
339

1

Abstract— One fundamental property that critical Web

services need to provide is a high level of availability. Along with

the development of Web services, considerable technological

advances are being made to use the semantic Web to achieve the

automated processing and integration of data and applications.

This paper describes the implementation of the Whisper

architecture. This architecture semantically integrates Web

services with a peer-to-peer infrastructure to increase service

availability. Whisper achieves transparent fault-tolerance by

automatically forwarding Web service requests to semantically

equivalent peers that are dynamically located, selected, and

invoked.

Index Terms— Semantic Web, Web Services, Peer-to-Peer,

Fault-tolerance, Bully algorithm

I. INTRODUCTION

HE vision of Service-Oriented Architectures (SOA)

promises a new paradigm providing an extremely flexible

approach for building complex information systems. Service-

oriented architectures can rely on Web services to allow a

more efficient integration of applications and improve the

accessibility of business processes for customers and partners.

Current Web service specifications [1] do not provide

support to handle service failures and prevent service

downtime. It is therefore indispensable to start developing

solutions to increase the fault tolerance of SOA based on Web

services. The purpose of our work is to provide a transparent

approach to enable a significant increase in the availability of

Web services.

In this paper we describe the design and implementation of

our fault-tolerant architecture called Whisper. We use

emerging technologies, such as the semantic Web, Web

services, and peer-to-peer (P2P) networks, for building the

next-generation of service oriented systems. Currently, these

three technologies constitute the most promising solutions for

distributed computing and their importance has been

recognized in several major conferences (e.g. ISWC 2005,

WWW 2005, ICWS 2005, and P2P 2005). The specific

contributions of this paper are: (i) the design of a fault-tolerant

architecture which relies on the semantic integration of

Manuscript received January 10, 2006.

J. Cardoso is with the Department of Mathematics and Engineering,

University of Madeira, 9050-390 Funchal, Portugal (phone: 291-705-156;

fax: 291-705-199; e-mail: jcardoso@uma.pt).

semantic Web services and a peer-to-peer infrastructure, (ii)

the semantic specification of Web service, peer interfaces and

peer advertisements.

II. WEB SERVICES, JXTA ARCHITECTURE, AND FAULT

TOLERANCE

Web service computing is still in an evolving state and

much research needs to be done to overcome complex issues

such as fault-tolerance and availability. Whisper architecture

addresses precisely these limitations. It consists on the use of a

P2P infrastructure that implements fault-tolerant mechanisms

to insure a high degree of availability of peers that are

responsible for executing Web services invoked by clients.

A. Do Web services support fault-tolerance?

Web services do not support or make available any support

for fault tolerance; only mechanisms for error handling are

provided. Web services are composed of a messaging layer

and a service description layer that have been standardized to

ensure interoperability with the Simple Object Access Protocol

(SOAP) and the Web Services Description Language (WSDL).

Both layers only provide mechanisms for error handling. At

the messaging layer, SOAP provides a <soap:fault> tag to

inform a client about errors encountered while processing an

invocation message. Similarly, the WSDL description layer

provides the <wsdl:fault> tag which specifies the abstract

message format for any error that may be output as a result of

a remote operation invocation. The mechanisms provided by

SOAP and WSDL help handling errors raised by applications,

but no mechanism exists for handling failures and system

errors [2].

B. Implementing fault-tolerance using a JXTA

In our implementation we have selected the JXTA [3]

infrastructure to deploy a fault-tolerant peer-to-peer back-end

architecture due to: (a) the dynamic nature of the networks that

can be created, (b) the existence of the peer group concept,

and (c) its level of decentralization.

(a) Dynamic networks. JXTA networks are inherently

dynamic. By using a number of protocols, peers may join or

publish advertisements at different times. For Whisper this

characteristic is important since it allows to dynamically

increasing the level of availability of a Web service by having

a higher number of peers responsible for the execution of Web

service requests.

Semantic Integration of Web services and Peer-

to-Peer Networks to Achieve Fault-tolerance

Jorge Cardoso

T

339

2

(b) Peer groups. Peers groups are important for Whisper

architecture since they allow the implementation of the

concept of semantically equivalent peers. Peers that belong to

a given semantic group implement the same functionality, but

possibly in a different way.

(c) Decentralization. Web Services are based on a

centralized model and primarily focused on standardizing

messaging formats and communication protocols. JXTA

computing, on the other hand, is based on a decentralized

model. The decentralized model gives a natural approach to

develop self-healing and resilience architectures through

redundancy. This is precisely how Whisper achieves fault-

tolerance.

C. Fault-tolerance and redundancy

Redundancy has long been used as a means of increasing the

availability of distributed systems. In Whisper, redundancy is

achieved using the replication of business process

functionalities. Typically, an application’s logic and data is

distributed on a cluster (group) of computer systems to ensure

that it can tolerate any single hardware or software fault within

the cluster. The redundancy mechanism of Whisper makes

possible to also address scalability requirements through load-

sharing, since peer services can be replicated among different

computers. We use static redundancy which means that all

replicas implementing services are active at the same time. If

one replica fails another replica is elected (using the Bully

algorithm) and used immediately with little impact on response

time. Using this approach a Web service invocation can be

forwarded to peers located in different computers and

networks.

III. ARCHITECTURE

To facilitate the understanding of Whisper architecture we

describe a running scenario which is illustrated in Figure 1.

The application shown has two Web services available to

clients: ‘Register Student’ and ‘Student Information’. The

‘Register Student’ service accepts a data structure describing a

student (i.e., its name, address, degree, etc.), connects to a

relational database, stores student’s data, and returns the ID of

the newly created student record. The service ‘Student

Information’ accepts as input a student ID, connects to a

relational database, retrieves the information of the student,

and returns a structure with the information to the client.

The actual implementation of these two Web services is not

provided with the Web services themselves, but it is provided

by a JXTA network of peers. Each peer belongs to a semantic

peer group. The peers of the same semantic peer group

implement the same service functionality, but possibly in a

different way. When a Web service is invoked by a client,

Whisper dynamically tries to find a semantic peer group that

will be able to process the invoked Web service.

The mechanics behind Whisper architecture are carried out

in the following sequence. When a business partner (client)

requires a certain functionality to be satisfied, it invokes or

initiates an interaction with a Web service (1) by creating a

SOAP request message (our prototype was implemented using

Axis SOAP 1.1 for Java (http://ws.apache.org/axis/)). The

Web service receives the request and forwards it to the

Semantic Web Service proxy (SWS-proxy) (2). The proxy

contacts the JXTA infrastructure (3) and using the Semantic

Discovery Service (4) locates a semantic group of peers (5)

that can satisfy the client’s request. Once a suitable semantic

group of peers is found (6), the group is queried to find a peer

(7) that will process the client’s request. Since peers

implement the Bully algorithm [4] (we call the peers that

implement the Bully algorithm b-peers), the b-peer found may

not be the coordinator. Therefore, additional processing may

need to be done to find the current coordinator of the semantic

group. When the coordinator is identified, it processes the

request and sends the results of the processing to the SWS-

proxy (8). The proxy translates the data received to a suitable

format and sends the results to the semantic Web service (9)

that will in turn send the results back to the client (10) that

initially issued the request. In the following sections we

describe the most relevant components of our architecture.

JXTA

Web service
Client

Register Student
Semantic Web

service

Register Student
SWS-Proxy

Student Information
Semantic Web

service

Web server

1

3

5 6

Register Student
B-peer A

Student
Information
B-peer A

Student
Information
B-peer B

Register Student
B-peer B

Register Student
B-peer C

Register Student
B-peer D

Semantic

Group Service

Semantic

Group Service

Semantic

Discovery Service
4

7

Student
Information
B-peer C

8Student Information
SWS-Proxy

92

10

Other services
Semantic

Advertisement

Semantic

Advertisement

Ontology

B-peers implement
the Bully algorithm

Fig. 1. Whisper architecture for Fault-tolerant Web Services

A. Semantic Web services

Traditional Web services are described using the Web

Services Description Language (WSDL), which provide only

syntactical information. However, WSDL poses a problem

during the automatic discovery of peer groups to carry out the

actual execution of a Web service, since the use of syntactic

information alone originates a high recall and low precision

during the search [5].

Several researchers have pointed out that Web services

should be semantically enabled [6-8] to develop distributed

applications over the Web due to its heterogeneity, autonomy,

and distribution. Semantics articulate a well-defined set of

common data elements or vocabulary allowing a rich

description of Web services which can be used by computers

for an automatic or semi-automatic processing and

339

3

management of distributed applications. In Whisper, Web

service are semantically annotated following the WSDL-S

specification [9]. JXTA peer groups are also semantically

annotated. The semantic annotation of Web services and

JXTA peer groups allows their semantic integration at the data

and functional levels.

1) Data Semantics

Web services and JXTA peer services take a set of data

inputs and produce a set of data outputs. Web services and

JXTA specifications use only syntactic and structural details of

the input/output data. Each data schema is set up with its own

structure and vocabulary. For example, a Web service may

contain an input structure called ‘client’ which includes the

‘name’, ‘address’, ‘city’, ‘country’, and ‘telephone’ of a client,

while a JXTA peer service may have an input structure called

‘customer’ and subdivides it into ‘first name’, ‘last name’,

‘address’, and ‘tel’. In such a scenario, how can the data input

of the Web service be transferred to the input of the peer

service? While the two structures do not match syntactically,

they match semantically. To allow the integration of Web

services and JXTA peer services to exchange data at the

semantic level, the semantics of the input/output data have to

be taken into account. Hence, we annotated the data of Web

and JXTA peer services using ontological concepts [6, 10].

The added semantics can be later used in matching the

semantics of the input/output of Web services and JXTA peer

services when exchanging data, which was not possible when

considering only syntactic information.

2) Functional Semantics

As seen previously, services are described using input and

output data, but also operations (i.e., methods or functions).

The signature of an operation provides only the syntactic

details of the input data, output data, and operation’s name.

Technological solutions to integrate Web services and

JXTA peer networks using operations signatures are not

sufficient since services’ functionality cannot be precisely

expressed. For example, two services (Web services or JXTA

peer services) can have an operation with the same signature

even if they perform entirely different functions. As a step

towards representing the functionality of services, in Whisper,

Web services and JXTA peer services are annotated with

functional semantics. We achieve functional integration by

having a Functional Ontology in which each concept/class

represents a well-defined functionality. The Functional

Ontology was created using Protégé Ontology Editor and it

was modeled using the OWL (Web Ontology Language)

specification.

The reader is refereed to [6] for a comprehensive

description on the use of semantics to integrate information

systems at the data, functional, and operational levels.

3) Using WSDL-S

Semantic Web services are the result of the evolution of the

syntactic definition of Web services and the semantic Web.

With the help of ontologies, the semantics or the meaning of

service data and functionality can be explicated. As a result,

integration can be accomplished in an automated way and with

a superior degree of success. We use WSDL-S [9, 10] to

semantically describe Web services. WSDL-S establishes

mapping between WSDL descriptions and ontological

concepts.

To create, represent, and manipulate WSDL-S documents,

WSDL4J (http://sourceforge.net/projects/wsdl4j/) can be used.

WSDL4J provides JAVA API’s for WSDL parsing and

generation. WSDL4J supports extensibility elements providing

an easy mechanism to add new extensions. This allows WSDL

to represent a specific technology under various elements

defined by WSDL. Given a WSDL-S specification, Whisper

generates a java file with specific methods to access the

semantics of the inputs, outputs, and actions (i.e., operations).

These methods will be used by SWS-proxies to retrieve the

semantic information of Web services.

B. SWS-Proxies

Our semantic Web services are JXTA-enabled. They do not

contain an implementation coded by programmers; instead

they contain a module, called SWS-proxy (Semantic Web

Service-proxy), which is automatically generated by the proxy

generator (see Fig. 1). When a Web service is invoked by a

client the request is forwarded to the SWS-proxy.

SWS-proxies are modules that provide the communication

between Web services and JXTA semantic peers. While

proxies are widely used in other contexts (Web servers

proxies, firewall proxies, etc.), our approach, however, uses

proxies to discover semantic peer groups advertisements and

enable the translation of Web service invocations to JXTA

peers invocations, since the two technologies use

incompatible communications protocols. When

advertisements that have the same semantic functionality (see

section III.A.2) of the semantic Web service request are found,

the SWS-proxy checks if the b-peers inside the peer group

discovered have also the same data semantics (see section

III.A.1) of the semantic Web service request. If they do, the

advertisement is returned to the SWS-proxy that will connect

to a b-peer of the semantic peer group found (this last phase is

not shown in this example.)

C. Semantic Advertisements

In Whisper, peer groups semantically advertise to other

peers the services they provide to the network. This is an

important feature, because it creates a dynamic environment

where the network and services available can be discovered

and used as they are created.

We use ‘extendable advertisements’ to create a new type of

advertisement that uses semantic information to describe our

semantic peer groups. This new type of advertisements is

called semantic advertisement. Semantic advertisement

includes information to allow the semantic integration at the

data and functional levels of Web services and JXTA peer

groups. This information includes the action, input, and output.

339

4

In order to have the semantic peer group advertisement

recognized upon discovery, it needs to be registered through

the ‘AdvertisementFactory’. Once our new type of

advertisement is registered, we need to specify the semantics

that will describe the peers that belong to a specific group.

Finally, the advertisement published can later be searched by

WS-proxies. A semantic advertisement is created and semantic

information is added to the advertisement to specify the

ontology used to describe the ontological concepts, the action

that the peers of the group will have, and the inputs and

outputs of the peers.

D. B-peers

B-peers are entities on a network implementing one or more

JXTA protocols. They implement a specific functionality, such

as accessing a database to retrieve students’ data, and more

importantly they implement the Bully algorithm to provide a

fundamental mechanism to enable a good fault-tolerance. B-

peers exist independently and communicate with other b-peers

asynchronously.

The Bully algorithm insures that there is exactly one

coordinator in a group of semantically equivalent b-peers. If a

b-peer that is not the coordinator crashes, the semantic group

continues to answer to requests. It can happen that the b-peer

coordinator goes down leaving the semantic group without a

leader to manage the group. In such a case, the algorithm starts

an election process that lets a group appoint a new coordinator.

An election is started by sending an election message to all b-

peers in the semantic group. The algorithm guarantees that the

b-peer with the greater peer-id will be the new coordinator. An

election is held whenever a b-peer restarts or joins the

semantic group or when the current coordinator crashes.

Therefore, a semantic group of b-peers is able to continue

operating even if one or more b-peers crash. While we have

implemented the Bully algorithm to achieve a higher level of

availability, other algorithms can also be implemented, without

any impact on Whisper architecture, to protect Web services

against other types of failures. For example, the N-version

model [11] can be used to protect Web services against

Byzantine faults.

IV. RELATED WORK

Dialani et al. [2] describes an architecture to deploy fault-

tolerant Web services. In their approach, Web services extend

a checkpoint and rollback interface. The checkpoint interface

allows Web services to store their last correct state, while the

rollback interface allows, in case of failure, to restore the

service to its last correct state. Looker et al. [12] propose WS-

FTM (Web Service-Fault Tolerance Mechanism), an

implementation for Web services of the N-version model [11]

for fault tolerance. WS-FTM achieves transparent usage of

replicated Web services by use of a modified stub. The stub is

created using tools included in WS-FTM. Whisper differs

from previous work since we explore the features and

characteristics of peer-to-peer networks to develop a

transparent and scalable mechanism to increase the availability

of Web services. Another major difference is related to the

approach that we have adopted to enable the integration and

interoperation of Web services and P2P networks, which uses

semantics and ontologies.

V. CONCLUSIONS

In this paper, we have presented a service-oriented

architecture, named Whisper, which increases the availability

of Web services by using a fault-tolerant mechanism built on

peer-to-peer networks and the semantic Web. Since Web

services and WSDL do not provide any mechanism to increase

their availability, we have use JXTA to deploy a fault-tolerant

peer-to-peer back-end architecture. In Whisper, Web services

are semantically enabled and implement a semantic proxy that

dispatches Web service requests to b-peers (these peers

implement the Bully algorithm). B-peers are then responsible

for answering to requests. The integration and interoperation

of Web services and JXTA peer-to-peer networks is a difficult

task since due to the heterogeneity of the two technologies

there is a disagreement about the meaning, interpretation, or

intended use of the same or related data and functions. To

facility this integration and interoperation we rely on the

technological foundations of the semantic Web.

REFERENCES

[1]. Curbera, F., W. Nagy, and S. Weerawarana. Web Services: Why and

How. in Workshop on Object-Oriented Web Services - OOPSLA 2001. 2001.

Tampa, Florida, USA.

[2]. V. Dialani, et al. Transparent fault tolerance for web services based

architectures. in Eighth International Europar Conference (EUROPAR '02).

2002. Padeborn, Germany: Springer-Verlag.

[3]. Gong, L., Project JXTA: A Technology Overview -

http://www.jxta.org/docs/TechOverview.pdf. 2001.

[4]. Garcia-Molina, H., Elections in a Distributed Computing System. IEEE

Transactions on Computers, 1982. 31(1): p. 48-59.

[5]. Sivashanmugam, K., et al., Metadata and Semantics for Web Services

and Processes, in Datenbanken und Informationssysteme (Databases and

Information Systems) Festschrift zum 60, W. Benn, et al., Editors. 2003,

Geburtstag von Gunter Schlageter: Hagen, Germany. p. 245-271.

[6]. Cardoso, J. and A. Sheth, Semantic e-Workflow Composition. Journal

of Intelligent Information Systems (JIIS). 2003. 21(3): p. 191-225.

[7]. Martin, D., et al. Bringing Semantics to Web Services: The OWL-S

Approach. in First International Workshop on Semantic Web Services and

Web Process Composition (SWSWPC 2004). 2004. Diego, California, USA:

Springer-Verlag.

[8]. Fensel, D., C. Bussler, and A. Maedche. Semantic Web Enabled Web

Services. in First International Semantic Web Conference. 2002. Sardinia,

Italy: Springer-Verlag.

[9]. Rajasekaran, P., et al., eds. Enhancing Web Services Description and

Discovery to Facilitate Composition. International Workshop on Semantic

Web Services and Web Process Composition (SWSWPC 2004), ed. A.S.

Jorge Cardoso. Vol. LNCS 3387. 2004, Springer-Verlag Heidelberg:

California, USA. 147.

[10]. Patil, A., et al. MWSAF - METEOR-S Web Service Annotation

Framework. in 13th Conference on World Wide Web. 2004. New York City,

USA.

[11]. Pease, M., R. Shostak, and L. Lamport, Reaching Agreement in the

Presence of Faults. Association of Computing Machinery, 1980. 27(2): p.

228-234.

[12]. Looker, N. and M. Munro, WS-FTM: A Fault Tolerance Mechanism for

Web Services. http://www.dur.ac.uk/computer.science/research/technical-

reports/2005/A%20Fault%20Tolerance%20Mechanism.pdf. 2002.

