2 Results of Bender Method 
The Bender Method has been used in “studies in which it is 

interesting to assess whether an explanatory factor has a threshold 

effect on a specific response variable” [7]. This method was 

created to find thresholds in epidemiological studies, but it can 

also be used in other fields, including software engineering [28, 

32, 33]. It is additionally possible to obtain thresholds of 

measures since this method assumes that the risk regarding an 

event which has occurred is constant below the threshold value 

and that it increases according to a logistic equation. For our 

calculations we used the experimental data of the 3 experiments 

defined previously in Table 3 in order to find threshold values that 

characterize the understandability of BPMN models.  

This method uses a logistic regression to determine (in this case) 

whether there is a significant relationship between measures and 

the understandability of conceptual models. A logistic regression 

model is used to describe the association between a binary 

response variable and a continuous risk factor [34]. The general 

logistic regression model is shown as follows:  

In this equation, g(x) is the logit (log odds) function (which is 

represented as g(x) = alpha + beta * x), x is the measure (in this 

case, CFC), and P(x) is the probability of a model being 

understandable. In our case the continuous risk factor would be 

the value of CFC in each model and the binary response would be 

the average subjective opinion of how understandable the models 

are. In our experiments this variable is not binary because it 

fluctuates between 1 and 5 but it can be converted into a 

dichotomous variable, signifying that it would be 1 when it was 

higher than the median and 0 when it was lower [35].   

Table 4. Alpha and Beta values of logistic regression equations  

CFC 
Experiment 1 Experiment 2 Experiment 3 

alpha beta alpha beta alpha Beta 

XOR- 

split 

1.731 -0.094 2.471 -0.091 1.736 -0.090 

OR-

split 

1.255 -0.282 2.073 -0.296 1.232 -0.242 

AND-

split 

1.005 -0.580 1.653 -0.436 0.988 -0.427 

CFC 

total 

1.622 -0.070 2.431 -0.071 1.630 -0.066 

Table 5. VARL values for CFC 

 P0 

% 

Experiment 

1 2 3 

XOR-

SPLIT 

30 9 18 10 

50 18 27 51 

90 10 19 44 

OR-

SPLIT 

30 1 4 2 

50 4 7 5 

90 12 14 14 

AND-

SPLIT 

30 1 2 1 

50 2 4 2 

90 6 9 7 

CFC 

TOTAL 

30 11 22 12 

50 23 34 25 

90 54 65 58 

 

The method defines a “value of an acceptable risk level (VARL)”. 

This value is given by a probability p0. This means that when 

measuring CFC values below VARL, the risk of the model being 
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non-understandable is lower than p0 (for example, p0=0.2). This 

value is calculated as follows:  

 

After applying the logistic regression, we obtained alpha and beta 

coefficients, which are needed to calculate thresholds. These 

alpha and beta values allowed us to obtain VARL values for each 

experiment through the application of the formula. Table 5 shows 

the acceptable threshold for CFCXOR-split, CFCOR-split, CFCAND-split, 

CFCtotal which can be interpreted as, for example, “if the CFCxor-

split value is lower than 9, the risk of the model being non-

understandable is lower than 30%” or “if the CFCOR-split value is 

lower than 4, the risk of the model being non-understandable is 

lower than 50%”.  

 

 

Figure 1.  Evolution of threshold values in each experiment for 

CFCXOR-split (top left), CFCAND-split (top right), CFCOR-split 

(bottom left) and CFCTOTAL (bottom right) 

Figure 1 shows the evolution of threshold values (x-axis) and the 

probability of considering models as non-understandable (y-axis). 

For example, Table 5 shows that for a CFCXOR-split value of 

approximately 18, there is a 50% of risk of the model being non-

understandable. The higher the CFCXOR-split value is, the higher the 

probability that the model will be non-understandable.  

Another research question is related to the fluctuation of values 

with regard to each different experiment (see Table 5). We believe 

that this might depend on the nature of the subjects. The 

experiments in which we obtained similar threshold values were 

experiment 1 and experiment 3, whose subjects were under- and 

post-graduate students (the same subjects in both experiments), 

compared with experiment 2, which was only composed of 

undergraduate students. It may seem odd that the models were 

easier for undergraduates to understand. 

We formulated the hypothesis that their limited experience in 

process modeling led them to overestimate their own capabilities. 

This led us to compare the efficiency of each of the groups of 

subjects to test this hypothesis. Efficiency in experiment 1 is 

0,0328, in experiment 2 is 0,027 and in experiment 3 is 0,0285. 

These values show the average efficiency of subjects in carrying 

out the understandability tasks. A higher efficiency value indicates 

that the subjects produce more correct answers in a shorter 

amount of time. In this case, the group of subjects who seemed to 

find it easier to understand the models is that which made most 

errors in practice, demonstrating the theory of over-capacity for 

undergraduate subjects.  

3.3 Discussions and Implications 
After applying the Bender method we obtained threshold values 

which are resumed in Table 6 (average threshold value of all 

experiments with decimal rounding). In this table, we consider the 

different levels of understandability of models depending on the 

number of decision nodes. For example, a business process model 

which is considered “easy to understand” would have no more 

than 12 xor nodes, 2 or nodes and 1 and nodes: 

Table 6. Levels of understandability 

Levels of 

understandability 

CFCXOR-

split 

CFCOR-

split 

CFCAND-

split 

1 Very easy to 

understand 

6 1 1 

2 Easy to 

understandable 

12 2 1 

3 Moderately 

understandable 

22 6 3 

4 Difficult to 

understand 

31 9 4 

5 Very difficult to 

understand 

46 14 7 

 

Extracting thresholds for CFC measures has helped to establish 

guidelines concerning the modeling of business processes in terms 

of using decision nodes. With regard to OR-split type decision 

nodes, the threshold value is 14, which means that business 

process models are understandable if they contain no more than 3 

OR-split nodes. The threshold values of AND-split type decision 

nodes is about 7, which means that an understandable model 

should have no more than 7 AND-split nodes. On the other hand, 

CFCXOR-split values are calculated by taking into account a fan-

out of these values and, assuming that the average value of a fan-

out is 2, an understandable model should have no more than 23 

XOR nodes. One important aspect in extracting thresholds is that 

it depends on the subjects’ cognitive ability. This signifies that 

threshold values fluctuate depending on the stakeholders’ 

previous knowledge and experience in modeling and on the 

business process domain. Our work was based on human subjects 

with rather weak theoretical knowledge (under- and post-graduate 

students) and this may have caused some undesirable effects when 

obtaining the thresholds (overestimation of the capabilities, low 

efficiency in the work, etc). 

4. PRACTICAL APPLICATION 
In this section we present two examples of the application of the 

aforementioned results and their evaluation, based on business 

process decision nodes. Both selected models (see Figures 2 & 3) 

have the same size but they differ in the number and type of 

decision nodes (size is calculated as the number of nodes: events, 

tasks, sub-processes, decision nodes and data objects). In these 

models we use abstract labels in tasks in order to avoid adding to 

the complexity caused by the business domain. The results of 

CFC measures in model 1 from Figure 2 are as follows: CFCXOR-

split = 11   CFCOR-split = 2   CFCAND-split = 3 CFCTOTAL = 16. 

The specific result of CFC may indicate the complexity of this 

model (from a decision node perspective). In order to extract an 
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evaluation of the complexity of this model we use the average 

threshold values obtained in the previous sections: 

 CFCXOR-split = 11  there is a probability of 21% that the 

model will be non-understandable 

 CFCOR-split = 3  there is a probability of 25%  that the model 

will be non-understandable 

 CFCAND-split = 3  there is a probability of 42% that the model 

will be non-understandable 

 CFCTOTAL = 16  there is a probability of 24% that the model 

will be non-understandable 

 

Figure 2.  Example model 1 

 

Figure 3.  Example model 2 

The first model illustrates a low complexity related to decision 

nodes, specifically in the second level of understandability (easily 

understandable) and it is therefore possible that stakeholders will 

find this model easy to understand. On the other hand, Figure 3 

shows another example of a business process model in which the 

CFC value is higher. 

The CFC values for model 2 in Figure 3 are the following: 

CFCXOR-split = 18   CFCOR-split = 7   CFCAND-split = 4 CFCTOTAL = 29 

These values can be used to obtain the following conclusions 

about the model: 

 CFCXOR-split = 18  there is a probability of 24% that the 

model will be non-understandable 

 CFCOR-split = 7  there is a probability of 48% that the model 

will be non-understandable 

 CFCAND-split = 4  there is a probability of 54% that the 

model will be non-understandable 

 CFCTOTAL = 29  there is probability of 42% that the model 

will be non-understandable 

The second model is in third level of understandability, 

“moderately understandable”. It has more decision nodes, and this 

leads to an increase in the probability of finding the model non-

understandable. If both models are compared, then the first is 

considered to be better because it has a lower level of difficulty of 

understandability. In consequence, if the size is kept constant, 

factors relating to complexity seem to be the most significant. 

After analyzing these models we deduced that the number and 

type of decision nodes are directly related to complexity. 

Although other factors should also be considered, it is possible to 

use the CFC measure to check the complexity of BPMN models, 

which implies that there is a starting point for improvement. 

5. CONCLUSIONS AND FUTURE WORKS 
In this paper we have investigated threshold values for business 

process measures and Cardoso’s Control-Flow complexity 

measure. We have used the Bender method to extract threshold 

values. Our findings demonstrate that it is possible to obtain 

thresholds for the CFC measure by following the Bender method. 

We obtained different threshold values for each experiment but 

we believe that this may have been as a result of the experimental 

subjects’ different theoretical and practical backgrounds. In this 

case, all the subjects received the same introductory course to the 

BPMN notation, but their background in other similar modeling 

languages may have affected the results. Our findings reveal that a 

business process model should have no more than 31 decision 

nodes if an increased difficulty in understanding is to be avoided. 

There should be about 22 xor decision nodes, which are those 

most frequently used in BPMN models, while no more than 6 or 

decision nodes and no more than 3 and decision nodes should be 

used. 

In future research we will enlarge the validation of these threshold 

values by applying them in new experiments with human subjects 

with different backgrounds and knowledge. Moreover, it would be 

interesting to apply this method to other business process 

measures in order to obtain a group of indicators, because 

measuring the complexity of models requires consideration of 

many aspects that are not covered with a single measure, as in this 

case is the analyzed measure, CFC. These indicators might serve 

as a useful guide to obtain high-quality conceptual models. 
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