
ICNAAM header will be provided by the publisher

Verifying the Termination of Workflows

Glória Cravo∗ and Jorge Cardoso
Departamento de Matemática e Engenharias, Universidade da Madeira, 9000-390 Funchal, Portugal

Received 25 June 2006, revised 25 June 2006, accepted 25 June 2006

Key words Graphs, Classical Propositional Logic, Workflows, Process Modeling, Business Processes.
Subject classification 03B05, 05C20, 68R10

In this paper we describe the behavior of workflows using graph theory and logic. A workflow is an abstraction
of a business process that consists of one or more tasks to be executed to reach the goal or objective of the
business process. Graphs are a formal notation that may be used for representing business processes. We use
propositional logic to describe all possible models or cases present in a workflow. We conclude the paper by
studying the termination of workflows, a very important property that allows us to verify under which conditions
a business process finishes its execution.

Copyright line will be provided by the publisher

1 Introduction

In this paper we use mathematical tools, such as graph theory [10] and concepts of logic [16], to approach and
solve a problem from computer science.

Currently, systems and infrastructures are being developed to support Web services, that can be integrated as
part of workflow processes. A workflow is the formal definition of a process used to manage business processes
[3], that consists in one or more tasks to be executed. The tasks are represented with vertices and the partial
ordering of tasks is modeled with arcs, known as transitions.

Workflows have been successfully deployed to various domains, such as bio-informatics [7, 11], healthcare
[4], the telecommunications industry [14], the military [12], and school administration [6].

In the last decade, important advancements have been accomplished in the implementation of workflow sys-
tems and in the development of theoretical foundations to allow workflow modeling, verification, and analysis.
A number of formal frameworks have been proposed for workflow modeling such as State and Activity Charts
[15], Graphs, Event-Condition-Action rules [8, 9], Petri Nets [1, 2], Temporal Logic [5] and Markov chains [13].
The use of directed graphs to model the control flow of workflows has been the main formalism used in workflow
systems implementation (e.g. METEOR-S, TIBCO Workflow, and Staffware Process Suite).

In this paper we present a formal framework, based on control flow graphs theory. We also establish three
important rules that allow us to describe all models (i.e., simple parts of the workflow) present in the workflow.
Finally, we study a very important property of workflows, their logical termination. Our main result describes a
necessary and sufficient condition for the logical termination of a workflow.

2 Logical Termination

In our approach we model workflows with tri-logic acyclic directed graphs. This type of graphs has an in-
put/output logic operator associated with each vertex of the graph. We start by giving a formal definition of a
workflow structure. The semantics of these vertices are well-known and have been widely used.

Definition 2.1 A workflow is a tri-logic acyclic direct graph WG = (T, A), where T = {t1, t2, . . . , tn} is
a finite nonempty set of vertices representing workflow tasks. Each task ti (i.e., a vertex) has an input logic
operator (represented byÂ ti) and an output logic operator (represented by ti ≺). An input/output logic operator
can be the logical AND (•), the OR (⊗), or the XOR -exclusive-or - (⊕). The set A = {at, au, a1, a2, . . . , am}

∗ Corresponding author: e-mail: gcravo@uma.pt, Phone: +351 291 705 150, Fax: +351 291 705 199

Copyright line will be provided by the publisher



2 G. Cravo and J. Cardoso: Verifying the Termination of Workflows

is a finite nonempty set of arcs representing workflow transitions. Each transition ai, i ∈ {1, . . . ,m}, is a tuple
(tk, tl) where tk, tl ∈ T . The transition at is a tuple of the form (t, t1) and transition au is a tuple of the form
(tn,u). The symbols t and u represent abstract tasks which indicate the entry and ending point of the workflow,
respectively. We use the symbol ′ to reference the label of a transition, i.e., a′i references transition ai, ai ∈ A.
The elements a′i are called Boolean terms and form the set A′.

A workflow starts its execution when transition at is enabled. The transition can be enabled explicitly by a
user or implicitly by an external event.

A transition is enabled/disabled if the respective Boolean term is asserted to be true/false. Thus, the workflow
starts its execution by asserting a′t to be true.

Definition 2.2 The incoming transitions for task ti ∈ T are the tuples of the form aj = (x, ti), x ∈ T, aj ∈ A,
and the outgoing transitions for task ti are the tuples of the form al = (ti, y), y ∈ T, al ∈ A.

Definition 2.3 The incoming condition for task ti ∈ T is a Boolean expression with terms a′ ∈ A′, where
a is an incoming transition of task ti. The terms a′ are connected with the logical operator Â ti. The outgoing
condition for task ti ∈ T is a Boolean expression with terms a′ ∈ A′, where a is an outgoing transition of task ti.
The terms a′ are connected with the logical operator ti ≺. If the task has only one incoming/outgoing transition
then the condition does not have a logical operator.

Definition 2.4 Given a workflow WG = (T, A), an Event-Action (EA) model for a task ti ∈ T is an
implication of the form ti : fE Ã fC , where fE and fC are the incoming and outgoing conditions of task ti,
respectively. For any EA model ti : fE Ã fC , fE and fC have always the same Boolean value.

Remark 2.5 The expressions fE and fC are logically equivalent. However, we use the symbol Ã to represent
this equivalence, which is suggestive to indicate the flow in the workflow.

Remark 2.6 For any EA model ti : fE Ã fC , its behavior has two possible distinct modes: when fE is
evaluated to true and when fE is evaluated to false. In the first case, its outgoing transitions are enabled or
disabled in such way that the outgoing condition is true. In the second situation, task ti disables all its outgoing
transitions and consequently fC becomes false.

The symbol ↔ is used in the following way: S1 ↔ S2 means that the compound statements S1 and S2 are
logically equivalent, using substitution rules from the Laws of Logic.

Note that a workflow has as many EA models as tasks. When EA models are combined, new models can be
derived, based on their Boolean expressions. The creation of new models can be accomplished with the logical
implication of EA models. The following rules allow us to create new models based on existing ones.

Theorem 2.7 Transitivity Rule: Let WG = (T, A) be a workflow. Suppose that the EA models fEi Ã fCi

and fEj Ã fCj hold. If fCi ↔ fEj , then the model fEi Ã fCj also holds.
Corollary 2.8 Logical Implication of EA models: Let WG = (T, A) be a workflow. Suppose that the EA

models fA Ã fB and fB Ã fC hold. Then the model fA Ã fC also holds.
Theorem 2.9 Right Partial Transitivity Rule: Let WG = (T, A) be a workflow.

1. If both EA models fEi Ã fCi and fEj Ã fCj hold, where fCi ↔ fnϕfEj , ϕ ∈ {•,⊗,⊕}, then the model
fEi Ã fnϕfCj also holds.

2. If both EA models fEi Ã fCi and fCj Ã fEj hold, where fCi ↔ fnϕfEj , ϕ ∈ {•,⊗,⊕}, then the model
fEi Ã fnϕfCj also holds.

Theorem 2.10 Left Partial Transitivity Rule: Let WG = (T,A) be a workflow.

1. If both EA models fEi Ã fCi and fEj Ã fCj hold, where fEi ↔ fnϕfEj , ϕ ∈ {•,⊗,⊕}, then the model
fnϕfCj Ã fCi also holds.

2. If both EA models fEi Ã fCi and fCj Ã fEj hold, where fEi ↔ fnϕfEj , ϕ ∈ {•,⊗,⊕}, then the model
fnϕfCj Ã fCi also holds.

Definition 2.11 Let WG = (T,A) be a workflow. An extended EA model is a model obtained from the EA
models in WG, applying the previous rules (transitivity, right partial transitivity and left partial transitivity).

Copyright line will be provided by the publisher



ICNAAM header will be provided by the publisher 3

Remark 2.12 The extended EA models are represented with the same symbology of the EA models. More-
over, they have the same behavior of the EA models, i.e., if X Ã Y is an extended EA model, then X and Y
have always the same Boolean value.

From now on, we will denote by M the set of all EA models defined over WG.

Definition 2.13 Let WG = (T, A) be a workflow. Let X Ã Y be an extended EA model. In this situation
we say that M logically implies X Ã Y, or X Ã Y is logically reached by M.

Definition 2.14 Let WG = (T,A) be a workflow. The set of all EA models and extended EA models that
hold over WG is called the closure of M and it is denoted by M+, i.e.,

M+ = M ∪ {X Ã Y : M logically implies X Ã Y }.

These three rules (transitivity, right partial transitivity and left partial transitivity) are sound because any ex-
tended EA model still holds over WG. On the other hand, they are complete because they generate all models in
WG, i.e., if X Ã Y is in the closure of M, M+, then it can be deduced using these three rules.

Definition 2.15 Let WG = (T,A) be a workflow. We say that WG logically terminates if transition au is
enabled at some point in time after transition at has been enabled.

Once at is enabled, tasks of the workflow start their execution. The processing of the workflow stops when
one of the following cases occur:
(a) the workflow finishes by enabling transition au,
(b) the processing stops at some task because the incoming condition is false.

Our main result is the following theorem, where we establish a necessary and sufficient condition for the
logical termination of workflows.

Theorem 2.16 Let WG = (T,A) be a workflow. Then WG logically terminates if and only if at Ã au ∈
M+.

This theorem allows us to check the termination of workflows. While the definition of logical termination
obliges to study all EA models present in WG, and the connection between each others, with our approach the
most important advantage is to focus our attention in only one model: at Ã au. Clearly, with this approach we
establish a more practical and easy process to verify this important property of workflows: their termination.

3 Conclusions

Workflow management systems are capable of hosting e-commerce applications by integrating business function-
alities in a short time and with low costs. This is of significant importance for global and competitive markets.
Workflows describing e-commerce applications require a precise modeling, verification and analysis to ensure
that they perform according to initial specifications. To guarantee that workflows are successfully executed at
runtime, it is necessary to verify their properties at design time. In this paper we present a formal framework,
based on control flow graphs theory, to check workflow specifications for correctness, i.e., the logical termination
of the workflow.

The contribution of our work will enable the development of tools that will support and allow business process
analysts to verify the correctness of their workflows at design time.

Acknowledgements This work has been carried out in the context of project POSC/EIA/56164/2004 which has been fi-
nanced by FCT and FEDER - Portugal.

References
[1] W. M. P. v. d. Aalst. The application of petri nets to workflow management. The Journal of Circuits, Systems and

Computers, 8(1):21–66, 1998.
[2] W. M. P. v. d. Aalst. Workflow verification: Finding control-flow errors using petri-net-based techniques. In W. v. d.

Aalst, J. Desel, and A. Oberweis, editors, Business Process Management: Models, Techniques, and Empirical Studies,
volume 1806, pages 161–183. Springer-Verlag, Berlin, 2000.

[3] W. M. P. v. d. Aalst and K. van Hee. Workflow Management-Models, Methods, and Systems. The MIT Press, 2002

Copyright line will be provided by the publisher



4 G. Cravo and J. Cardoso: Verifying the Termination of Workflows

[4] K. Anyanwu, A. Sheth, J. Cardoso, J. Miller and K. Kochut, Healthcare Enterprise Process Development and Integration.
Journal of Research and Practice in Information Technology, Special Issue in Health Knowledge Management, 2003.
35(2): p. 83-98.

[5] P. Attie, M. Singh, A. Sheth, M. Rusinkiewicz, Specifying and enforcing intertask dependencies. In Proc. 19th Int.
Conference on Very Large Data Bases, pp. 134–145, Ireland, 1993.

[6] CAPA, Course Approval Process Automation (CAPA). 1997, LSDIS Lab, Department of Computer Science, University
of Georgia: Athens, GA.

[7] J. Cardoso, R.P. Bostrom, and A. Sheth, ”Workflow Management Systems and ERP Systems: Differences, Commonali-
ties, and Applications”. Information Technology and Management Journal. Special issue on Workflow and E-Business,
Kluwer Academic Publishers, Vol. 5, Nos. 3/4, July/October, 2004, pp. 319-338.

[8] U. Dayal, M. Hsu, and R. Ladin. Organizing long-running activities with triggers and transactions. In ACM SIGMOD
international conference on Management of data table of contents, pages 204–214, Atlantic City, New Jersey, 1990.
ACM Press, New York, NY, USA.

[9] J. Eder, H. Groiss, and H. Nekvasil. A workflow system based on active databases. In G. Chroust and A. Benczur,
editors, Proceedings of CON ’94, Workflow Management: Challenges, Paradigms and Products, pages 249–265, Linz,
Austria, 1994.

[10] R. P. Grimaldi. Discrete and Combinatorial Mathematics an Applied Introduction. Addison-Wesley Publ. Company,
second edition, 1989.

[11] R. Hall, J. Miller, J. Arnold, K. Kochut, A. Sheth, M. Weise, Using Workflow to Build an Information Management
System for a Geographically Distributed Genome Sequence Initiative, in Genomics of Plants and Fungi, R.A. Prade and
H.J. Bohnert, Editors. 2003, Marcel Dekker, Inc.: New York, NY. p. 359-371.

[12] M. Kang, J. Froscher, A. Sheth, K. Kochut, J. Miller, A Multilevel Secure Workflow Management System. in Proceed-
ings of the 11th Conference on Advanced Information Systems Engineering. 1999. Heidelberg, Germany: Springer-
Verlag.

[13] J. Klingemann, J. Wsch, K. Aberer, Deriving service models in cross-organizational workflows. In Proceedings of RIDE
- Information Technology for Virtual Enterprises (RIDE-VE ’99), pp. 100–107, Sydney, Australia, 1999.

[14] Z. Luo, Knowledge Sharing, Coordinated Exception Handling, and Intelligent Problem Solving to Support Cross-
Organizational Business Processes, in Department of Computer Science. 2000, University of Georgia: Athens, GA.
p. 171.

[15] P. Muth, D. Wodtke, J. Weissenfels, G. Weikum, and A. Kotz Dittrich. Enterprise-wide workflow management based on
state and activity charts. In A. Dogac, L. Kalinichenko, T. Ozsu, and A. Sheth, editors, Proceedings NATO Advanced
Study Institute on Workflow Management Systems and Interoperability. Springer Verlag, 1998.

[16] D. J. Pym and E. Ritter. Reductive Logic and Proof-Search. Clarendon Press, 2004.

Copyright line will be provided by the publisher


