
39th Annual ACM Southeast Conference, Athens, Georgia, USA, March 16-17, 2001.

Survivability Architecture for Workflow Management Systems

Jorge Cardoso, Zongwei Luo, John Miller, Amit Sheth and Krys Kochut

LSDIS Lab, Computer Science Department
University of Georgia

Athens, GA 30602, USA
jcardoso@arches.uga.edu,{luo, amit,jam,kochut}@cs.uga.edu

Abstract- The survivability of critical infrastructure systems has
been gaining increasing concern from the industry. The
survivability research area addresses the issue of infrastructure
systems that continues to provide pre-established service levels to
users in the face of disorders and react to changes in the
surrounding environment. Workflow management systems need to
be survivable since they are used to support critical and sensitive
business processes. They require a high level of dependability and
should not allow process instances to be interrupted or aborted due
to failures. Moreover, due to their sensitivity, business process
instances have to allow dynamic changes in order to reflect any
modification in the environment. In this paper we describe the
work on increasing the survivability of the METEOR workflow
management system. We define an architecture describing the
main technologies that enable survivability in WfMS. Using the
developed architecture we describe two modules that have been
implemented: dynamic change and adaptation module.

1 Introduction
The dependence of infrastructure systems on fragile
information systems puts organizations at risk of disastrous
failure. Threats that may compromise a system may be
originated from several sources; human error, application
fault, security problems, network failure, natural
catastrophe, etc. In reaction of such disruptions, diagnostic,
corrective procedures and reconfiguration must be taken to
ensure that the infrastructures continue to meet the original
requirements. Disruptions that can occur are well illustrated
by many incidents that have already been reported. Just in

the security area, 4,299 security-related incidents on the
Internet have been reported to CERT between 1989 and
1995 [14].

Categorized as an information system, workflow
management systems (WfMS) are used in a broad range of
distinct applications. Applications can be more oriented to
support or enhance existing processes, to increase
competitive advantage, to reduce costs, and also to manage
critical infrastructure systems. The applications that are
managed by the WfMS have a vital significance to the
organizations that govern them. In most cases disruptions of
the services provided by the WfMS will incapacitate the
completion of the running process instances. Additionally
since the business logic is captured by the workflow system
and may not be available in any other form, the organization
faces the possibility to completely stop the activities
represented by the damaged business processes. It is
therefore clear that mechanisms must enable the reliability
and decrease the risk of disruption that will lead to system
columns breakdown and organization malfunction.

In order to cope with the disruptions that critical
systems face new research areas need to be explored. The
survivability research area, in the context of information
systems, is one of them and it has started to concern an
increasing number of people. This is primarily because our
society is becoming more and more dependent on computer
systems. The survivability keyword describes a class of
systems that is able to "complete its mission in a timely
manner, even if significant portions are incapacitated by
attack or accident" [2]. Ellison et al. [7] refines the initial
description requiring a survivable system to be able to
protect against and react to any kind of attack, failure or
accident that, alone or in combination, threatens the ability
of a system to fulfill its mission in a timely fashion. Based
on this definition we describe workflow survivability as the

ACM COPYRIGHT NOTICE. Copyright © 2001 by the Association for Computing
Machinery, Inc. Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post
on servers, or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Publications Dept, ACM Inc., fax +1 (212) 869-0481, or
permissions@acm.org.

39th Annual ACM Southeast Conference, Athens, Georgia, USA, March 16-17, 2001.

capability of a workflow management system to maintain a
pre-established acceptable running mode and behavior after
the occurrence of unexpected errors, accidents, failures or
attacks, in a timely manner and to allow the adaptation and
evolution of the supported processes in response to its
surrounding environment. In our definition we include the
need for adaptation and evolution since business processes
and their environment are dynamic by nature. In order to
respond to the emergent needs expressed by today’s
systems, the workflow management systems must follow
the new requirements and allow the survivability of the
entire system.

In this paper we describe a survivability architecture for
WfMS. The developed architecture is based on the diverse
functional modules that compose a WfMS. Therefore we
start by functionally dividing the several components
involved in the runtime environment of a workflow
management system in four categories: instance level,
schema level, workflow level and infrastructure level. For
each functional level we briefly mention some solutions that
may be implemented to increase and guarantee
survivability. Finally we present two survivability units
implemented for the METEOR WfMS. The first module
allows the specification of dynamic changes to running
instance of workflow schemas, which is a fundamental
feature to allow adaptation and evolution. The second
module, an adaptation module, allows the handling of
exception generated during the execution of workflow
instances based on knowledge acquired about past
experiences.

2 METEOR - Workflow Management
System

A Workflow Management System (WfMS) is a system or
set of tools that completely defines, manages and executes
processes schema (“workflows”) through the execution of
software whose order of execution is driven by a computer
representation of the workflow logic [12]. The idea behind
the introduction of a WfMS in an organization consists in
mapping processes that were executed manually into a
workflow scheme that has a binary representation that will
be executed and supervised by a computerized system. Such
systems clearly give a competitive advantage to an
organization, allowing re-engineering practices and
streamlining, control and automation of existing processes.

In this context, at the LSDIS Lab and with collaboration
with the Naval Research Laboratory, we have developed the
METEOR workflow management model and system.
METEOR’s architecture includes design, monitor, workflow
repository, and the enactment system. Due to different needs
in organizations we have developed two enactment service:
ORBWork [22] and WEBWork [7]. ORBWork is a CORBA
based system oriented to support mission-critical enterprise

applications requiring high scalability and robustness. It is
fully distributed and scalable. Since we have used Java as
the language for its development the system is portable
across platforms. It supports interoperability standards such
as JFLOW [15] and SWAP [29]. The use of open standards
such as CORBA makes it a good candidate to interoperate
with existing systems in disparate distributed and
heterogeneous computing environments. With the recently
added modules it also includes dynamic changes at the
instance level and an exception handling mechanism that is
part of the adaptation module. The concepts used in
WEBWork architecture are very similar to the one used in
ORBWork system. WEBWork implementation relies solely
on Web technology as the infrastructure for the enactment
system. It is more suitable for static business processes that
involve limited data exchange. The main goal is based on
the easy development of workflow application, installation,
use and maintenance.

3 Survivability architecture for
workflow management systems

As we have mentioned previously the survivability of
systems is a complex issue. And it is even more delicate in
distributed systems because of the existence of
dependability problems that are not frequently encountered
in more traditional centralized systems. To develop
successful survivability solutions for systems it is necessary
to have a clear understanding and precise global vision of
their architecture. Survivability purposes impact critical
early decisions in system development, it is both cost-
effective and efficient to conduct survivability analyses at
the architecture level, before substantial resources have been
committed to development [3][16].

3.1 Four level architecture for WfMS
Depending on the type of problem that may affect the
behavior of a workflow system, different strategies can be
used to restore its correct activity. In [5] a division and
classification of sources of failures in workflow systems is
made. The classification identifies two categories of
failures: basic and application failures. Basic failures
correspond to failures of the WfMS or of its underlying
infrastructure, such as hardware failures, network failures,
or failures of the DBMS supporting the WfMS. Application
failures are related with malfunctions of instances invoked
by the WfMS. This classification is not sufficient, and needs
to be expanded in order to satisfy the survivability
requirements. We classify architecturally failures in
workflow management systems in four layers (Figure 1):
instance level, schema level, workflow level and
infrastructure level. In each of the layers we can identify a
distinct classes of problems that a workflow system may

39th Annual ACM Southeast Conference, Athens, Georgia, USA, March 16-17, 2001.

encounter and that may jeopardize its survivability. This
functional division gives four main architectural areas that
need to be addressed. Each one has a specific class of
problems that need to be handled properly.

Instance level
At the instance level layer we find all the issues that are
closely related to instances or application execution. In this
layer, failures may occur when the design of a workflow
schema did not anticipate a possible error related to the
execution of a workflow task. For example, a workflow
instance is running correctly when a specific task is unable
to complete properly. This may be due to the inability to
connect to a resource (e.g. DBMS) because of an invalid
address or port number, insufficiency of requested resources
(e.g. disk space or memory) or unauthorized access to a
resource (e.g. ftp server). This anomalous situation is
captured, suitably represented and delivered to be handle by
the survivability module. Several possible actions may be
taken to ensure that the system still continues in a stable and
acceptable state: skip the faulty task, retry the task
realization, abort current faulty instance, start another
workflow instance, request user involvement, dynamically
reconfigure the workflow or raise and handle an exception.

Schema level

As the name suggests the schema level regroups the
workflow schema definitions. A workflow schema is
business process representation that is suitable to be
interpreted by a WfMS. A workflow schema is the static
view of a workflow instance. Workflow schemas are

generally stored in a repository and subsequently used by
the WfMS. At this level we need to guarantee that the
existing schema exhibit a valid structure according to the
organizational context. Furthermore, if an organization
adopts mechanisms that allow the evolution or adaptation of
schemas, we need to verify the correctness of the generated
schemas under the current environment.

Workflow level
At the workflow level we find a layer that represents the
modules that compose a workflow management system.
Those workflow modules, depending in the workflow
system, will typically include the enactment module, the
monitor and repository. In this layer, failures may occur
when any of the modules is unable to maintain an
acceptable behavior. For example, the workflow server
managing task a, task b and task c entered an invalid state
where no more useful processing is done regarding task a.
This may be due, for example, to a buffer overflow in the
manager of task a. In this situation we may possibly restart
task manager a, abort instances involving task a,
dynamically reconfigure the instances to exclude task a, or
request a user involvement.

CORBA server, communications,
OS, Hardware, etc .

Su
rv

iv
ab

ili
ty

Su
rv

iv
ab

ili
ty

Schema Level

Workflow Level

Infrastruc ture Level

WfMS components

Security

Recovery

Fault-tolerant

Mobility

Scalability

A

B

C D

N1 N2 FE Dynamic
Change

Evolution

Adaptation
Instance Level

Workflow schemas

CORBA server, communications,
OS, Hardware, etc .

Su
rv

iv
ab

ili
ty

Su
rv

iv
ab

ili
ty

Schema Level

Workflow Level

Infrastruc ture Level

WfMS components

Security

Recovery

Fault-tolerant

Mobility

Scalability

A

B

C D

N1 N2 FEA

B

C D

N1 N2 FE Dynamic
Change

Evolution

Adaptation

Dynamic
Change

Evolution

Adaptation
Instance Level

Workflow schemas

Figure 1- Survivability architecture for Workflow Management Systems

39th Annual ACM Southeast Conference, Athens, Georgia, USA, March 16-17, 2001.

Infrastructure level
The infrastructure level regroups all the elements that
compose the underlying infrastructure that supports the
WfMS. It includes CORBA servers, operating systems,
communication protocols, hardware, etc. A malfunctioning
of one of those components may reveal to be quite complex
to recover from. For example, the underlying operating
system, where a workflow scheduler was running, suddenly
ceases its activity due to a fault in the physical memory.
This type of situation is the most serious one since it
requires dealing; not only with a problem that happen at the
infrastructure level, but also with the recovery of the
workflow scheduler that has crashed, that is an workflow
level error, and also with the recovery of all the instances
that were running, an instance level problem.

3.2 Survivability components
Survivability is a multidisciplinary research area. In the
architecture proposed we have identified seven main areas
that need a special attention: evolution, adaptation,
scalability, mobility [31], fault-tolerance [1][26][11],
recovery [8] and security [25][28]. We believe that all this
domains need to explored to archive survivable systems. In
addition, when dealing with WfMS, we need to consider the
above domains for each layer of a WfMS.

In this paper we restrict our study to adaptation at the
instance layer, describing the work done in this domain.
Two major issues have been addressed in the context of
survivability (Figure 2): dynamic change and adaptation.
The dynamic change interface allows the modification of
running workflow instances. This interface directly creates a
necessary and indispensable basic building block to the
support of adaptation and evolution at the instance level. We
also provide a user interface to the dynamic change interface
allowing an administrator to manually modify workflow
instances in execution. Supporting dynamic changes
significantly increases the flexibility and robustness for a
workflow management system to cope with all kind of
unplanned events during the execution of the business
process. At the adaptation level we have implemented a
sophisticated exception handling mechanism that allows the
system to adapt, automatically or via human involvement, in
response to changes in the environment [18].

Figure 2 - Survivability architecture (adaptation and
evolution) at the instance level

3.2.1 Dynamic changes
Traditional WfMS are adequate to support business
processes with a defined structure and with no need for ad
hoc deviations or dynamic extensions at run-time [8]. But,
recently there has been an increasing demand in developing
WfMS with dynamic capabilities, with a special emphasis to
dynamic changes at the workflow instance level. This makes
sense since there are in reality very few business processes
that are static (i.e. without a need to change their business
practices over time). As workflow processes are
instantiated, changes in the environment or previous
activities may invalidate the current workflow instances,
requiring adaptation or evolution. It is therefore required to
continuously repair or improve the execution of a workflow
process [2]. A good example of the need of dynamic
reconfiguration can be found in [13]. Additionally, long
running heterogeneous autonomous distributed applications,
like ORBWork, require support for dynamic reconfiguration
since machines fail, services are moved or withdrawn and
user requirements change. In such an environment, it is
essential that the structure of applications can be modified to
reflect such changes [27]. Therefore one of the objectives of
dynamism consists in allow the structural change, both
control and data flow, of instances at run-time without
interfering with the other instances not implicated in the
modification and without loss of run-time performance.

In ORBWork system we have implemented a layer that
permits the realization of dynamic change of instances in a
consistent manner [6]. The implemented module guarantee
that all consistency constraints that have been ensured prior
to a dynamic change are also ensured after the workflow
instances have been modified [24].

39th Annual ACM Southeast Conference, Athens, Georgia, USA, March 16-17, 2001.

Classification of dynamic changes
Before implementing the dynamic change extensions to the
ORBWork system we made a classification of different
types of changes that can be applied to a workflow instance
(Table 1). We classify the different types of changes in two
main categories: primitive change and composite change.

Primitive changes are composed of “atomic” changes
that can only be applied to process definition totally or not
applied at all (e.g., adding a synchronous transition between
two tasks). Primitive changes can be further divided into
immediate changes and incremental changes. Immediate
changes can be introduced in one step without losing the
correctness and consistency of the workflow enactment
system. Incremental changes, on the other hand, deal with
situations where we cannot apply the changes to a particular
instance in a one step procedure. For example, if a set of
instances are waiting for the completion of a task t, and we
dynamically change t specifications, the waiting instances
may enter an inconsistency state since the information that
they have relatively to the previous task t does not reflect
any more current state of the system. In our work, most of
the primitive changes implemented in ORBWork are
incremental changes.

Composite changes are composed of a sequence of
primitive changes that describe a elaborated process
definition change (e.g., adding a task between two existing
tasks is the result of applying a sequence of primitive
changes).

Dynamic Change Change Type
AND to OR Join Change Incremental
OR to AND Join Change Incremental
Split Change Incremental
Addition of an AND Transition Incremental
Addition of an OR Transition Incremental
Deletion of a Transition Incremental
Data Object Transfer Addition Incremental
Data Object Transfer Deletion Incremental
Parameter Mapping Change Incremental
Parameter Type Change Incremental
Task Type Change Incremental
Task Invocation Change Composite change
Insertion of a Task Composite change
Deletion of a Task Composite change

Table 1 - Dynamic changes classification

Status of implementation
From the classification of different types of changes that can
be applied to a workflow instance exposed in Table 1 we
have implemented the ones showing in Table 2.

Table 2 - Status of implementation

Following the architectural implementation of
ORBWork, the dynamic change interface was built on top
of the CORBA ORB infrastructure and using IIOP as the
underlying communication protocol. Additional functions
have been added to the IDL interface of the CORBA object
responsible for managing tasks.

3.2.2 Adaptation
As Charles Darwin mentioned - ”It is not the strongest
species that survive, or the most intelligent, but the one most
responsive to change”. Adaptation characterizes the ability
of a system to adjust to environmental conditions. It is the
modification of a system or its parts that makes it more fit
for existence under the conditions of its environment. The
importance of adaptation has been recognized in several
areas, that include software [21][10], database systems and
mobile systems [31], and fault-tolerant systems [11].

To better understand the concept of adaptation lets
consider a very simple example [11]: the Ethernet protocol.
It may be not completely obvious but the Ethernet protocol
is considered to be an adaptive algorithm. Analyzing its
behavior we verify that the protocol increase or decrease the
interval after which it tries to resend the message based on
the collisions on the broadcast medium. Thus the algorithm
changes its behavior in response to changes and events in
the environment making it adaptable.

In the domain of workflow management systems we
also desire to obtain adaptable features. This permits
workflow systems to be prepared to adapt themselves to a
range of different business and organization settings and
also to a changing context [9]. This requirement is a direct
consequence of the highly changeable environment existing
around business processes. The environment can be
characterize has heterogeneous and is affected, in a global
perspective, by events like political decisions, new company
polices, new laws and regulations, and changes in global

Dynamic Change Status
AND to OR Join Change Implemented
OR to AND Join Change Implemented
Split Change Implemented
Addition of an AND Transition Implemented
Addition of an OR Transition Implemented
Deletion of a Transition Implemented
Data Object Transfer Addition Implemented
Data Object Transfer Deletion Implemented
Parameter Mapping Change Implemented
Insertion of a Task Implemented

39th Annual ACM Southeast Conference, Athens, Georgia, USA, March 16-17, 2001.

markets. In a more fine grain analysis we may find that the
environment also include simple elements, like the people
involved in the execution of a business process, or the
resources used to archive the goals of the process. Let’s
consider the following scenario: a workflow instance is
running when a task cannot be completed due to the
inability to access a DBMS. At this point a change in the
internal environment is identified. In consequence an event
or exception is generated describing the change in the
environment. A competent module subsequently processes
the event, with the objective of restoring the environment to
a stable state.

Having this scenario in mind we have developed a
module that allows the METEOR workflow management
systems to be an adaptable system. The module deals with
exceptions, a well-defined class of events that may occur
during the realization of a process instance.

3.2.3 Exception handling a case of
adaptation

Although research in workflow management has been very
active for several years, and the need for modeling
exceptions in information systems has been widely
recognized only recently the workflow community has
tackled the problem of exception handling [5]. An exception
refers to facts, situations, or abnormal events not modeled
by the underlying workflow management system or
deviations between what we plan and what actually happen
[18].

The architecture developed [18] and implemented in
ORBWork runtime system includes a sophisticated
exception handling mechanism with the crucial requirement
to allow workflow management system to be deployed in
cross-organizational settings. During a workflow schema
execution if an exception occurs and it is propagated to the
case-based reasoning exception handling module, the CBR
system is used to derive an acceptable exception handler
[20]. The system has the ability to adapt itself over time,
based on knowledge acquired about past experiences that
will help to solve new problems. As the CBR system
collects more cases, the global WfMS becomes more
resistant, preventing unwanted states, since it has a larger set
of knowledge to handle future exception. A simple example
is shown in Figure 3.

Figure 3 - Example of adaptation using Exception
Handling mechanism

System description
A knowledge-based approach of managing the exception
handling knowledge is used in our exception handling
system. A case-based reasoning (CBR) mechanism is used
to improve the exception handling capabilities [18]. In this
approach, information about previous problem solving cases
is retrieved to help solve new problems [18]. During the
workflow execution, if an exception is propagated to the
CBR based exception-handling component, the case-based
reasoning process is used to derive an acceptable exception
handler. Human involvement is needed when acceptable
exception handlers cannot be automatically obtained.
Solutions given by a person will be incorporated into the
case repository. Effects of the exception handler candidates
on the workflow system and applications will be evaluated.
Thus, when the exception is handled necessary
modifications to the workflow systems or applications may
be made. The exception resolution process is actually the
population process of CPR templates. The actual exception
resolution performs the following tasks [19]:
• The coordination mode of exception handling will be

determined. The coordination mode will be determined
according to the type of process interactions between
business processes.

• The contacting party as well as interaction point will be
determined. A contacting party is one of the entities that
are responsible for handling exception in the processes in
its organization. An interaction point is where the
interactions can take place.

• The compensation scheme will be found if necessary. The
nature of the processes will affect the compensation
schemes. Human involvement is allowed in determining
the compensation schemes.

• The rework scheme will be found if necessary. Rework
scheme is the plan for the processes to make progress

Instanc e Level

A

B

C D

N1 N2 FE

1) Exc ep tion genera ted

Dynamic Change

Exc ep tion Hand ling Module
Adaptation

2) Exec ute hand ling p roc edure

3) App ly c hanges (ex: rep lac e task)

B1

Instanc e Level

A

B

C D

N1 N2 FEA

B

C D

N1 N2 FE

1) Exc ep tion genera ted

Dynamic Change

Exc ep tion Hand ling Module
Adaptation

2) Exec ute hand ling p roc edure

3) App ly c hanges (ex: rep lac e task)

B1

39th Annual ACM Southeast Conference, Athens, Georgia, USA, March 16-17, 2001.

from the failure points. Human involvement is allowed in
determining the rework schemes.

The retrieval procedure of similar previous cases is

based on the similarity measure that takes into account both
semantic and structural similarities and differences between
the cases. A similarity measure is achieved by get the
following [19]:
• Exception similarity. Exception similarity is based on the

is-a relationship in the exception hierarchy in METEOR
model 3.

• Workflow similarity. It is the workflow structural
similarity such as AND, OR building block similarity.

• Context similarity. It is obtained by computing nearest
neighborhood function of the quantified degrees of
semantic similarities over workflow application data. To
do so, a concept tree should be built first [18]. The
distances between concepts will be stored into the case
repository.

We use a pattern guided case adaptation scheme [19].

There are four steps in the adaptation process in this pattern
guided adaptation scheme. The process is really the
population process of the CPR handling template [19].
• Classifying the exception pattern. At this step, the

exception pattern will be identified. If it is a new pattern,
it will be added to exception pattern repository.

• Searching the handling pattern. Once the exception
pattern is determined, a search will be conducted for the
handling pattern. At this step, the exception handling
coordination mode will be determined. Contacting party
as well as interaction point is also determined by
analyzing the interactions among business processes.

• Selecting a handler pattern. A handler pattern will be
selected based on the search result from step 2. The
compensation scheme as well as the rework scheme will
be determined.

• Initializing the handler. The CPR handling template will
be populated. An adapted case is created.

4 Conclusions
The new requirements of modern systems in a highly

technological society demand that critical systems to be
survivable. Survivability addresses a set of characteristic
that systems should have in order to be resistant to failures
and changes in the surrounding environment. In order to
archive those two goals, security, recovery, fault-tolerant,
mobility, scalability, adaptation and evolution factors have
to be considered. Our work focuses the survivability issues
of workflow management systems (WfMS). We have
defined a survivable architecture that functionally divide
workflow WfMS in a four-layer architecture and include the
seven fundamental survivable characteristics mentioned

previously. This overall architecture sketches a global
picture of the main issues that have to be solved. In this
context two main modules have been developed for the
METEOR system to increase its survivability: dynamic
change and adaptation. Dynamic changes module gives an
interface that permits the change of workflow instances.
This module is indispensable to allow adaptation and
evolution at the instance level. The adaptation module
developed deals with exception that occur during instance
realization and is based on case base reasoning algorithms.

5 References

[1] Alonso, G., Hagen, C., Agrawal, D., El Abbadi, A.,
Mohan, C. “Enhancing the Fault Tolerance of Workflow
Management Systems”. IEEE Concurrency, Vol. 8, No.3, pp
74-81, Jul-Sep, 2000.

[2] M. Barbacci. “Survivability in the age of vulnerable
systems”. IEEE Computer, 29(11):8, Nov, 1996.

[3] L. Bass, P. Clements and R. Kazman, “Software
Architecture in Practice”. Addison Wesley, 1998.

[4] Pauline M. Berry and Karen L. Myers. “Adaptive
Process Management: An AI Perspective”. The 1998 ACM
Conference on Computer Supported Cooperative Work.
Seattle, Washington, 1998.

[5] Fabio Casati, "A Discussion on Approaches to Handling
Exceptions in Workflows". Proceedings of 1998 Computer-
Supported Cooperative Work (CSCW 1998), Towards
Adaptive workflow Systems Workshop, Seattle, WA, 1998.

[6] Yufeng Chen, ”Design and Implementation of Dynamic
Process Definition Modifications in OrbWork Enactment
System”. M.Sc. thesis. University of Georgia. July 2000.

[7] R.J. Ellison, D. Fisher, R.C. Linger, H. F. Lipson, T. A.
Longstaff, and N.R. Mead, “Survivable Network Systems:
An Emerging Discipline”. Software Engineering Institute
Technical Report No. CMU/SEI-97-TR-013, Nov 1997.

[8] E. Elnozahy, L. Alvisi, Y.M. Wang, and D.B. Johnson.
“A Survey of Rollback-Recovery Protocols in Message-
Passing Systems”. Carnegie Mellon University, Tecnical
Report CMU-CS-99-148, Jun 1999.

[9] Yanbo Han, Amit Sheth and Christoph Bussler. "A
Taxonomy of Adaptive Workflow Management".
Proceedings of 1998 Computer-Supported Cooperative
Work (CSCW 1998), Towards Adaptive workflow Systems
Workshop, Seattle, WA, 1998.

39th Annual ACM Southeast Conference, Athens, Georgia, USA, March 16-17, 2001.

[10] Heineman, George T. “Adaptation and Software
Architecture”. ISAW3, Orlando, Florida, USA, check
reference, Sept 1998.

[11] Hiltunen, Matti A. and Schlichting, Richard D.
“Adaptive Distributed Fault-Tolerant Systems”.
International Journal of Computer Systems Science and
Engineering, vol.11, n.5, pp. 125-133, Sep 1996.

[12] David Hollingsworth. “The Workflow Reference
Model”. Workflow Management Coalition, Document
Number TC00-1003, 19 Jan 1995.

[13] Stefan Horn, Stefan Jablonski, “An Approach to
Dynamic Instance Adaption in Workflow Management
Applications”. 1998.

[14] John D. Howard. “An Analysis Of Security Incidents
On The Internet 1989–1995”. PhD thesis, Carnegie Mellon
University, Pennsylvania USA, Apr 1997.

[15] OMG BODTF RFP #2 Submission, Workflow
Management Facility, Revised Submission,
(ftp://ftp.omg.org/pub/docs/bom/98-06-07.pdf), 4 Jul 1998.

[16] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H.
Lipson, J. Carriere, "The Architecture Tradeoff Analysis
Method", Proceedings of ICECCS ‘98, Monterey CA, Aug
1998.

[17] Mark Klein and Chrysanthos Dellarocas, "A
Knowledge-Based Approach to Handling Exceptions in
Workflow Systems". Proceedings of 1998 Computer-
Supported Cooperative Work (CSCW 1998), Towards
Adaptive workflow Systems Workshop, Seattle, WA, 1998.

[18] Zongwei Luo, Amit Sheth, Krys Kochut, and John
Miller, "Exception handling in workflow systems", Applied
Intelligence: the International Journal of AI, Neural
Networks, and Complex Problem-Solving Technologies,
Volume 13, Number 2, pp125-147, Sep-Oct 2000.

[19] Zongwei Luo, "Knowledge Sharing, Coordinated
Exception Handling, and Intelligent Problem Solving to
Support Cross-Organizational Business Processes", Ph.D.
dissertation, Department of Computer Science, University
of Georgia, December, 2000.

[20] Zongwei Luo, Amit Sheth, John Miller, Krys Kochut,
"Defeasible Workflow,its Computation, and Exception
Handling". Proceedings of 1998 Computer-Supported
Cooperative Work (CSCW 1998), Towards Adaptive
workflow Systems Workshop, Seattle, WA, 1998.

[21] Davis, J. Margaret. “Adaptable, Reusable Code”. SSR,
ACM, check reference, Seattle, WA, USA, 1995.

[22] Krys J. Kochut, Amit P. Sheth, John A. Miller.
“ORBWork: A CORBA-Based Fully Distributed, Scalable
and Dynamic Workflow Enactment Service for METEOR”.
Large Scale Distributed Information Systems Lab,
Computer Science Department, University of Georgia,
1999.

[23] J. Miller, D. Palaniswami, A. Sheth, K. Kochut, and H.
Singh. “WebWork: METEOR's Web-based Workflow
Management System”. Journal of Intelligence Information
Management Systems, pp. 185-215, 1997.

[24] Manfred Reichert, Peter Dadam, “ADEPTflex—
Supporting Dynamic Changes of Workflows Without
Loosing Control”. Journal of Intelligent Information
Systems (JIIS), Special Issue on Workflow Management
Systems, Vol. 10, No. 2, pp. 93-129, 1998.

[25] Vincent, Regis, Horling, Bryan, Wagner, Tom and
Lesser, Victor. “Survivability Simulator for Multi-Agent
Adaptive Coordination”. In International Conference on
Web-Based Modeling and Simulation, San Diego, CA,
1998.

[26] C. Sabnis, M. Cukier, J. Ren, P. Rubel, W. H. Sanders,
D. E. Bakken, and D. A. Karr. “Proteus: A Flexible
Infrastructure to Implement Adaptive Fault Tolerance in
AquA”. In C. B. Weinstock and J. Rushby (Eds.),
Dependable Computing for Critical Applications 7, vol. 12
in series Dependable Computing and Fault-Tolerant
Systems, pp. 149-168. Los Alamitos, CA, IEEE Computer
Society, 1999.

[27] Santosh K. Shrivastava, Stuart M. Wheater,
“Architectural Support for Dynamic Reconfiguration of
Distributed Workflow Applications”. IEE Proceedings –
Software Engineering, 145:5, pp. 155-162,1998

[28] Knight J. Sullivan, John C. Knight, Xing Du, and Steve
Geist. “Information Survivability Control Systems”.
Proceedings of 21th International Conference on Software
Engineering (ICSE’99), Los Angeles, California, May 16-
22, 1999.

[29] Swenson, K., “SWAP - Simple Workflow Access
Protocol”. 1998.

[30] Jeffrey M. Voas, Gary E. McGraw, & Anup K. Ghosh,
“Reducing Uncertainty About Survivability”. Information
Survivability Workshop - ISW'97, San Diego, California,
Feb 12-13, 1997.

[31] Olaf Zukunft. “Rule based Adaptation in Mobile
Database Systems”. Proc. 12th Symposium on Applied
Computing, ACM SAC 97, pp. 310-317, Mar 1997.

http://www.ics.uci.edu/~ietfswap/SWAP9807.html�
http://www.ics.uci.edu/~ietfswap/SWAP9807.html�

	Introduction
	METEOR - Workflow Management System
	Survivability architecture for workflow management systems
	Four level architecture for WfMS
	Survivability components
	Dynamic changes
	Adaptation
	Exception handling a case of adaptation

	Conclusions
	References

