Integrating Business Process and User Interface
Models using a Model-Driven Approach

Renata Dividino*, Veli Bicer!, Konrad Voigt'and Jorge Cardoso*
* ISWeb Research Group University of Koblenz-Landau
Email: dividino@uni-koblenz.de
T Forschungszentrum Informatik an der Universitit Karlsruhe (TH)
Email: bicer@{zi.de
YSAP Research CEC Dresden
Email: {konrad.voigt,jorge.cardoso} @sap.com

Abstract—Business services are complex entities that encom-
pass descriptions about different aspects including business
processes and user interfaces. Typically, the modeling of business
services results on several correlated models. On the one hand,
there is the need to keep these models apart in order to attain
the levels of abstractions needed to model different aspects of
a service. On the other hand, it is important to maintain the
consistency and integrity of models. In this paper, we show how
to maintain the consistency and integrity of models and present a
use case for the integration of user interface design and business
process models.

Index Terms—Service Engineering, User Interface Design,
Model-driven Engineering, Business Process Integration.

I. INTRODUCTION

The Internet of Services brings a set of new challenges for
the research community. One of the challenges that needs to
be handled is the complexity associated with the modeling of
real-world or business services. Services are complex entities
that encompass descriptions about business processes, user
interfaces, pricing models, legal constraints, knowledge assets,
technological infrastructures, business rules, etc. One approach
to manage the lifecycle of a service multifaceted structure is to
distill it core characteristics into formal models and afterwards
align and integrate the models. This paper describes how a
model-driven approach can be used to model and maintain
the consistency and integrity of business processes models
(which describe services’ internal behavior) with service user
interface models. While a service is typically composed by
several models (up to 20 in our research [3]), we demonstrate
the feasibility of our approach using only two models, which
takes parts on the traditional design of the user interface (UI)
and business processes, since it provides a concrete list of the
major steps to take.

As a use case, we deploy a business service and model
its underlying business process model. The business service
is called EcoCalculator Service (ECS) and its main objective
is to calculate the ecological value (eco value or EV) of
products (e.g. car parts such as car sits) according to European
directives and worldwide environmental regulations. We show
the business process modeled with BPMN [1] showing the
set of activities that needs to be carried out when the ECS
is invoked by a customer, and the UI dialogue modeled

with DIAMODL [2] which illustrates the user interaction. In
addition, to provide support for business services modeling
integrated with user interface design, we extend the modeling
languages BPMN and DIAMODL, and implement integration
rules in order to provide support for business process modeling
integrated with UI design.

II. ISE METHODOLOGY FOR SERVICE ENGINEERING

In this section we cover our approach for service engi-
neering, called ISE (an acronym for Inter-enterprise Service
Engineering). First we introduce the service engineering dis-
cipline, describing its main aspects. This is followed by an
overview of ISE, describing how the methodology applies
Model Driven Engineering (MDE) in order to provide an
integrated framework and implementing workbench.

A. Service Engineering

Service engineering (SE) [3] is a new approach to the design
and implementation of services. Typically services evolve in
a common ecosystem in which organizations and IT provide
value in form of services. SE provides methodologies to
cope with the complexity of several business actors and their
interaction. Furthermore, SE specifies tools for implement-
ing and deploying services, covering both, IT and business
perspectives. Consequently, SE is a structured approach for
creating a new (e-)service [3]. Approaches should translate an
initial abstract description (e.g. natural language), through a
sequence of representations, to a technical standard-based rep-
resentation. The ISE methodology, described in the following
section, addresses exactly the creation of new services using
a guiding methodology.

B. ISE Methodology

In the context of the TEXO project!, the ISE methodol-
ogy [3] and accompanying workbench for service engineering
was implemented. Compared to other approaches, the ISE
methodology considers a technical perspective as well as
a business and operational perspectives. Since the notions

ITEXO Business Webs in the Internet of Services (http://theseusprogramm.
de/scenarios/en/texo)

4—— Dimensions —m888™8™8 ™

(orcton) [“roome) ((tes) (o) ((me)

@] ProcessMap ‘ RoleMap || || H
owsa] (2 |][]

Perspectives ——»

Technical | | | ‘ |

Fig. 1. ISE Matrix with separation into dimensions and perspectives,
corresponding models, and exemplary transformations for Ul and business
processes models

of abstraction (perspective) and dimensions (entities) were
important for our approach, we have followed a solution based
on the Zachman framework [4]. ISE combines this business
approach with the concepts of Model Driven Engineering
(MDE) [5].

Figure 1 shows the ISE framework which is part of ISE
methodology. Inspired by Zachman framework and following
the separation of concerns paradigm raised by [6], it divides
and structures services into four main perspectives and five
dimensions. The dimensions are: service description, work-
flow, data, people and rules. Figure 1 presents a reduced view,
showing only the models relevant for this paper. Furthermore,
each of these dimensions is divided into four perspectives
(layers) of abstraction. Each of the perspectives of the ISE
methodology can be regarded as a phase in the development
(model refinement) of services. Thus, the models which are
assigned to each layer support the development from different
viewpoints (i.e., scope, business, logical, and technical). Ad-
ditionally, models at different dimension but belonging to the
same layer are integrated/binded to others in order to form
the complete business service model at the respective level
of abstraction. For all cells of the matrix, we have defined
formal models which should be considered in the service
development. Examples of models include UML, mind maps,
BPMN, BPEL, OWL, DIAMODL, etc.

Therefore, ISE act as an integration platform for several
models stored in cells of the framework. Throughout one
dimension, models are created with respect to different views
and refined until they conform to a technical specification. This
leads to multiple representations of information on different
layers of abstraction in the corresponding dimensions. Changes
in one model have to be propagated into related models
holding overlapping information (depicted by arrows in Figure
1). We divide the dependencies between models into two
classes: (1) Vertical dependencies cover the synchronization
of dependencies between models on different layers of ab-
straction in one dimension. (e.g. BPMN and BPEL) and (2)
Horizontal dependencies define the synchronization of models
on the same layer of abstraction. (e.g. BPMN and DIAMODL).

These dependencies requires the integration of models. We
have adopted a model transformation from MDE to allow
for an automatic support of integration. Based on a common

formal representation (e.g. MOF), a domain specific language
for model transformation can be used to define rules and apply
them to the models, in order to generate elements from a
source model to a target model automatically. ISE uses for
model integration the the Query, View and Transformation
(QVT) technique. We have chosen to rely on QVT because
of matured concepts, well established infrastructure for model
management and transformation, and available OMG stan-
dards. The integration is again depicted in Figure 1 using
arrows. In the following sections we will show how such
integration can be done.

III. BUSINESS PROCESS MODELING WITH UIS

In this section, we describe the theories for UI design and
business process modeling used in this work, and introduce
the DIAMODL and BPMN modeling languages.

A. User Interface Design and DIAMODL

A widely accepted principle of methodologies on UI design
[7], [8], [9] is the separation (so called modeling in layers)
of concerns with respect to the modeling of the structural,
behavior and presentational aspects of Uls. In terms of
ISE, structural aspects are included at the scope, business
dimensions; behavior aspects at the logical dimension; and
presentation aspects at the technical dimension. The main
idea of the traditional delineation between structure, behavior
and presentation (with additional layers of granularity) is to
describe the full set of issues and considerations involved in
more complex forms of interactive Uls.

Behavioral aspects mainly describes interactive qualities of
the UI, i.e. how users and systems cooperate to perform the
desired operations. Interactions can be modeled as a dialogue
where operations that allow users to exchange message with
the interface are defined. The Ul is used as an communication
channel for the user to exchange message with the system.
Note that this layer acts as a glue bringing together system
and interface (users).

Within the ISE methodology, behavior aspects of an Ul
are modeled using the DIAMODL notation. The DIAMODL
notation proposed by [2] offers interactors-with-gates (i.e.
states-with-transitions) interface component abstraction and
the hierarchical state formalism statecharts for describing the
UI’s behavior. DIAMODLs five core elements are:

o Interactors. Interactors represent a distinct context for
behaviors of the UI, such as an “input” state and an
“output” state.

e Gates. Gates determine how to interpret states i.e. they
model the actions associated with a state, and each state
can be associated with anther state through connections.

e Connections. Connections are directed associations be-
tween any two states that dictates under what conditions
(“triggers”) the UI shifts from the first context (state) to
the second.

o Variables. Variables are used for holding a resource (data
value) and its contained structure.

o Computations. Computations enable message exchanges
among Ul components, and between a Ul component and
an interactive system.

Figure 2 presents a simplified DIAMODL model for the
ECS example. The main input of the ECS is the identification
of the part (product) for which the EV will be calculated. The
user inputs the PID-value (fextInteractPID) which is internally
stored in a variable (PDI). When the user clicks on the OK
button (buttonInteractor), the PID-value is sent to the system.
Since the calculation of EV is highly dependent on directives
and environmental regulations holding for the country in where
the product is built and/or exported to, the country name has
to be be specified by the user (combolnteractorCountry) —
as default value the European directives are considered. This
information is forwarded to the system which calculates the
respective EV and returns it to the user (fextInteractorEV).

textInteractorPID

PID:String String PID:text
String
String
Boolean
buttonInteractor
Boolean

buttonOK:button

combolnteractorCountry
Boolean

Country:combo

Country:String String

textInteractorEV

String

Boolean Resutls:text

String

Fig. 2. DIAMODL model for the ECS

B. Business Service Choreographies and BPMN

Modeling business processes, at a high level, requires the
specification of the involved parties and process flow according
to business objectives of the service. Within ISE methodology,
the Business Process Modeling Notation (BPMN) is adopted
to address this need. It is one of the well-known languages that
aims to specify business processes at a high-level, rather than
as executable workflows. It provides a modeling mechanism
with a standard visual representation to create business process
models and abstract the complexity of the process-level service
design. According to BPMN specification [1], there are four
types of core elements that helps to define processes:

e Flow Objects. These are the main graphical elements to
define the behavior of a process model. They mainly
includes events, activities, and gateways. Events indicate
the triggers that occur during the course of the pro-
cess. BPMN distinguishes start events and intermediate
events as two kinds of event consumption whereas end
events are only used for event production. Start events
lead to process instantiation and intermediate events are
consumed by a running process instance. Furthermore,
activities are generic constructs to represent particular
actions (e.g. tasks and sub-processes) to be performed in

process. Gateways, on the other hand, are used to control
splits and joins in the process flow.

e Connecting Objects. Connecting objects are used to link
flow objects and other elements. There are three ways to
connect elements which are: sequence flow, message flow
and association.

e Swimlanes. Swimlanes are elements to represent the
boundaries that exist in a process model due to the
inter-organizational nature of business processes. The top-
most swimlane element is the pool which categorizes and
encapsulates the activities performed by an organization
entity or a system. A pool can then be partitioned into
lanes.

o Artifacts. Artifacts are used to provide additional informa-
tion about the process such as annotations or data objects.

Figure 3 shows core BPMN elements used to model the
business process of the ECS. The service starts with the PID-
value input. The first two activities to be executed in parallel
are the Loader (Data Service) and Process Logging. The
Loader retrieves the BOM (bill of material) based on the PID
supplied by the consumer. In parallel, the Process Logging
activity writes log information indicating that a process in-
stance has started. Once those two activities are completed, the
process model checks if the BOM has information describing
all the subparts. Additionally, it checks if the name of a
country is specified in which regulations will be used for the
computation of the EV. If no information is missing, the EV
is computed and Billing, Payment, Performance Analysis and
Logging activities are executed. For reader’s convenience, Ul
part is also shown as illustrations of the components. Intu-
itively, this graphical notation of BPMN essentially provides
a special kind of flowchart incorporating constructs tailored to
business process modeling. Although it is quite useful in this
sense, there is a lack of elements to model constructs specific
to UI models.

C. DIAMODL and BPMN Synchronization Requirements

In view of service engineering requirements, both service
business process and user interaction contribute to the exe-
cution of a service to perform its functionality for a desired
outcome. They contribute to the design from different angles,
but need to be in synchronized in order to result in a coher-
ent execution after service deployment. The common action
units for both models are the activities. In DIAMODL, they
correspond to the interactors and computations considering
their assignment to a user or system, respectively. In BPMN,
activities are either tasks, or subprocesses. However, BPMN
does not explicitly state by whom an activity is performed,
and accordingly no distinction of activity types (i.e. user or
system). As expected, each model assess the other’s activities
in a black-box manner — i.e. DIAMODL computation repre-
sents the whole business process activities and BPMN tasks
standing for user activities and interactors.

Intuitively, the execution of activities from start to end in
both models are event-driven. Although the activities lead
to accomplishing overall service goal separately in business
process and UI, their flows need to be aligned to fit each

Result

Eco value: EV

Country

Status
Product ID Invalid BOM
Ei PID
et Status
Valid BOM

Select Country

ECS

[Evenl Start

EPOOI

[Task

@ . I:Even(: Invalid BOM
ST

Eco Value
Calculation
[Subprocess

[Event:E\/ I:Everiz Error

=lo
2o

[Evenl End

I:Evenl Additional Info Billing/
Payment

Performance
Analysis

Process
Logging

Fig. 3.

other. In Figure 3, this is illustrated using dashed lines between
the UI components and business process elements. First, the
UI needs to be aware of the state of the business process
in order to set its behavior. This include switching from one
interactor to another depending on the state. More importantly,
the business process is bound exactly to the events triggered by
UI with the intention of avoiding non-deterministic behavior.
In other words, the business process must ensure that an
event occurring during its execution is properly handled by the
corresponding Ul elements in the case of a human involvement
is needed. Therefore, we consider an event-based coordination
to achieve the synchronization between two models.

However, utilizing such a synchronization (by means of
model transformations as detailed in the next section) requires
both models to be semantically equivalent in terms of mod-
eling events. Considering the current state of DIAMODL and
BPMN specifications, we distinguish three important points
that need to be addressed:

o Events in DIAMODL. DIAMODL threats events implic-
itly as parts of other components such as computation ob-
jects or interactors. Computations support communication
and synchronization with internal and external entities.
However, even though computations explicitly state who
are the participants of the dialogue, they do not define
explicitly which are the events and event-types to be
catched/thrown and the event-conditions-rules holding in
the dialogue. In order to utilize their consumption and
production with business process events, events triggered
within computations need to be explicitly defined as a
part of a model.

e Events in BPMN. BPMN comes with a rich set of event
types. However, it does not have the capability to express
different levels of events, i.e. specifying events only to be
consumed by UL This is required since a business process
can interact not only with UI, but also with other business
processes in a BPMN model.

o Two-way synchronization. According to ISE methodol-
ogy, both models are designed separately as a part of
different service aspects. This confronts the requirement

BPMN model showing core elements and interactions with Ul components

of capturing the common information in both models and
adapt them for synchronization. A declarative technique
(e.g. QVT) is needed to be implemented for model
transformations.

IV. INTEGRATION OF UI ORIENTED METHODOLOGY

We extend two well-accepted existing languages, the BPMN
and DIAMODL, in order to have equivalent well-defined
semantic in terms of modeling events. Furthermore, we show
the synchronization between both models by means of models
transformation algorithms.

O N R

One-Way

Request-Notification

Request-Response

Fig. 4. Matching interactions between DIAMODL and BPMN

A. Extension for the DIAMODL Notation

Following the requirements described in Section III, we pro-
pose a three refinements of the computation component. First,
we differ between internal computation and external com-
putation components. Internal computations are value-based
mapping functions holding among UI components. External
computation, however, are value-based mapping functions
holding between Ul components and an interactive system
(as network services). For this purpose, external computations
must include the description of endpoints and their messages
regardless of what message formats or network protocols

are used to communicate. In addition, when more than one
external computation hold a dialgue with a service in which
inputs and outputs are dependent from each other, external
computation should define the message sequence flow, e.g. de-
fine which message should be processed first (start-message),
which are the intermediate ones (intermediate-message), and
the last one (end-message) before closing the communication
channel. The symbols for internal and external computation
are shown in Figure 4.

Second, computation components include event-triggers. We
define three types of event messages: response, notification
and error. Based on these message types, we specify a cate-
gorization of event triggers into catching and throwing events.
Additionally, event trigger are sub-divided in interaction types.
Throwing events’ interaction types are: (1) One-way - an
operation that only sends an input (2) Request-response - An
operation sends a request, then waits for a response or an error
(3) Request-notification - An operation sends a request, then
waits for the message notification or an error. Catching events
are responsible for the reception of messages. Analogous to
the throwing events, we define one-way, request-response, and
request-notification interaction types for catching events.

At last, computations are extended with Event-Condition-
Action (ECA) rules which automatically perform actions in
response to events provided that stated conditions hold. ECA
rules introduces reactive functionality to computations, and
thus allowing computations to determine the direction of the
dialogue flow based on a single rule. Example 4.1 shows a
ECA rule for a notify-response-like message exchange. One
direction is specified for the dialogue flow when the event-
message is of type notification, and a different one for error

messages.
Example 4.1: ECA rule for notify-response—like message
exchanges

ON input-event
IF input-event.type == NOTIFICATION
DO goAssociation.sourceNode = compEx

B. Extension for Business Process Modeling Notation (BPMN)

The aforementioned BPMN events (e.g. start, intermediate
and end) provide basic functionalities that allows to interact
with the UI during the execution of a process. However, a
BPMN event only provides one specific functionality such as
receiving or sending a message (differentiated by black-white
colors in Figure 4). Therefore, only one-way interactions can
be represented with the current semantics of events stating that
an event is either receiving or sending a message.

Since we want to match different event-type computations
with BPMN events for a seamless interaction, there is a need
to associate more than one event activity to the other types
of interaction. For this, we use the idea of event patterns and
introduce an event conjunction pattern as a container to include
more than one event for a new abstract event (more patterns
for complex events can be found in [10]). In Figure 4, this is
shown using a dashed-line around two sending and receiving
message events. Strictly speaking, an event conjunction pattern

transformation DiamodI2Bpmn(dia:diamodl, bpmn:bpmn)

{

top relation Comp2Activity {
domain dia c:Computation{
name=nm, type = ‘external’ }
domain bpmn a:Activity{ name=nm }
wheref{
if (c.interactionTyp="0’) transOneway(c,a)
elif (c.interactionTyp="N’) transNotification(c,a)
elif (c.interactionTyp="R’) transResponse(c,a)
endif; }
}

relation transResponse(c,a){
domain dia c:Computation{}
domain bpmn a:Activity{
activityType="EventConyj’,
subEvent sa1:Activity{},
subEvent sa2:Activity{}

here

s -~

—~

setSubEvents(c, a);
}
}

helper setSubEvents(c:Computation,a:Activity)
(-}
}

Fig. 5. A fragment of transformation between DIAMOLD and BPMN in
QVT syntax

is just a container intended to be represented in formal syntax
of the model, because the events can be interleaved. For
example, the start and end events of the process can be in the
same container, matching the whole process to a computation
(request-response) in DIAMODL.

C. Synchronization between Models

Finally, a QVT-based model transformation is used to syn-
chronize the models during service design. Figure 5 shows
a fragment of the transformation using the QVT syntax. It
should be noted that the transformation is defined based on
the corresponding meta-models defined according to Eclipse
Modeling Framework? (EMF) specification. The actual map-
ping between the computations and events are handled by top-
level Comp2Activity relation. It is specified on two domains of
types Computation (c) and Activity (a). A pattern is applied
on Computation to check whether it is external or internal —
i.e. only external ones are mapped. Additionally, we correlate
the matching elements by their names with an assumption that
elements are uniquely labeled in both models.

In BPMN meta-model, all elements belong to a generic
activity class, that is further specialized by their activityType
attributes. This is achieved using three additional sub-relations
that are called in the where clause based on the interactionType
of the Computation. Due to space limitations, we only show
the transResponse relation that maps a request-response type

Zhttp://www.eclipse.org/modeling/emf/

Computation to an event conjunction pattern. It is introduced
as a new activity type (i.e. EventConj) in BPMN meta-model
which involves one or more sub-events.

V. RELATED WORK

The need of modeling human user interaction within pro-
cess modeling reflect the increase of recent work on this
area. In [11] and [12], the authors use the standard process
modeling language BPMN for both modeling processes and
task modeling, and DIAMODL for modeling the UI structure
and behaviour. The authors propose a refactoring process of
the original BPMN model as an intermediary step in order to
be synchronized with the DIAMODL model. This refactoring
process aims to make explicit what each user does and how
it interacts with its environments. However, they not specify
how the exchange of message-event and data is conducted.
In [13] and [14], the authors use a less formal Ul model and
couple to the BPMN when the business process is used as
a starting point for the UI design. Ul models and business
process models are alignments with business requirements. On
the one hand, it is not clear how the business requirements are
collected, neither how the alignment of the models is carried
out. In our approach we propose the alignment of the models
following business requirements which, in turn, are defined
in perspectives/dimensions following a formal methodology.
We still keep the independence among models, so that we
assure, for instance, that one business process model can be
coupled with different UI behaviour models (which focus on
the interaction regardless the environment considered). In [15],
the authors apply a model-driven approach that derives Uls
from business processes in order to keep the traceability
of the business process and the UIl. The authors make use
of task models to bridge business process and UI design.
In [16], the authors describes the design of user interface for
a Web service based on the WSDL (Web Service Description
Language) description. For the UI design, they have developed
a new UI specification language and the associated authoring
environment, which can be used for the abstract and concrete
UI definition. Operations and data types defined in WSDL are
bound to the UI model.

VI. CONCLUSION

Service engineering converges into a complex task of mod-
eling business services involving various aspects to specify
both execution and usage of services. Typically, the modeling
process of business services results on several correlated
models. On the one hand, there is the need to keep these
models apart in order to attain the levels of abstraction to
model different aspects of a service. This is mostly due to the
fact that incorporating different models for different aspects
of the service enables the separation of concerns during the
design while attaining a staged development to evolve the
service idea into an executable artifact. On the other hand,
it is important to maintain the consistency and integrity of
business processes models.

The ISE methodology for engineering services supports
the modeling of business services based on perspectives and

dimensions. This methodology directly meets the requirements
of the independence of models, which however should be
aligned and integrated. In this paper, we demonstrate the
feasibility of our approach using only two models which takes
parts on the tradition design of the user interface and business
process of a service. To make the relationship between busi-
ness process and UI models explicitly, we extend two well-
accepted existing languages: the business process modeling
language BPMN, and the user interface dialogue language
DIAMODL with new event-based components, and implement
model-driven transformation rules in order to provide support
for business process integrated with user interface design. The
extension of both models was necessary to focus on aspects
of communication and synchronization.

Our future work aims to complete transformation rules of
the ISE matrix and, thus, study in more detail the relationship
between all models. Additionally, we plan the evaluation of
ISE workbench for guiding independently improvements on
the modeling languages at each perspective and dimension.

ACKNOWLEDGMENT

This research was funded by means of the German Federal
Ministry of Economy and Technology under the promotional
reference 01MQO7012. The authors take the responsibility for
the contents.

REFERENCES

[1] J. Cardoso, K. Voigt, and M. Winkler, “Service engineering for the
internet of services,” in Enterprise Information Systems X, 2008, pp.
17-25.

[2] S. White, “Introduction to BPMN,” IBM Cooperation, pp. 2008-029,
2004.

[3] H. Traetteberg, “A hybrid tool for user interface modelling and proto-
typing,” in CADUI’06. Bucharest, Romania: Springer, 2007.

[4] J. A. Zachman, “A framework for information systems architecture,”
vol. 26, no. 3. NIJ, USA: IBM Corp., 1987, pp. 276-292.

[5] T. Stahl and M. Vélter, Model-Driven Software Development: Technol-
ogy, Engineering, Management, 1st ed. Wiley&Sons, 2006.

[6] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules.” NY, USA: Springer, 2002, pp. 411-427.

[7]1 B. Baxley, “Universal model of a user interface,” in DUX ’03.
USA: ACM, 2003, pp. 1-14.

[8] J. J. Garrett, The Elements of User Experience: User-Centered Design
for the Web. CA, USA: New Riders Publishing, 2002.

[9] L. Constantine and L. Lockwood, Software for use: a practical guide to

the models and methods of usage-centered design. NY, USA: ACM,

1999.

A. P. Barros, G. Decker, and A. Grosskopf, “Complex events in business

processes,” in BIS, ser. LNCS, vol. 4439. Springer, 2007, pp. 29-40.

H. Traetteberg, “UI Design without a Task Modeling Language — Using

BPMN and Diamodl for Task Modeling and Dialog Design,” in HCSE-

TAMODIA ’08. Berlin: Springer, 2008, pp. 110-117.

H. Tratteberg and J. Krogstie, “Enhancing the usability of bpm-solutions

by combining process and user-interface modelling,” in PoEM, 2008, pp.

86-97.

N. Sukaviriya, V. Sinha, T. Ramachandra, and S. Mani, “Model-driven

approach for managing human interface design life cycle,” in MoDELS,

2007, pp. 226-240.

N. Sukaviriya, V. Sinha, T. Ramachandra, S. Mani, and M. Stolze, “User-

centered design and business process modeling: Cross road in rapid

prototyping tools,” in INTERACT (1), 2007, pp. 165-178.

K. S. Sousa, H. M. Filho, and J. Vanderdonckt, “Addressing the impact

of business process changes on software user interfaces,” in BDIM, 2008,

pp- 11-20.

F. Paterno, C. Santoro, and L. D. Spano, “Designing usable applications

based on web services,” in I-USED, ser. CEUR Workshop Proceedings.

CEUR-WS.org, 2008.

NY,

(10]

(11]

[12]

[13]

[14]

[15]

[16]

