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ABSTRACT 

Today, companies – large and small – can select Workflow Management Systems (WfMSs) to support their business 
processes. When processes are critical, it is fundamental that WfMS infrastructures continue to provide pre-established 
service levels to users in the face of disruptions. Adaptation ad-dresses precisely this issue. Current architectures do not 
incorporate adequate solutions that enhance WfMSs’ adaptation. In this paper we present a set of comprehensive 
techniques to be used in the development of WfMSs to increase their level of adaptation. We discuss how workflow 
adaptation can be triggered, which adaptation strategies can be applied, and why dynamic changes are in-dispensable to 
carry out adaptation. We not only target adaptation from a functional perspective, but also from an operational 
perspective. For the strategies presented, we describe their implementation to the METEOR WfMS.  
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1. INTRODUCTION 

Workflow Management Systems (WfMSs), an innovative development of the last decade, represent a 
fundamental technological infrastructure that efficiently manages business processes. Organizations currently 
use WfMSs to manage a broad range of distinct applications, such as insurance claims, bank loans, 
administrative procedures, and healthcare processes. Applications can be more oriented to support or enhance 
existing processes, to increase competitive advantage, to reduce costs, and also to manage critical 
infrastructure systems. In many cases, the applications managed by WfMSs are of vital significance to the 
organizations that govern them. The disruption of services provided by WfMSs could easily incapacitate the 
completion of the running process. For example, it is not advisable for an insurance company to delay a 
customer’s insurance claims processing due to a WfMS failure. It is also not accept-able to delay a patient’s 
treatment due to a WfMS malfunction. 

In reaction to disruptions, adaptive procedures must be undertaken to ensure that the workflow systems 
continue to meet expected operational requirements. The adaptation research area copes with the disruptions 
that critical systems face. It has gained the interest of an increasing number of people because our society is 
becoming more and more dependent on computer systems.  

This paper presents a multidimensional solution composed of a set of strategies which, when applied to a 
WfMS, increases its degree of adaptation. We consider not only functional adaptation, but also operational 
adaptation. While functional adaptation is triggered when a workflow component ceases its activity, 
operational adaptation occurs when tasks and workflows do not complete their realization in accordance with 



initial quality of service (QoS) requirements. The ideas and strategies presented are applied to workflow 
systems, but they can be implemented for other distributed systems.  

The set of strategies presented in this paper is closely linked to the METEOR WfMS, since this system 
has been used as a prototype. Thus, section 2 briefly de-scribes the METEOR system and its current 
implementation status as a prototypical example of today’s advanced WfMSs. In section 3 we present the 
conceptual architecture of METEOR. Our architecture functionally divides the modules that compose a 
WfMS. This division results in a separation of concepts that allows a clearer vision of both the components 
that form the WfMS and the areas that need to be considered when implementing adaptation strategies. 
Section 4 shows adaptation and how adaptive methods can be applied to WfMSs. Related work is discussed 
in section 5, and section 6 presents our conclusions. 

2. THE METEOR WORKFLOW MANAGEMENT SYSTEM  

At the LSDIS Lab (Department of Computer Science, University of Georgia, USA) and in collaboration with 
industry and government R&D (Naval Research Laboratories, USA), and application partners (Medical 
College of Georgia, University of Georgia, USA), we have developed the METEOR workflow management 
model and system. METEOR’s architecture includes design, monitor, workflow repository, and enactment 
services. METEOR has adopted semantics and Web services to face the new challenges of the semantic Web. 
The METEOR-S (METEOR for Semantic Web services) [1] project is being developed in collaboration with 
IBM TJ Watson re-search center. METEOR-S is focused on the usage of semantics for the complete lifecycle 
of semantic Web processes, which represent complex interactions between semantic Web services. 
METEOR-S project targets research on four important areas of the lifecycle of semantic Web processes [2], 
namely, annotation, discovery, composition, and orchestration. For each of the research stages in the lifecycle 
a framework, infrastructure or environment has been developed and implemented. 

The enactment service ORBWork has been developed to address specific needs of organizations. 
ORBWork [3] is a CORBA [4] based system oriented to support mis-sion-critical enterprise applications 
requiring high scalability and robustness. It is fully distributed, scalable, and includes multilevel security 
mechanisms [5]. It supports interoperability standards such as JFLOW [6] and SWAP [7]. With recently 
added modules, it also includes an interface that allows for the realization of dynamic changes at the instance 
level, an exception-handling mechanism that is part of the adaptation module, and support for QoS-based 
adaptation and analysis. In this paper we will address the issues associated with these modules. 

3. METEOR’S ARCHITECTURE 

The adaptation of systems is a complex issue. This is even more so in distributed systems because of the 
existence of underlying infrastructures that are not frequently encountered in more traditional centralized 
systems. The adoption of adaptation strategies has a critical impact on early decisions in system 
development; it is both cost-effective and efficient to conduct adaptation analyses at the architecture level, 
before substantial resources have been committed to development (Bass, Clements, & Kazman, 1998). 
Therefore, the first step is to conduct an analysis in order to obtain a clear and accurate understanding of 
WfMSs’ architecture. 

We extend Worah and Sheth’s (1997) classification of WfMSs’ architecture with the addition of the 
schema layer. Therefore, we view workflow systems as having a four-tier layered architecture (Cardoso, Luo, 
Miller, Sheth, & Kochut, 2001): instance level, schema level, workflow level, and infrastructure level. Each 
level corresponds to a functional division of the WfMS, and each has a precise and specific mission (Fig. 1). 
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Fig. 1. Adaptation architecture for WfMSs  

 
To better understand the purpose of each architectural level, we briefly describe them.  
• Infrastructure Level. The infrastructure level includes all the elements that compose the underlying 

WfMS infrastructure. It includes CORBA servers, databases, operating systems, communication 
protocols, hardware, etc.  

• Workflow level. At the workflow level, we find the modules that compose a workflow management 
system. The modules typically include the enactment engine, the monitor, and the repository. 

• Schema Level. As the name suggests, the schema level includes workflow schema definitions. A 
workflow schema is a business process representation that can be interpreted by a WfMS. Workflow 
schemas are generally stored in a repository and are subsequently used by the WfMS.  

• Instance Level. At the instance level, we find issues that are closely related to workflow instances or 
application executions. In this level, adaptation may occur when the design of a workflow schema 
does not anticipate a possible error related to the execution of workflow tasks. 

4. ADAPTATION AND WORKFLOW MANAGEMENT SYSTEMS 

As Charles Darwin noted, “it is not the strongest species that survive, or the most intelligent, but the one most 
responsive to change.” It is also desirable for a workflow management system to be adaptable. Adaptive 
mechanisms dynamically change active workflow instances. This permits WfMSs to be able to adapt 
themselves to a range of different business and organization settings, and also to a changing context (Han, 
Sheth, & Bussler, 1998). This requirement is a direct consequence of the highly changeable environment in 
which business processes normally operate.  

Fig 1 presents our overall WfMS adaptation architecture. This architecture includes: the WfMS and the 
functional levels (the instance, schema, workflow, and infrastructure levels) at which specific types of events 
can occur; the detection and forwarding of events between levels (represented by 2); and event handling 
(represented by 1, 3, 4, 5, 6, 7). 

A typical scenario that requires adaptation is described as follows. When an event is generated at any 
functional level, it is the responsibility of the level where the event occurred to restore its own consistency. 
Depending on the type of event, it may not be possible for the level to self-adapt. This is because additional 
knowledge may be needed to assess the event which is simply not available to the level. In such a case, the 
event is forwarded (1) to the workflow level. Upon receiving the report of an event, the workflow level will 
try to find a local solution to the problem. The workflow level is a good candidate for deriving a solution 
since it is the central point that coordinates the instance and schema levels. If a solution is found locally 
(described in section 4.1 and indicated in Fig. 1 with the letter ‘A’), then a set of adaptive actions are applied 



(2, 7). On the other hand, if the workflow level cannot find a solution, the event is forwarded (3) to the 
adaptation module.  

The adaptation module is a specialized service that incorporates knowledge and various algorithms to 
derive solutions for specific problems. When the adaptation module receives an event, it tries to derive a 
valid solution. Depending on its implementation, the adaptation module can rely on several distinct methods 
to obtain a solution. In section 4.2 we describe two adaptation methods – one to deal with workflow 
exceptions and the other one to manage QoS requirements (indicated in Fig. 1 with the letters ‘B’ and ‘C’, 
respectively). If a solution cannot be found or if only a partial solution is created, then this information is 
forwarded (4) to another module which waits for human involvement. During the procedure described, at any 
point when a valid solution is derived it is sent (5, 6) to the workflow level, which applies corrective actions. 
If corrective actions are necessary at the instance level, it is necessary to use the dynamic change (described 
in section 4.3 and indicated in Fig. 1 with the letter ‘D’), interface (7) to guarantee that the changes are 
applied in a consistent manner. 

4.1 Triggering Adaptation 

Adaptation strategies can be hard-coded into the workflow system. In this case, they are called built-in. The 
advantage of using such strategies is that the user does not have to set up or configure any mechanism in 
order for the workflow system to handle events. The disadvantage is that there is no flexibility for a user to 
customize the system.  

In METEOR, events are represented by exceptions. When an event is identified in a component, an 
exception is generated. METEOR’s system architecture is composed of several components that form the 
component hierarchy depicted in Fig 2.a; this includes the WfMS, the task scheduler, the task manager, and 
task realization.  

Each component is said to be competent to handle an event if it has a handler associated with it. Having a 
handler for an event indicates that the component has the knowledge and techniques to derive a solution for 
the problem. For that reason, the component hierarchy shown in Fig 2.b induces a competence hierarchy 
(Kochut, Sheth, & Miller, 1999). 

The strategy used to deal with events is called the competence-driven exception handling strategy. It 
works in the following way. In the case that an event occurs, it is first made available to the workflow 
component in which the flow of control resides. If this component is competent to handle the event, i.e. if it 
has at least one handler for the given event type, it deals with the event. On the other hand, if the component 
does not have the competence for the event, the event is passed on to the next higher level in the competence 
hierarchy. 
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Fig. 2. METEOR model competence hierarchy 

 
Since the events form a hierarchy, a given task may have more than one suitable handler. In this case, the 

most specific handler is used. The workflow runtime system has default handlers for all workflow-related 
events. In other words, the workflow manager is competent to handle any event, whether system or 
application-defined. The handlers invoke an adaptation mechanism whenever necessary and wherever 
possible. If an event is detected while a task manager is attempting to run a task realization (for example, a 



computer program), the task manager itself may be competent to handle the event with one of its internal 
handlers. Such handlers typically involve retrying the task realization a number of times, before throwing the 
event to a higher-level component. 

4.2 Adaptation Strategies 

In this section we present two runtime time strategies which increase the adaptation of workflow systems: 
exception handling and Quality of Service (QoS) management. To illustrate the use of adaptation, we 
describe two adaptable systems that work in conjunction with the METEOR system. The first system deals 
with exceptions – a well-defined class of events that may occur during the realization of a workflow instance. 
The second system is responsible for adapting workflow instances when their Quality of Service (QoS) 
reaches threshold values. While the first system handles functional errors, the second one deals with 
operational errors. 

4.2.1 Adaptation and Exception Handling 
The need for modeling exceptions in workflow systems has been widely recognized (Casati, 1998). An 
exception refers to abnormal events not modeled by the underlying workflow management system, deviations 
between what we plan and what actually happens (Luo, 2000). 

The architecture developed (Luo, 2000) and implemented in the METEOR system includes a 
sophisticated exception-handling mechanism. During a workflow schema execution, if an exception occurs is 
propagated to the case-based reasoning (CBR) exception handling module, the CBR system is used to derive 
an acceptable exception handler (Luo, Sheth, Miller, & Kochut, 1998). The system has the ability to adapt 
itself over time, based on knowledge acquired about past experiences that will help to solve new problems. 
As the CBR system collects more cases, the WfMS becomes more resistant, thus preventing unwanted states. 
This is because it has a larger set of knowledge to handle future exceptions. 

Human involvement is needed when acceptable exception handlers cannot be automatically obtained. 
Solutions provided by a person will then be incorporated into the case repository. The effects of the 
exception-handler candidates on the workflow system and the applications are then evaluated. Thus, when an 
exception is handled, modifications to the workflow system or applications may be needed. The exception-
resolution process is actually the population process of the CBR templates. The exception-resolution 
procedure performs the following tasks (Luo, 2000):  

 
• The coordination mode of exception handling is determined according to the type of process 

interactions among business processes. 
• The contacting party as well as an interaction point is determined. A contacting party is the entity 

that is responsible for handling exceptions in the processes of its organization. An interaction point is 
where the interactions can take place. 

• The compensation scheme is found, if necessary. The nature of the processes will affect the 
compensation schemes. When a compensation schema does not exist, human involvement is allowed 
to determine the compensation schema. 

• The rework scheme is found, if necessary. A rework scheme is a plan for the processes to make 
progress from the failure point. 

 
The retrieval procedure of similar previous cases is based on a similarity measure that takes into account 

semantic and structural similarities and differences among the cases. A similarity measure is achieved by 
obtaining the following: 

 
• Exception similarity. Exception similarity is based on the is-a relationship in the exception hierarchy 

in METEOR model 3 (Kochut, 1999).  
• Workflow similarity. This is a workflow structural similarity, such as AND, OR building-block 

similarity. 
• Context similarity. This is obtained by computing the nearest neighborhood function of the quantified 

degrees of semantic similarities over workflow application data. To accomplish this, a concept tree is 
built, and the distances between concepts are stored in the case repository. 



We use a pattern-guided case adaptation scheme. There are four steps in the adaptation process in this 
pattern-guided adaptation scheme. 

 
• Classifying the exception pattern. At this step, the exception pattern is identified. If it is a new 

pattern, it is added to the exception pattern repository.  
• Searching the handling pattern. Once the exception pattern is determined, a search is conducted for 

the handling pattern. At this step, the exception handling coordination mode is determined. The 
contacting party, as well as the interaction point, is also determined by analyzing the interactions 
among business processes. 

• Selecting a handler pattern. A handler pattern is selected, based on the search resulting from step 2. 
The compensation scheme as well as the rework scheme is determined.  

• Initializing the handler. The CBR handling template is populated. A new case is created which 
results from the adaptation of an existing one. 

4.2.2 Adaptation and Workflow Quality of Service 
Workflow QoS represents the quantitative and qualitative characteristics of a workflow application necessary 
to achieve a set of initial requirements (Cardoso, Miller, Sheth, Arnold, & Kochut, 2004). It addresses the 
non-functional issues of workflows. Quantitative characteristics can be evaluated in terms of concrete 
measures, such as workflow execution time and cost, while qualitative characteristics specify the expected 
services offered by the system, such as security and fault-tolerance mechanisms. 

In METEOR, workflows follow a QoS model (Cardoso et al., 2004) composed of three dimensions: time, 
cost, and reliability. The tasks and transitions of a workflow are initialized with QoS estimates. To determine 
useful estimates, a combination of a priori estimates from designers and estimates computed from prior 
executions are used, with the historical data playing a larger role as more data is collected. Once QoS 
estimates are determined, it is then possible to compute a workflow QoS. The computation can be achieved 
using a mathematical (Cardoso et al., 2004) or a simulation approach (Cardoso & Sheth, 2003). The selection 
of one of the methods is based on a tradeoff between time and accuracy of results.  

At runtime, the quality of service of workflow instance is monitored. The monitoring tools seek to 
identify the QoS status of instances and the possible occurrence of deviations from the desired metrics. When 
QoS deviations are identified, adaptation mechanisms are used to derive and apply reparative actions to the 
faulty instances. 

Let us consider the following example. Several workflow instances are running correctly and the quality 
of service specifications are being followed when a task starts to exhibit poor time QoS metrics. As a 
consequence, the workflow QoS specifications of time are no longer satisfied. The adaptation module 
identifies this problem and uses a problem-solving technique to derive a solution. In this case, the adaptive 
system infers that the faulty task needs to be replaced by an equivalent task. This replacement can be 
accomplished by applying dynamic changes to the workflow instances, either manually or automatically 
(Cardoso et al., 2001). 

Automatically finding a task to replace a faulty one is challenging. Therefore, this step may in some cases 
require human intervention. Nevertheless, to minimize human involvement, sophisticated discovery 
mechanisms to search for tasks can be implemented. In some cases, a discovery mechanism can search for 
and find a task without human intervention. One approach to increase the degree of automatism is to describe 
tasks and their operational metrics semantically (Cardoso & Sheth, 2003). This description allows the 
discovery process to find tasks not only based on their functionality, but also based on their operational 
metrics, i.e. based on their QoS. Once a task with the required functionality and QoS is found it can replace 
the faulty task in a workflow. 

4.3 Adaptation and Dynamic Changes 

The two adaptation methods described in the previous sections cannot successfully accomplish their 
objectives without having the support of a dynamic change layer. Adaptive methods rely on a dynamic 
change layer to adapt running instances. 

Traditional workflow systems are adequate to support business processes which are static (Reichert & 
Dadam, 1998), with no need for the support dynamic changes at runtime. But, recently there has been an 



increasing demand for developing systems with dynamic capabilities (Horn & Jablonski, 1998; Weske, 
Vossen, & Medeiros, 1996), with a special emphasis on dynamic changes at the workflow instance level. 

As workflow processes are instantiated, changes in the environment or generated by previous activities 
may invalidate the current workflow instances, requiring reparative actions (Berry & Myers, 1998). Long-
running applications which are heterogeneous, autonomous, distributed may require support for dynamic 
reconfiguration when machines fail, services are moved or withdrawn, and user requirements change. In such 
environments, it is essential that the structure of applications be modified to reflect these changes 
(Shrivastava & Wheater, 1998). 

We classify the different types of change into two main categories: primitive change and composite 
change. Primitive change can be further divided into immediate change and incremental change. Immediate 
changes can be introduced in one step. Incremental changes, on the other hand, deal with situations where we 
cannot apply the changes to a particular instance in a one-step procedure. For example, if a set of instances is 
waiting for the completion of a task t, and if we dynamically change t specifications, the waiting instances 
may enter an inconsistent state, since the information that they have relative to the previous task t no longer 
reflects the current state of the system. 

In our work, most of the primitive changes implemented are incremental changes (Tabel 1). Composite 
changes are composed of a sequence of primitive changes that describe an elaborate process of definition 
change (e.g., adding a task between two existing tasks is the result of applying a sequence of primitive 
changes). 

Table 1. Dynamic change classifications 

Dynamic Change Change Type Implemented 
AND to OR Join Change Incremental Yes 
OR to AND Join Change Incremental Yes 

Split Change Incremental Yes 
Addition of an AND Transition Incremental Yes 
Addition of an OR Transition Incremental Yes 
Deletion of a Transition Incremental Yes 
Data Object Transfer Addition Incremental Yes 
Data Object Transfer Deletion Incremental Yes 
Parameter Mapping Change Incremental Yes 
Parameter Type Change Incremental No 
Task Type Change Incremental No 
Task Invocation Change Composite change No 
Insertion of a Task Composite change Yes 
Deletion of a Task Composite change No 

 
In the ORBWork system, we have implemented a layer that permits the consistent realization of the 

dynamic change of instances (Chen, 2000). The implemented module guarantees that all consistency 
constraints which have been ensured prior to a dynamic change are also ensured after the workflow instances 
have been modified (Reichert & Dadam, 1998). The dynamic change interface was built on top of the 
CORBA ORB infrastructure, using IIOP as the underlying communication protocol. Additional functions 
have been added to the IDL interface of the CORBA object responsible for managing tasks. 

5. RELATED WORK 

To support dynamic workflow adaptations, Greiner et al. (Greiner et al., 2004) have developed a rule-based 
approach for the detection of logical failure events. Their approach has been implemented within the WfMS 
ADEPTflex and workflow adaptation system AdaptFlow. Their systems use a rule-based approach for the 
detection of logical failure events (exceptions). In our system we use a CBR approach. We believe that a 
CBR system is more adaptive since as the CBR system collects more cases, the WfMS becomes more 
resistant since it has a larger set of knowledge to handle future exceptions. Moreover, their approach only 



deals with logical failure events, while we also address the problem of adapting instances to maintain a 
specified level of Quality of Service. 

Adams et al. (Adams, Edmond, & Hofstede, 2003) extend the applicability of Activity Theory to the 
implementation of more flexible WfMSs. Activity theory offers a number of interesting solutions for 
workflow adaptability, flexibility, evolution and exception handling. Their research describes the activity 
theory principles that should be implemented when developing WfMSs. Unfortunately, no implementation 
has been done, and their work does not address QoS issues. 

Siebert (Siebert, 1999) proposes an integrated approach for adaptive workflow support. His work 
describes extensions to the SWATS architecture in order to enable the executeon of unstructured process and 
illustrates how an adaptive support layer can be integrated to extend existing workflow management systems. 
The adaptive layers presented do not address directly the problem of handling exceptions nor QoS 
monitoring and adaptation. 

6. CONCLUSIONS 

The new requirements of modern systems in our highly technological society demand that critical systems be 
adaptable. Our work focuses on the adaptation of workflow management systems (WfMSs). 

In this paper we have presented a set of comprehensive techniques to be used in the development of 
WfMSs to increase their level of adaptation. To develop a successful solution, the first step is to develop a 
conceptual architecture for workflow systems which will provide a fundamental framework for developing 
an adaptable WfMS architecture. We have defined an adaptable architecture that functionally divides WfMSs 
into four levels: instance level, schema level, workflow level, and infrastructure level. Thereafter, we start by 
discussing how the need for adaptation can be triggered. We not only target adaptation from a functional 
perspective, but also from an operational perspective. It is important to understand that adaptation does not 
restrict its span to functional errors, i.e. is the workflow system or are the tasks working or not? Adaptation 
also addresses operational issues, such as the QoS management of workflow instances. To illustrate how 
functional and operational deviations can be handled, two adaptive modules are described. The first one deals 
with exceptions and the second one targets the QoS of workflows. Finally, we explain the importance and 
discuss the development of a dynamic change layer to carry out adaptation strategies. 

Although the majority of the ideas presented were implemented in METEOR system, the concepts and 
ideas are independent of the WfMS chosen. Therefore, it is, in principle, possible to add the notions 
presented in this paper to most of the workflow management systems available today.  
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