
Verifying the Logical Termination of Workflows

Jorge Cardoso ∗ Glória Cravo †‡

January 9, 2006

Abstract

Systems and infrastructures are currently being developed to sup-
port e-commerce activities. Workflow management systems and work-
flows are one of the strong technological candidates to deploy and sup-
port e-commerce applications. E-commerce workflows require a precise
modeling to ensure that they perform according to initial specifica-
tions. Important advancements have been accomplished in the devel-
opment of theoretical foundations for workflow modeling, verification,
and analysis. Nevertheless, more research is required. It is essential
to explore the use of formal methods for the modeling and verification
of workflow’s properties. In this paper we present a formal frame-
work, based on control flow graphs theory, to verify the correctness
of workflows. In our approach, workflows are modeled with tri-logic
acyclic directed graphs. The formalism developed allows to verify one
important property, the logical termination of workflows.

Keywords: Workflows, Process Modeling, Business Processes, Graphs.

1 Introduction

Organizations operating in modern markets, such as e-commerce, require a
systematic design, planning, control, and management of business processes.
These requirements can be achieved with the use of Workflow Management

∗Departamento de Matemática, Universidade da Madeira, 9000-390 Funchal, Portugal.
(jcardoso@uma.pt)

†Departamento de Matemática, Universidade da Madeira, 9000-390 Funchal, Portugal.
(gcravo@uma.pt)

‡Work partially supported by the project POSI/EIA/61214/2004 and done within the
activities of the LabMAG laboratory.

1

jcardoso
Note
Cardoso, J. and Cravo, G., "Verifying the logical termination of workflows", 5th Annual Hawaii International Conference on Statistics, Mathematics and Related Fields, 16-18 January, 2006, Honolulu, Hawaii, USA, pp. 330-346, ISSN: 1550-3747. 



Systems (WfMSs). WfMSs allow organizations to streamline and automate
business processes, reengineer their structure, as well as, increase efficiency
and reduce costs.

Workflows have been successfully deployed to various domains, such as
bio-informatics [17], healthcare [4], the telecommunication industry [24], the
military [20], and school administration [6]. Other areas, such as mobile
computing, systems management, multi-databases, the Internet, applica-
tion development, object technology, operating systems, and transaction
management have also beneficed from the use of workflow technology [23].

The complexity, configuration, and structure of workflows depend on
the underlying business processes they model. Workflows may involve many
distinct, heterogeneous, autonomous, and distributed tasks that are interre-
lated in complex ways. The complexity of large workflows requires a precise
modeling to ensure that they perform according to initial specifications. The
development of frameworks and theories to achieve a precise modeling is a
difficult undertaking.

In the last decade, important advancements have been accomplished in
the implementation of workflow systems (commercial and research systems)
and in the development of theoretical foundations to allow workflow model-
ing, verification, and analysis. Nevertheless, the solutions proposed are still
insufficient and more research is required [16].

A number of formal frameworks have been proposed for workflow model-
ing and include State and Activity Charts [27], Graphs [22], Event-Condition-
Action rules [13, 14], Petri Nets [1, 2], Temporal Logic [5], Markov chains
[21], and Process and Event Algebras [18, 29]. The use of directed graphs
to model the control flow of workflows has been the main formalism used in
workflow systems implementation (e.g. METEOR-S [25], TIBCO Workflow
[31], and Staffware Process Suite [30]).

Workflow modeling, verification, and analysis take a renewed importance
with the development and maturity of infrastructures and solutions that
support e-commerce applications, Web services, and Web processes [11, 23].
This is because while in some cases Web services may be utilized in an
isolated form, it is natural to expect that Web services will be integrated as
part of workflows [15].

In this paper we present a formal framework, based on control flow
graphs theory, to check workflow specifications for correctness. In our ap-
proach we model workflows with tri-logic acyclic directed graphs [22] and
develop a formalism to verify the logical termination of workflows.

This paper is structured as follows. Section 2 briefly discusses business
processes and workflows. Section 3 introduces formally the structure of tri-

2



Hotel
Reservation

Travel
Reservation

Get User
Information

Get 
Conference
Information

Send ReceiptGet 
Conference

Name

Payment: VISA

Payment: Check

Payment: Cash

⊕• •

•

⊕

•

•

•

• • •

• •

•• •

• •

Hotel
Reservation

Travel
Reservation

Get User
Information

Get 
Conference
Information

Send ReceiptGet 
Conference

Name

Payment: VISA

Payment: Check

Payment: Cash

⊕• •

•

⊕

•

•

•

• • •

• •

•• •

• •

Figure 1: A very simple workflow

logic acyclic directed graphs and presents our approach for checking their
logical termination. Section 4 describes two important areas where the the-
orem for verifying the logical termination of workflows, presented in section
3, can be used. Finally, section 5 contains our conclusions.

2 Business Processes and Workflows

A workflow is an abstraction of a business process that consists of one or
more tasks to be executed to perform the business process. A task represents
a unit of work to be executed, which will be processed by a combination
of resources. A resource may be a simple fragment of code, a computer
program, an external system, or a human activity.

Workflows can be modeled using graphs as shown in Figure 1. Graphs
are a formal notation for representing business processes. Tasks are repre-
sented with vertices and the partial ordering of tasks is modeled with arcs,
known as transitions. For example, the task Get Conference Information is
associated with a computer program that checks the information of a con-
ference automatically. A task may also be associated with a human activity,
requiring a specific person, or a person with a particular role, to carry out
the execution of the task manually. For example, the task Get Conference
Name is executed manually and consists in entering a conference’s name
into a workflow application form.

The workflow illustrated in Figure 1 is formally described using a tri-
logic acyclic directed graph. This is the formal method that we will use to
model workflows. This formal method has the desired degree of intuitiveness

3



and simplicity, which is appropriate to be used by business process analysts.
These workflows are called tri-logic because a logic operator, an and (•),
an or (⊗), or an exclusive-or (⊕), can be associated with input/output
transitions of each task (vertex). For example, the task Get Conference
Name has associated with its output transitions an and. The task Travel
Reservation has also associated with its input transitions an and. The task
Hotel Reservation has associated with its input transition an and, and has
associated with its output transitions an exclusive-or.

3 Workflow Termination

In our approach we model workflows with tri-logic acyclic directed graphs.
This type of graphs has an input/output logic operator associated with each
vertex of the graph. We start by giving a formal definition of a workflow
structure. The semantics of these vertices are well-known and have been
widely used [25][31][30].

Definition 1 A workflow is a tri-logic acyclic direct graphWG = (T,A) ,
where T = {t1, t2, . . . , tn} is a finite nonempty set of vertices represent-
ing workflow tasks. Each task ti (i.e., a vertex) has an input logic op-
erator (represented by Â ti) and an output logic operator (represented by
ti ≺). An input/output logic operator can be the logical and (•), the or
(⊗), or the exclusive-or (⊕). The set A = {at, au, a1, a2, . . . , am} is a finite
nonempty set of arcs representing workflow transitions. Each transition ai,
i ∈ {1, . . . ,m}, is a tuple (tk, tl) where tk, tl ∈ T . The transition at is a
tuple of the form (t, t1) and transition au is a tuple of the form (tn,u) . The
symbols t and u represent abstract tasks which indicate the entry and end-
ing point of the workflow, respectively. We use the symbol

0
to reference the

label of a transition, i.e. a0i references transition ai, ai ∈ A. The elements
a0i are called Boolean terms and form the set A0.

Example 1 Figure 2 shows a workflowWG = (T,A), where T = {t1, t2,
t3, t4, t5, t6, t7}, A = {at, au, a1, a2, a3, a4, a5, a6, a7, a8} and A0 = {a0t, a0u, a01,
a02, a

0
3, a

0
4, a

0
5, a

0
6, a

0
7, a

0
8}. The tuple a2 = (t1, t3) is an example of a transi-

tion. In task t3, ⊕ is the input logic operator (Â t3) and • is the output logic
operator (t3 ≺).

Definition 2 The incoming transitions for task ti ∈ T are the tuples of
the form aj = (x, ti) , x ∈ T, aj ∈ A, and the outgoing transitions for task ti
are the tuples of the form al = (ti, y) , y ∈ T, al ∈ A.

4



t2t2

t1t1

t5t5

t3t3

t4t4

t7t7

a1

a2

a5

a4

a3

a7

⊕

⊕

• •

•

•

•

a

a
a6

••
•

•⊕

t6t6
a8

Figure 2: Example of a tri-logic acyclic direct graph

Example 2 In figure 2, the incoming transition for task t2 is a1 =
(t1, t2) and the outgoing transitions are a4 = (t2, t4) and a3 = (t2, t5).

When a transition is enabled its Boolean term is true and when a tran-
sition is disabled its Boolean term is false.

Example 3 Let us consider again figure 2. If transition a1 is enable/disable
then a01 is true/false, respectively.

Definition 3 The incoming condition for task ti ∈ T is a Boolean ex-
pression with terms a0 ∈ A0, where a is an incoming transition of task ti.
The terms a0 are connected with the logic operator Â ti.

Example 4 In figure 2, the incoming condition for task t3 is a02 ⊕ a05.

Definition 4 The outgoing condition for task ti ∈ T is a Boolean ex-
pression with terms a0 ∈ A0, where a is an outgoing transition of task ti.
The terms a0 are connected with the logic operator ti ≺.

Example 5 In figure 2, the outgoing condition for task t2 is a03 • a04.

In order to verify the logical termination of a workflow, we need to intro-
duce the concept of Event-Action (EA) model. EA models describe which
conditions need to be verified for a task to be executed and the consequences
of the execution of a task.

Definition 5 Given a workflow WG = (T,A), an Event-Action (EA)
model for a task ti ∈ T is an implication of the form ti : fE Ã fC, where

5



t4

a3
a6

a5
⊕•

a4 a7
t4

a3
a6

a5
⊕•

a4 a7

Figure 3: An Event-Action model for task t4

Table 1: EA model behavior
fE fC fE Ã fC
0 0 0
1 0 0
1 1 1

fE and fC are the incoming and outgoing conditions of task ti, respectively.
The condition fE is called the event condition and the condition fC is called
the action condition.

Event-Action models can be constructed for any given task of a work-
flow. The model expresses that the Boolean value of the condition fE is
propagated to fC . For a particular task t, the value of the condition fE is
evaluated to true or false depending on the Boolean terms associates with
the incoming transitions for task t.

An EA model has a behavior with two distinct modes: when fE is eval-
uated to true and when fE is evaluated to false. In the first situation fC
can be evaluated to true or false according to the values of the outgoing
transitions; in the other case, fC is always false. The behavior of an EA
model is described in table 1.

Only when the event expression fE and the action expression fC are 1,
the model fE Ã fC is 1. In all the other cases the model has the value 0.
Event-Action models can be seen as logic gates. The gate is open when its
two composing elements, fE and fC , are 1. Otherwise, when fE or fC is 0,
the gate is closed.

Example 6 As an example, let us consider task t4 illustrated in Figure
3. Task t4 has the following Event-Action model, t4 : a03 •a04 Ã a05⊕a06⊕a07,
where fE = a03 • a04 and fC = a05 ⊕ a06 ⊕ a07. This model expresses that when
both incoming transitions of task t4 (a3 and a4) are enables (i.e., the Boolean

6



terms a03 and a04 are true) the Boolean condition fE is evaluated to true. If
only one of the outgoing transitions of task t4 (i.e., a5, a6 or a7) become
enable (i.e., only one of the Boolean terms a05, a

0
6 or a

0
7 is true) the Boolean

condition fC is evaluated to true. Consequently, the model fE Ã fC is true
if and only if both terms a03 and a

0
4 are true and only one of the terms a

0
5, a

0
6

or a07 is true.

Definition 6 We say that the EA model fE Ã fC is positive if its value
is 1, otherwise we say that the model is negative.

A workflow starts its execution when transition at is enabled. The tran-
sition can be enabled explicitly by a user or implicitly by an external event.

Note that the outgoing conditions are enabled only after the incoming
conditions are enabled.

A workflow is started by enabling its entry point transition (at). When
the workflow is correctly designed, it terminates by enabling the ending
transition (au).

Definition 7 A simple EA model is an EA model fE Ã fC, where
fE = a0j and fC = a0l, for j, l ∈ {t,u, 1, . . . ,m}, with j 6= l.

Definition 8 A compound EA model is a nonsimple EA model fE Ã
fC, i.e., fE or fC are boolean expressions with an and (•), an or (⊗), or an
exclusive-or (⊕).

Example 7 In Figure 2, a07 Ã a08 is a simple EA model. The models
a01 Ã a03 • a04 and a02 ⊕ a05 Ã a06 are compound EA models.

Remark 1 The set of all elements i ∈ {1, . . . , n} such that ti : fEi Ã
fCi , ti ∈ T is a compound EA model is denoted by Γ, i.e., Γ = {i ∈ {1, . . . , n}
such that ti : fEi Ã fCi is a compound EA model}.

Definition 9 Logical Workflow Representation. The logical representa-
tion of a workflow WG = (T,A) is a Boolean expression b = ∧ (fEi Ã fCi),
ti : fEi Ã fCi , ti ∈ T , for all i ∈ Γ, i.e., the conjunction of all compound
EA models of WG.

Definition 10 A workflow WG is a contradiction if its logical workflow
representation b is a Boolean contradiction.

7



Definition 11 A materialized workflow instance of a workflow WG =
(T,A) is a workflow WGi for which the Boolean terms a0j , a

0
j ∈ A0, have been

set to true or false according to table 1.

Definition 12 A materialized workflow instance WGi is true if its log-
ical workflow representation b is true and a materialized workflow instance
WGj is false if its logical workflow representation b is false.

Definition 13 A materialized workflow instance WGj of a workflow
WG = (T,A) logically terminates if transition au is enabled at some point
in time after transition at has been enabled.

Reaching the ending transition (au) indicates the (logical) termination
of processing; i.e. indicates that no further processing should proceed. Once
at is enabled, tasks of the workflow start their execution. The processing of
the workflow stops when one of the following cases occurs: (a) the workflow
finishes by enabling transition au, (b) the processing stops at some task
because of a workflow design problem. Note that when situation (b) holds,
it means that there exists a task t for which the respectively compound EA
model is negative. So both fE and fC are false, or fE is true but fC is false.

Definition 14 A workflow WG = (T,A) logically terminates if all its
materialized workflow instances WGj logically terminate.

Remark 2 A workflow for which all EA models are simple has the follow-
ing structure, t at−→ t1

a1−→ t2
a2−→ t3 ...tn−1

an−→ tn
au−→ u. The set of all

compound EA models is ∅ and therefore b does not exist. However, this
situation is not a problem, since this type of workflow always logically ter-
minates. In fact, this is a trivial case of logical workflow termination. Note
that all of its EA models are positive.

From now on, we will consider nontrivial situations, i.e., we consider
workflows with compound EA models. Our aim is to find necessary and
sufficient conditions for logical workflow termination.

Theorem 1 If a workflow WG is a contradiction then it does not logi-
cally terminates.

Proof 1 Suppose that the workflowWG is a contradiction. According to
Definition 10 its logical workflow representation b is a Boolean contradiction.
As b = ∧(fEi Ã fCi), ti : fEi Ã fCi , ti ∈ T, for all i ∈ Γ, then there exists
i ∈ Γ such that fEi Ã fCi is negative.

8



t2t2

t1t1

t3t3

t4t4

a1

a2 a4

a3

•

•

•

•

•

• •a a
⊕

Figure 4: A workflow contradiction

Note that the execution of the workflow starts by enabling transition at,
i.e. a0t is true.

On the other side, we still have the following equalities:
b = (fE1 Ã fC1) ∧ (∧(fEi Ã fCi)) ∧ (fEn Ã fCn) = (a0t Ã fC1) ∧

(∧(fEi Ã fCi))∧ (fEn Ã a0u), i ∈ Γ\{1, n}. Bearing in mind these equalities
and the fact of b being a contradiction, then one of the following cases must
occurs:

(1) a0t Ã fC1 is negative; (2) there exists i ∈ Γ\{1, n} such that fEi Ã
fCi is negative; (3) fEn Ã a0u is negative.

Case 1. Suppose that (1) holds. As a0t is true then fC1 must be false and
so the workflow stops its execution in task t1. Therefore au is not enabled.

Case 2. Suppose that (2) holds. Then either both fEi and fCi are false or
fEi is true but fCi is false. In both situations the workflow stops its execution
in task ti and consequently au is not enabled.

Case 3. Suppose that (3) holds. In this situation either both fEn and a0u
are false or fEn is true and a0u is false. In both situations a

0
u is false and

therefore au is not enabled.
Conclusion, in any of the previous cases au is not enabled, which means

that the workflow does not logically terminates.

Example 8 The EA models of the workflow shown in figure 4 are: t1 :
a0t Ã a01 •a02, t2 : a01 Ã a03, t3 : a

0
2 Ã a04, t4 : a

0
3⊕a04 Ã a0u. Its logical workflow

representation is b = (a0t Ã a01 •a02)∧ (a03⊕a04 Ã a0u). It can be easily proved
using table 1 that all materialized workflow instances are false. Therefore,
the workflow is a contradiction and does not logically terminate.

Theorem 2 A materialized workflow instance WGi logically terminates
if its logical workflow representation b is true.

9



t2t2

t1t1

t4t4

t3t3 t5t5

t6t6

a1

a2 a6

a5

a4

a3
a7

•

⊕ ⊕

⊕ ⊕

•

•

•

•

•

•a a

a8

Figure 5: A workflow with a partial termination

Proof 2 As b = ∧(fEi Ã fCi), ti : fEi Ã fCi , ti ∈ T, for all i ∈ Γ, is
true, then every fEi Ã fCi is true, for i ∈ Γ. Consequently, for all i ∈ Γ, fEi
and fCi are true. In particular a

0
t and a

0
u are true, which means that both at

and au are enabled. As the workflow starts its execution by enabling at, then
au is enabled in some point in time after at has been enabled. Therefore the
workflow instance WGi logically terminates.

Theorem 3 A materialized workflow instance WGi does not logically
terminates if its logical workflow representation b is false.

Proof 3 The proof follows immediately from Theorem 1.

Theorem 4 If a workflow WG is not a contradiction and is not a tau-
tology then WG terminates for some, but not all, materialized workflow
instances WGi. In this situation we say that the workflow partially termi-
nates.

Proof 4 If a workflow WG is not a contradiction then some materi-
alized workflow instances WGt are true. Also, if a workflow WG is not a
tautology then some materialized workflow instances WGf are false. There-
fore, according to theorems 2 and 3, the materialized workflow instances
WGt, which are true, terminate and the materialized workflow instances
WGf , which are false, do not terminate.

Example 9 The logical workflow representation of the workflow shown
in figure 5 is b = (a0t Ã a01•a02)∧(a01 Ã a03⊕a04)∧(a02 Ã a05⊕a06)∧(a03⊕a05 Ã

10



a07) ∧ (a04 ⊕ a06 Ã a08) ∧ (a07 • a08 Ã a0u). Consider the following mate-
rialized workflow instances: (1) a0t = true; a01 = true; a02 = true; a03 =
true; a04 = false; a05 = false; a06 = true; a07 = true; a08 = true; a0u = true;
(2) a0t = true; a01 = true; a02 = true; a03 = false; a04 = true; a05 = true; a06 =
false; a07 = true; a08 = true; a0u = true. In both cases the materialized work-
flow instances are true. Now consider the following materialized workflow
instance: a0t = true; a01 = true; a02 = true; a03 = true; a04 = false; a05 =
true; a06 = true; a07 = false; a08 = false; a0u = false. In this case the ma-
terialized workflow instance does not logically terminate. Note that in this
situation the materialized workflow instance stops its execution in task t3,
because its EA model is negative. Consequently the workflow does not logi-
cally terminate, but partially terminates.

Once again it is important to state that for a task t, in the correspondent
EA model fE Ã fC , the outgoing condition is enabled after the incoming
condition is enabled, i.e. fC can be true only if fE is true. Consequently we
cannot atribute values arbitrarily to the transitions a0j , where a

0
j ∈ A0. We

allways must atribute values to a0j , according to table 1.

Theorem 5 Logical Workflow Termination. A workflow WG logically
terminates if and only if b is a tautology.

Proof 5 Suppose that the workflow logically terminates. Then, for all
materialized workflow instances WGi, au is enabled at some point in time
after transition at has been enabled. Let b = ∧(fEi Ã fCi), ti : fEi Ã fCi ,
ti ∈ T, for all i ∈ Γ, be the logical representation of the workflow. We
assume, by contradiction, that there exists i ∈ Γ such that fEi Ã fCi is
negative. Then, both fEi and fCi are false, or fEi is true but fCi is false.
As a consequence, the workflow stops its execution in task ti. Therefore a0u
is false and so au is not enabled, which is a contradiction. Consequently,
every compound EA model in WG is positive and b is a tautology.

Conversely, if b is a tautology then every compound EA model in WG
is positive. Therefore, for every i ∈ Γ, fEi and fCi are true. In particular
a0t and a0u are true, which means that both at and au are enabled. As the
workflow starts its execution by enabling at, then au is enabled at some point
in time after at has been enabled. Then the workflow logically terminates.

Example 10 It can be easily seen that the logical representation of the
workflow shown in figure 1 is a tautology. Therefore, the workflow logically
terminates.

11



4 Using the Logical Workflow Termination Theo-
rem

In this section we describe two applications areas for which the use of the
logical workflow termination is indispensable.

4.1 Workflow Complexity Analysis

In a competitive e-commerce and e-business market, workflows can span
both between enterprises and within the enterprise [28]. While organiza-
tions want their workflows to be simple, modular, easy to understand, easy
to maintain and easy to re-engineer, in cross-organizational settings these
processes have an inherent complexity. Nevertheless, in some cases, work-
flows’ design can be highly complex, due, for example, to the vast number
of transactions carried out in global markets. High complexity in a process
has several undesirable drawbacks, it may result in bad understandability,
more errors, defects, and exceptions leading processes to need more time
to develop, test, and maintain. Therefore, excessive complexity should be
avoided.

To achieve an effective process management, one fundamental area of
research that needs to be explored is the complexity analysis of workflows [7].
Studies indicate that 38% of process management solutions will be applied to
redesign enterprise-wide processes (source Delphi Group 2002). Workflow
complexity can be defined as the degree to which a process is difficult to
analyze, understand or explain. It may be characterized by the number and
intricacy of tasks’ interfaces, transitions, conditional and parallel branches,
the existence of loops, roles, activity categories, the types of data structures,
and other process characteristics [8].

Workflow complexity metrics can be used during the development of
workflows to improve their quality and maintainability. But, it does not
make sense to complexity analysis to workflows that are incorrectly designed
and that do not logically terminate. Therefore, the logical workflow termi-
nation theorem has an important role in complexity analysis.

4.2 Semi-automatic design of workflows

A wide spectrum of workflow system architectures has been developed to
support various types of business processes. Cardoso, Bostrom et al. [10]
report that more than 200 workflow products are available in the market.
Most of the systems provide a set of tools which include a graphical appli-

12



cation to design workflows and an engine or enactment system to manage
the execution of workflow instances.

Although major research has been carried out to enhance workflow sys-
tems [22][12][26][3][19], the work on workflow application development life-
cycles and methodologies is practically inexistent. The development of ad-
equate frameworks is of importance to guarantee that workflows are con-
structed according to initial specifications. Furthermore, it would be ad-
vantageous for workflow analysts to have tools to support — automatically
or semi-automatically — the design of workflows. Unfortunately, it is rec-
ognized that despite the diffusion of workflow systems, methodologies and
frameworks to support the development of workflow applications are still
missing.

To surpass this lack of tools to support the design of workflows, the Posei-
don framework [9] has been developed. Poseidon framework helps analysts
during their interviews with administrative staff, managers, and employees
in general to design processes. The framework includes a set of procedures
that guide the workflow analyst during his interviews and supply methods
to semi-automatically design workflows. As a result, workflows can be de-
veloped and implemented more rapidly and accurately. The semi-automatic
design of workflows can generate workflows which are incorrect and that do
not logically terminate. Especially, since a semi-automatic design requires
human involvement which can design inconsistent workflows. The use of the
logical workflow termination theorem guarantees that the workflows semi-
automatically generated terminate and that the subsequent alterations made
by designers to workflows are consistent.

5 Conclusions

Workflow management systems are capable of hosting e-commerce applica-
tions by integrating business functionalities in a short time and with a low
cost. This is of significant importance for global and competitive markets.
Workflows describing e-commerce applications require a precise modeling,
verification, and analysis to ensure that they perform according to initial
specifications. The development of frameworks and theories to achieve an
accurate modeling is a difficult task and the solutions proposed are still
insufficient and more research is required.

To guarantee that workflows are successfully executed at runtime, it is
necessary to verify their properties at design time. In this paper we present
a formal framework, based on control flow graphs theory, to check workflow

13



specifications for correctness. In our approach we model workflows with tri-
logic acyclic directed graphs and develop a formalism to verify one important
property: the logical termination of workflows.

The contribution of our work will enable the development of tools that
will support and allow business process analysts to verify the correctness of
their workflows at design time.

References

[1] W. M. P. van der Aalst. The application of petri nets to workflow man-
agement. The Journal of Circuits, Systems and Computers, 8(1):21—66,
1998.

[2] Wil M. P. van der Aalst. Workflow verification: Finding control-flow er-
rors using petri-net-based techniques. In W.M.P. van der Aalst, J. De-
sel, and A. Oberweis, editors, Business Process Management: Mod-
els, Techniques, and Empirical Studies, volume 1806, pages 161—183.
Springer-Verlag, Berlin, 2000.

[3] G. Alonso, C. Mohan, R. Guenthoer, D. Agrawal, A. El Abbadi, and
M. Kamath. Exotica/fmqm: A persistent message-based architecture
for distributed workflow management. In IFIP WG8.1 Working Confer-
ence on Information Systems for Decentralized Organizations, Trond-
heim, Norway, 1994.

[4] Kemafor Anyanwu, Amit Sheth, Jorge Cardoso, John A. Miller, and
Krys J. Kochut. Healthcare enterprise process development and inte-
gration. Journal of Research and Practice in Information Technology,
Special Issue in Health Knowledge Management, 35(2):83—98, 2003.

[5] P. Attie, M. Singh., A. Sheth., and M. Rusinkiewicz. Specifying and
enforcing intertask dependencies. In Proceedings 19th Intlernational
Conference on Very Large Data Bases, pages 134—145, Dublin, Ireland,
1993. Morgan Kaufman.

[6] CAPA. Course approval process automation (capa). Technical report,
LSDIS Lab, Department of Computer Science, University of Georgia,
July 1, 1996 - June 30, 1997 1997.

[7] Jorge Cardoso. About the complexity of teamwork and collaboration
processes. In Wojciech Cellary Esaki and Hiroshi, editors, IEEE Inter-
national Symposium on Applications and the Internet (SAINT 2005),

14



Workshop - Teamware: supporting scalable virtual teams in multi-
organizational settings, pages 218—221, Trento, Italy, 2005. IEEE Com-
puter Society.

[8] Jorge Cardoso. Evaluating workflows and web process complexity.
In Layna Fischer, editor, Workflow Handbook 2005, page 284. Future
Strategies Inc., Lighthouse Point, FL, USA, 2005.

[9] Jorge Cardoso. Poseidon: A framework to assist web process design
based on business cases. International Journal of Cooperative Informa-
tion Systems (IJCIS), (accepted for publication), 2005.

[10] Jorge Cardoso, Robert P. Bostrom, and Amit Sheth. Workflow man-
agement systems and erp systems: Differences, commonalities, and ap-
plications. Information Technology and Management Journal. Special
issue on Workflow and E-Business (Kluwer Academic Publishers), 5(3-
4):319—338, 2004.

[11] Jorge Cardoso, Christoph Bussler, and Amit Sheth. Tutorial: Semantic
web services and processes: Semantic composition and quality of ser-
vice. In International Federated Conferences: DOA/ODBASE/CooPIS
2002, Irvine, CA, 2002.

[12] S. Ceri, P. Grefen, and G. Sanchez. Wide-a distributed architecture for
workflow management. In Proceedings of the 7th International Work-
shop on Research Issues in Data Engineering, pages 76—79, Birming-
ham, UK, 1997.

[13] Umeshwar Dayal, Meichun Hsu, and Rivka Ladin. Organizing long-
running activities with triggers and transactions. In ACM SIGMOD in-
ternational conference on Management of data table of contents, pages
204—214, Atlantic City, New Jersey, 1990. ACM Press, New York, NY,
USA.

[14] J. Eder, H. Groiss, and H. Nekvasil. A workflow system based on ac-
tive databases. In G. Chroust and A. Benczur, editors, Proceedings of
CON ’94, Workflow Management: Challenges, Paradigms and Prod-
ucts, pages 249—265, Linz, Austria, 1994.

[15] D. Fensel and C. Bussler. The web service modeling framework, 2002.

[16] Dimitrios Georgakopoulos, Mark Hornick, and Amit Sheth. An
overview of workflow management: From process modeling to infras-

15



tructure for automation. Distributed and Parallel Databases, An Inter-
national Journal, 3(2):119—153, 1995.

[17] R. David Hall, John A. Miller, Jonathan Arnold, Krys J. Kochut,
Amit P. Sheth, and Michael J. Weise. Using workflow to build an in-
formation management system for a geographically distributed genome
sequence initiative. In R. A. Prade and H.J. Bohnert, editors, Genomics
of Plants and Fungi, pages 359—371. Marcel Dekker, Inc., New York,
NY, 2003.

[18] A.H.M. ter Hofstede and E.R. Nieuwland. Task structure semantics
through process algebra. Software Engineering Journal, 8(1):14—20,
1993.

[19] N. R. Jennings, P. Faratin, T. J. Norman, M. P. O’Brien, E. Wiegand,
C. Voudouris, J. L. Alty, T. Miah, and E. H. Mamdani. Adept: Man-
aging business processes using intelligent agents. In Proc. BCS Expert
Systems 96 Conference, pages 5—23, Cambridge, UK, 1996.

[20] M. H. Kang, J. N. Froscher, A. P. Sheth, K. J. Kochut, and J. A. Miller.
A multilevel secure workflow management system. In Matthias Jarke
and Andreas Oberweis, editors, Proceedings of the 11th Conference on
Advanced Information Systems Engineering, Lecture Notes in Com-
puter Science, pages 271—285, Heidelberg, Germany, 1999. Springer-
Verlag.

[21] J. Klingemann, J. Wäsch, and K. Aberer. Deriving service models
in cross-organizational workflows. In Proceedings of RIDE - Informa-
tion Technology for Virtual Enterprises (RIDE-VE ’99), pages 100—107,
Sydney, Australia, 1999.

[22] Krys J. Kochut, Amit P. Sheth, and John A. Miller. Orbwork: A corba-
based fully distributed, scalable and dynamic workflow enactment ser-
vice for meteor. Technical report, Large Scale Distributed Information
Systems Lab, Department of Computer Science, University of Georgia,
1999.

[23] F. Leymann, D. Roller, and M.T. Schmidt. Web services and business
process management. IBM Systems Journal, 41(2):198—211, 2002.

[24] Zongwei Luo. Knowledge Sharing, Coordinated Exception Handling,
and Intelligent Problem Solving to Support Cross-Organizational Busi-
ness Processes. Ph.d. dissertation, University of Georgia, 2000.

16



[25] METEOR. Meteor (managing end-to-end operations) project home
page, 2004.

[26] John A. Miller, D. Palaniswami, Amit P. Sheth, Krys J. Kochut,
and H. Singh. Webwork: Meteor2’s web-based workflow management
system. Journal of Intelligence Information Management Systems:
Integrating Artificial Intelligence and Database Technologies (JIIS),
10(2):185—215, 1998.

[27] P. Muth, D. Wodtke, J. Weissenfels, G. Weikum, and A. Kotz Dit-
trich. Enterprise-wide workflow management based on state and activ-
ity charts. In A. Dogac, L. Kalinichenko, T. Ozsu, and A. Sheth, editors,
Proceedings NATO Advanced Study Institute on Workflow Management
Systems and Interoperability. Springer Verlag, 1998.

[28] Amit P. Sheth, Wil van der Aalst, and Ismailcem B. Arpinar. Processes
driving the networked economy. IEEE Concurrency, 7(3):18—31, 1999.

[29] M.P. Singh. Semantical considerations on workflows: An algebra for
intertask dependencies. In Paolo Atzeni and Val Tannen, editors, Fifth
International Workshop on Database Programming Languages, Elec-
tronic Workshops in Computing, Umbria, Italy, 1995. Springer.

[30] Staffware. Staffware web site, 2005.

[31] TIBCO. Tibco inconcert, 2005.

17


