
Modern Software
Engineering Concepts and
Practices:
Advanced Approaches

Ali H. Doğru
Middle East Technical University, Turkey

Veli Biçer
FZI Research Center for Information Technology, Germany

Hershey • New York
InformatIon scIence reference

Senior Editorial Director: Kristin Klinger
Director of Book Publications: Julia Mosemann
Editorial Director: Lindsay Johnston
Acquisitions Editor: Erika Carter
Development Editor: Joel Gamon
Production Coordinator: Jamie Snavely
Typesetters: Keith Glazewski & Natalie Pronio
Cover Design: Nick Newcomer

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com

Copyright © 2011 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in
any form or by any means, electronic or mechanical, including photocopying, without written permission from the publisher.
Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or com-
panies does not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Modern software engineering concepts and practices : advanced approaches / Ali
H. Doğru and Veli Biçer, editors.
 p. cm.
 Includes bibliographical references and index.
 Summary: "This book provides emerging theoretical approaches and their
practices and includes case studies and real-world practices within a range of
advanced approaches to reflect various perspectives in the discipline"--
Provided by publisher.
 ISBN 978-1-60960-215-4 (hardcover) -- ISBN 978-1-60960-217-8 (ebook) 1.
Software engineering. I. Doğru, Ali H., 1957- II. Biçer, Veli, 1980-
 QA76.758.M62 2011
 005.1--dc22
 2010051808

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book is new, previously-unpublished material. The views expressed in this book are those of the
authors, but not necessarily of the publisher.

126

Copyright © 2011, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6

Veli Bicer
FZI Forschungszentrum Informatik, Germany

Stephan Borgert
TU Darmstadt, Germany

Matthias Winkler
SAP Research CEC, Germany

Gregor Scheithauer
OPITZ Consulting München GmbH, Germany

Konrad Voigt
SAP Research CEC, Germany

Jorge Cardoso
University of Coimbra, Portugal

Erwin Aitenbichler
TU Darmstadt, Germany

Modeling Services Using
ISE Framework:

Foundations and Extensions

ABSTRACT

The Internet of services introduces new requirements for service engineering in terms of addressing
both business and technical perspectives. The inherent complexity of the new wave of services that is
emerging requires new approaches for an effective and efficient service design. In this chapter a novel
service engineering framework is introduced: the Integrated Service Engineering (ISE) framework. With
its ISE workbench, it can address the emerging requirements of Internet of services. The chapter presents
the foundations on how the service engineering process can be conducted by applying the separation of
concerns to model different service dimensions within various layers of abstraction. Additionally, three
novel extensions are presented to the aforementioned ISE workbench in order to enrich the capabilities
of the service modeling process.

DOI: 10.4018/978-1-60960-215-4.ch006

127

Modeling Services Using ISE Framework

INTRODUCTION

Several advances have been made to describe
and model Web services. Examples of proposed
approaches include the use of ontologies to de-
scribe services and interfaces (Kerrigan, 2005)
(Paolucci & Wagner, 2006), the semantic annota-
tion of Web services (Paolucci & Wagner, 2006)
(Cardoso & Sheth, 2003), and the use of UML
and UML extensions for Web service modeling
(Lopez-Sanz, Acuna, Cuesta, & Marcos, 2008)
(Sadovykh, Hahn, Panfilenko, Shafiq, & Limyr,
2009) (Dumez, Gaber, & Wack, 2008). All these
approaches targeted the modeling of a relatively
simple artifact: a Web service interface which
was composed of data inputs, data outputs, and
operations names. While some approaches (e.g.
(Paolucci & Wagner, 2006) (Kerrigan, 2005))
went a step further and have also modeled goals,
precondition, participants, control, etc., their scope
and technical orientation have delimited their use
outside the research community.

Web services (such as WSDL or REST ser-
vices) are seen as IT entities. Nevertheless, the
Internet of Services (IoS) also embrace what we
call IoS-based services (Cardoso, Voigt, & Win-
kler, 2009) and requires combining and correlating
business and operational descriptions with existing
IT-based descriptions. While Web services define
the pipeline between two companies and semantics
Web services look into and explain what goes
down the pipeline, IoS-based services provide
capabilities to describe the business added-value
of the pipeline itself.

When contrasted to Web services, modeling
IoS-based services is a more complex undertaking
since they are multi-faceted and must account for
aspects such as legal regulations, community rat-
ing, service level agreements, pricing models, and
payment need to be factored in to design a trad-
able entities (Cardoso, Voigt, & Winkler, 2008).

Due to the multifaceted nature of IoS-based
services, their design is inherently complex. To
cope with this density of facets, we conceptualize

and implement the Integrated Service Engineer-
ing (ISE) framework (Cardoso, Voigt, & Winkler,
2009) (Kett, Voigt, Scheithauer, & Cardoso,
2009) and its software workbench (Scheithauer,
Voigt, Bicer, Heinrich, Strunk, & Winkler, 2009)
to enable the modeling and design of IoS-based
services. By covering business, operational and
technical perspectives, ISE provides a structured
approach for service engineering. The structuring
is achieved by following a separation of concerns
(inspired in the Zachman framework (Zachman,
1987)) and a model-driven design.

In this chapter we present the ISE framework
as two main parts. In the first part, we discuss the
main characteristics of IoS-based services as an
underlying motivation for the approach. Mainly, it
is derived from the service concept that spans the
definitions in various domains such as marketing,
operations research, and information technology.
The service concept allows to a generic service
provisioning process that involves the actors
interacting to achieve a common service goal.
Then, we present the basics of the ISE framework
in terms of different service dimensions and
aspects required in an engineering process. ISE
workbench is introduced as an instantiation of
ISE framework with specific model editors and
model transformations.

In the second part, we present three advanced
extensions for ISE with novel techniques to guide
service engineering. In this part, our contributions
include: (1) techniques to model service processes
using pattern matching, (2) modeling of service
context, and (3) Service Level Agreement (SLA)
management of composite services. The process
pattern matching approach allows generating
these service compositions semi-automatically
by aligning business and IT. Furthermore, the
semantic context modeling and service descrip-
tion approach provides a mechanism to enable
complex service descriptions to be specified and
interpreted based on context since services are
subject to a vast amount of contextual information
emerging dynamically during service procure-

128

Modeling Services Using ISE Framework

ment. Finally, service composition results gener-
ally in more complexity in terms of functionality,
resource, time and location aspects, and quality.
The approach to dependency and SLA manage-
ment for composite services (Winkler & Schill,
2009) supports providers to manage dependencies
between services in their composition to assure
its proper execution. Finally, the last two sections
give an overview of the related work in service
engineering and conclude our contribution with
prospects about the future work.

FOUNDATIONS

Internet of Services (IoS)

This section introduces ideas and concepts that
are related with the Internet of Services. It is im-
portant to note that the term Internet of Services
(IoS) spans ideas that are borrowed from other
approaches with varying terminology. In this
work, the terms (Web) Service Ecosystems and
Digital Ecosystems are used synonymously to IoS.

Tertiarisation describes a structural change
in developed countries concerning the sectoral
composition. Countries shift from an industry
economy toward a service economy. Drivers of
this change include globalization, technological
change, and an increasing demand for services
(Peneder, Kaniovski, & Dachs, 2003). Consider-
ing this trend, it becomes clear that services and
the service economy play an important role in
today’s and tomorrow’s business. In line with this
trend, Internet marketplaces for services emerge,
such as Google Base, SalesForce.com, and SAP
Business by Design.

The vision of IoS is an evolution of service
orientation and takes services from merely integra-
tion purposes to the next level by making them
available as tradable products on service delivery
platforms (Barros & Dumas, 2006). They aim at
trading services over the Internet between differ-
ent legal bodies, compose complex services from

existing ones, and IT-supported service provision-
ing (Janiesch, Niemann, & Repp, 2009).

Figure 1 depicts the steps involved in service
trade: (1) service proposition, (2) service discovery
& selection, (3) service negotiation & contracting,
and (4) service monitoring & profiling.

Midst service proposition, service providers
advertise their services toward potential consum-
ers, whereas during discovery and selection,
service consumers specify their service prefer-
ences toward providers. In case a service con-
sumer selects an appropriate service, providers
and consumers negotiate and finally agree on
service levels (SLA) which are monitored through-
out value exchange. In the event service levels
are not met, compensations must be triggered.
During service profiling, valuable information on
services’ performance is stored, which is gathered
while value exchange and monitoring.

The rest of this section follows this structure:
the next subsection introduces a service taxonomy
that distinguishes between services in a general
sense as well as their electronic counterpart and
implementation. While the subsequent subsections
outline the Internet of Services as an evolution
of service-orientation, the following subsection
introduces actor roles for the IoS. Additionally, IoS
requirements or impediments will be discussed.
The final subsection delineates a life cycle concept
for services

Figure 1. Service trade

129

Modeling Services Using ISE Framework

Service Taxonomy

Before diving into definitions for IoS, this section
outlines a comprehensive service taxonomy. The
concept of a service is investigated in different
research communities and is subject of different
domains. This leads to different interpretations
of the concept of a service in these fields. More
precisely, it is defined differently in business sci-
ence, information science and computer science.
Baida et al. (Baida, Gordijn, & Omelayenko, 2004)
surveys different definitions of the service leading
to a taxonomy that distinguishes business services,
eServices, and technical services. They directly
relate to the service concepts that are in the focus
of the three research fields mentioned above.

Distinguishing between business services,
eServices, and technical services is useful because
it directly relates to the process of transforming
requirements derived in the business domain into
software artifacts in the IT domain. Moreover, it
will help to understand, which business services
are amendable to be implemented as technical
services. The remainder of this section will survey
them more closely.

Business Services. A large variety of defini-
tions for business services exist. The concept of
a business service is not only a concept from a
research perspective, but economists categorize
companies according to this definition. Classically,
services were defined as one of the three sectors
in an economy: agriculture, manufacturing, and
services, where services are everything that is nei-
ther considered as agriculture nor manufacturing
(Sampson & Froehle, 2006) (Teboul, 2005). Thus,
services were defined as a residual of concepts. In
recent years, this residual has contributed an ever
larger part of the total economic value creation and
employed an increasing percentage of people. An-
other common classification for business services
is to distinguish between Business-to-Business
services (e.g. financing or logistics), Consumer
services (banking, insurance, or education), and
Self services (washing salons).

E-Services. The definitions of a service are
largely developed in the business sciences. The
scope of these definitions of services includes a
large variety of economic fields including public
services, health care services, transportation, or
travel industry. Information sciences investigate
how business services in these economic fields
relate to information technology and refer to this
subset of services as e-services (Baida, Gordijn,
& Omelayenko, 2004).

Technical Services. The first two types of
services in the classification taxonomy specify the
service concept from a high-level point of view,
especially with the interpretations in business
science and information technology. Technical
services, on the other hand, are described as an
aggregation of the functionality specified in the
other types and as the realizations by an under-
lying technological platform, e.g. Web services.
Therefore, they can be regarded as an extension of
the interdisciplinary service concept into computer
science (Baida, Gordijn, & Omelayenko, 2004).
According to the W3C Web Services Architecture
Group (Booth, et al., 2004), a service is defined as
“an abstract resource that represents a capability
of performing tasks that form a coherent function-
ality from the point of view of providers entities
and requesters entities. To be used, a service must
be realized by a concrete provider agent.” As a
specific incarnation of a service, they define a Web
Service as “a software system designed to support
interoperable machine-to-machine interaction
over a network. It has an interface described in a
machine-processable format (specifically WSDL).
Other systems interact with the Web service in a
manner prescribed by its description using SOAP-
messages, typically conveyed using HTTP with
an XML serialization in conjunction with other
Web-related standards.” These definitions of a
technical service, in particular a Web Service,
is consistent with other definitions (Papazoglou,
Traverso, Dustdar, Leymann, & Kramer, 2008)
(Kopecky, Vitvar, Bournez, & Farrell, 2007) (Pre-
ist, 2004). A service description is based on the

130

Modeling Services Using ISE Framework

assessment the goals the service aims to achieve.
These goals include non-functional properties, key
performance indicators (KPI), or legal aspects
which are related to the business level of a service.
But the service description also needs to provide
a description of its technical interface, message
formats, and semantics of operations. This func-
tional and technical perspective is linked to the
technical realization of the service.

Internet of Services as an Evolution
of SoA toward Marketplaces

In general, IoS comprises two main concepts.
Firstly, it is a network architecture that tells how
actors or peers or services interact with each other.
Secondly, it is a marketplace that shows how to
trade services over the Internet.

(Barros & Dumas, 2006) see Web Service Eco-
systems (WSE) as an evolution of Service-oriented
Architecture (SoA). The authors describe SoA as
a novel paradigm in order to combine legacy ap-
plications, automate business processes as well as
foster technical integration between different legal
bodies. Contrary to implementing business logic
into hard-wired applications, software developers
define technical services as fine-grained, reusable,
loosely coupled functionality, which in turn can
be wired according to actual business require-
ments. Barros and Dumas refer to WSE “… as
a logical collection of web services …” Recent
developments show that once companies adapt
to this paradigm, services are treated as valuable
assets which can be exposed to other companies.
Companies may offer and procure, and hence, trade
these assets beyond organizational boundaries.

(Chang & West, 2006) on the other hand, who
relate to the term Digital Ecosystems (DE), address
the way of how actors interact with each other.
The authors ascribe that this new development
will shift the business to business interaction from
“…centralized, distributed or hybrid models into
an open, flexible, domain cluster, demand-driven,
interactive environment.”

(Briscoe & De Wilde, 2006) see potential for
optimization in the current way companies con-
duct their business in that they relate biological
ecosystems to business ecosystems. Furthermore,
the authors attribute the Internet as an enabler for
this optimization.

(Janiesch, Niemann, & Repp, 2009) define IoS
as service networks where a service is provided
by different actors. The authors acknowledge that
realization of such networks involves business
services as well as technical details involving web
service technology. Internet of services’ main aims
is foster service trade, ability to bundle services,
which in turn open new markets for small and
medium enterprises, so the authors say.

Actors in Service Trade

Following the discussion of different views on
IoS this section outlines diverse players in ser-
vice trade. Existing literature reviews in the area
of service ecosystems (Barros & Dumas, 2006)
(Riedl, Bohmann, Leimeister, & H, 2009) (Blau,
Kramer, Conte, & van Dinther, 2009), business
value webs (Tapscott, Ticoll, & Lowy, 2000) and
IoS (Janiesch, Niemann, & Repp, 2009) find evi-
dence for different roles for actors. All the same,
actors may play more than one role in service trade.
Table 1 gives an overview of different actor roles.

(Tapscott, Ticoll, & Lowy, 2000) distinguish
between consumer, context provider, content
provider, commerce service provider, and infra-
structure provider. Consumers demand and con-
sume goods and services. Context providers

Table 1. Overview of actors

Tapscott et al. Barros and Dumas

Consumer Provider Consumer Provider

• Service
consumer

• Context provider
• Content provider
• C o m m e r c e
service provider
• Infrastructure
provider

• Service con-
sumer

• S e r v i c e
provider
• Mediator
• Broker

131

Modeling Services Using ISE Framework

provide a single face to the customer. They lead
the process of value creation, in terms of orches-
trating IoS in such a way that value meets con-
sumer needs. They also provide a set of rules for
each stakeholder in IoS. Content providers are
the main value contributors. They actually design,
create, and deliver goods and services to meet
customer needs. Commerce service providers
offer services with a cross sectional character.
These services include financial management,
security, logistics, and monitoring for example.
They enable the stream of value creation in IoS.
Infrastructure providers, finally, offer services in
terms of communication platforms, computing,
buildings, networks, facilities, and roads.

(Barros & Dumas, 2006) on the other hand,
identify next to service consumers three different
roles for actors in service ecosystems. Service
providers, who provide services in the first place.
Service brokers offer services from different pro-
viders. Their business model is to bring providers
and consumers together, or enhance services with
delivery functions for convenient service provi-
sioning. Service mediators, on the other hand,
generate value by customizing provider’s standard
services toward consumer’s needs.

Requirements / Infrastructure
and the Internet of Services

While the previous text outlines the IoS as a means
for trading services over the internet, the following
paragraphs elaborate on current impediments for
realizing a successful IoS. (Barros & Dumas, 2006)
for example outline the following issues: service
discovery, conversational multiparty interactions,
and service mediation and adaption.

Barros and Dumas pinpoint that the current
service discovery process depends on keyword-
based searches. It is assumed that service providers
as well as consumers use the same keywords for
describing and discovering them. According to the
authors, this works well in closed environments
but not for multi-actor marketplaces. Barros and

Dumas advocate a combination of a free-text and
ontology-based search.

Additionally, while trading services over the
Internet, interactions between actors will exceed
traditional request-response patterns. In conse-
quence, IoS must support multiparty interactions
as well as a formalization for defining them. Bar-
ros and Dumas foster two technical specifications
for this: firstly, the Business Process Execution
Language (BPEL) and secondly, the Web Service
Choreography Description Language (WS-CDL).

Another challenges lies in integrating pur-
chased services into companies’ internal service
systems. In the scope of IoS, services may be used
in contexts that were not initially considered by
service providers, and hence, provide an interface
that is inappropriate for others, including service
mediators and brokers. This fact makes it neces-
sary to mediate between services’ given interface
and an expected interface.

Service Lifecycle in the
Internet of Services

A service runs through a number of states during
its lifecycle. In general, the two states design time
and run time can be distinguished. While during
service engineering service ideas are transformed
into operational and technical service implemen-
tations, during service execution services are
consumed. This general distinction can be further
refined into four phases in order to enable a fine-
granulated management of these phases as well
as transitions between them. Service design may
be refined into service innovation and service
design. Service execution on the other hand,
may be refined into the stages service usage and
monitoring and evolution. Figure 2 displays the
four different stages.

Innovation processes in a service system may
be quite different to the ones we know from deal-
ing with (software) products because of the inher-
ently different nature of services in comparison
to products. In this section, we argue that cus-

132

Modeling Services Using ISE Framework

tomer input required during service provisioning
is the main opportunity but also the main challenge
for innovation in the services sector. An innova-
tion usually implies the novelty of an idea linked
to its (successful) realization. Today, the link
between the innovation phase and its realization
in the engineering phase is established in an ad-
hoc way. Proprietary tools for brainstorming, idea
evaluation and idea documentation are used. Suc-
cessful service innovators rely on a collaboration
tools and innovation processes which interlink
the proprietary innovation tools using SOA tech-
nology.

Service engineering for both, service-oriented
architectures and evolving service marketplaces
in the Internet is still a challenge due to dynamic
environments, high uncertainties, and increasing
coopetition of market participants. An approach
must supports service engineering in terms of
planning, designing and implementing services,
which are traded over the Internet, in addressing
stakeholders from business & IT, acknowledge-
ment of different service aspects, and utilization of
model-driven architectures. This approach should
not be limited to computing services; rather, it also
should target business services, e.g., insurance
& financial services, civil services, marketing
services, and telecommunication services.

Service usage as the third phase relies on an
expressive service description and embodies the
following sub-phases: service discovery, service
selection, and composition of services. The first
step to realize services is to express them in
terms of service descriptions in order to expose
the functionalities and capabilities to the service

consumer (e.g. human or software agent). The
initial attempt in this direction has been to provide
a service interface - borrowing the idea from pre-
vious component-oriented approaches (Herzum
& Sims, 2000). This enables the software arti-
facts to be abstracted in a well-defined, platform
independent way and hides the implementation
details to achieve a loosely-coupled architecture
(Booth, et al., 2004). As a common standard, Web
Service Description Language (WSDL) (Chris-
tensen, Curbera, Meredith, & Weerawarana, 2001)
fulfils this need by describing service operations,
input and output parameters, and endpoints. The
services, expressed through service descriptions,
need to be discovered by potential consumers to
whom they offer a business value. Technically,
this is initially addressed by the Web service
registries, namely UDDI (Bellwood, et al., 2002)
and ebXML (Fuger, Najmi, & Stojanovic, 2005).
They enable the service providers to publish the
service grounding to a central repository and
annotate it within a basic classification scheme.
The consumer can then select a service suitable
to her needs. In fact, both Web service registries
are basic implementations of a broader conceptual
component that is called discovery framework
(Studer, Grimm, & Abecker, 2007). It is a harmony
of all the mechanisms and tools required to utilize
discovery. Basically, a discovery framework relies
on three essential elements: capability descriptions
of services, request descriptions of consumers, and
comparison mechanisms to match the capabilities
and requests. For the instance of ebXML registry,
an external WSDL document, registry informa-
tion model, or filter queries can be stated as the
examples of such mechanisms. The usage of Web
service registries are often limited for the service
discovery although there are some approaches
to extend them with semantics (Dogac, Kabak,
Laleci, Mattocks, Najmi, & Pollock, 2005).

While service monitoring IT services (such as
WSDL or REST web services) are usually seen
mainly as a technological problem, the monitor-
ing of business services adds the requirement of

Figure 2. IoS lifecycle

133

Modeling Services Using ISE Framework

also monitoring business aspects. Monitoring IT
services usually targets to measure network at-
tributes such as latency, packet loss, throughput,
link utilization, availability and connectivity,
one-way delay, one-way packet loss, round trip
delay, delay variation, and bulk transfer capacity.
(Moser, Rosenberg, & Dustdar, 2008) recognize
that web services currently lack monitoring mecha-
nisms and they provide a solution based on the
interception of SOAP messages exchanged during
runtime. The emphasis is on technical aspects.
On the other hand, the monitoring of business
services can only achieve its full potential when
it addresses the business level and accounts for
organizations’ strategies. Compared to IT monitor-
ing, business monitoring is more complex since
services are intangible, often inseparable, im-
mersive, and bipolar.

ISE Framework

Based on a state-of-the-art study of existing
frameworks, (Kett, Voigt, Scheithauer, & Cardoso,
2009) argued that existing frameworks for service
engineering either address the business perspective
or the technical perspective. To overcome the gap
between these approaches, the ISE Framework is
introduced as depicted in Figure 3. The framework
builds on the Zachman framework (Zachman,

1987) and a service engineering methodology for
service products (Bullinger H., 2003). The vertical
axis shows four perspectives of the engineering
process and is named service perspectives. Each
perspective relates to a specific role with appro-
priate skills and offers different sets of tools and
methods. It also implies the chronology of the
framework for they are linked to phases of the
service engineering process. The horizontal axis
shows five different descriptions of a service.
Each description is valid for each perspective.
Each intersection in the matrix is placeholder for
a meta model, a notation, and activities, which are
appropriate for the respective perspective and the
modeling aspect.

Service Perspectives

Business strategists pick up new service ideas
and focus on requirement analysis in the strategic
perspective. (Kett, Voigt, Scheithauer, & Cardoso,
2009) depicted a basic underlying model for
this perspective: the Business Model Ontology
(BMO). Eventually, a decision is made whether
to implement a new service or not. The concep-
tual perspective focuses on operationalizing and
implementation of strategic artifacts from the
owner’s perspective. The final artifact is a service
design which is neither technical nor platform-

Figure 3. Service perspectives and aspects in the integrated service engineering (ISE) framework

134

Modeling Services Using ISE Framework

specific. Conceptual artifacts are transformed
into formal models during the logical perspective
by IT analysts. This perspective offers a bridge
between service design and technical service
implementation. Finally, the IT developer trans-
forms the logical artifacts into platform-dependent
software artifacts, e.g., BPEL (Alves, et al., 2007)
and WSDL (Christensen, Curbera, Meredith, &
Weerawarana, 2001), etc., during the technical
perspective.

Service Aspects

The service description embodies services’ value
proposition toward potential customers. This in-
cludes functional, financial, legal, marketing, and
quality of service properties as well as other meta
data for service proposition, discovery, selection,
contracting, and monitoring. The process descrip-
tion addresses services’ behavioral aspect, which
includes core capabilities and sequence flows.
The actor description offers means to model and
to refine human resources, and to assign tasks.
Intangible assets, terms, and concepts as well as
their relationships are defined in the data descrip-
tion. The rule description addresses organizational
rules. These are defined to elicit and formalize
domain knowledge to guide services’ behavior.

ISE Workbench

The Integrated Service Engineering (ISE) Work-
bench implements the ISE Framework (cf. Figure
4) and supports an interdisciplinary structured
service engineering process to develop services
that can be traded over the Internet. The work
on the workbench started in April 2008 and is
a prototype, which is still under development.
Developers add new features as well as improve
existing ones. For example, the business rule as-
pect is not implemented, yet. The ISE Workbench
builds on Eclipse’s Rich Client Platform (RCP),
which allows an integration of existing tools as
well as offers a platform for novel tool develop-
ment. The workbench embodies a total number
of 20 editors in order to model the five service
aspects for each of the four perspectives. OMG’s
Query View Transformation (QVT) specification
is the basis for model transformation implementa-
tion, e.g. BPMN (White, 2004) to BPEL (Alves,
et al., 2007).

Main Functionality & Notations

In order to support the ISE Framework with its 20
intersections, available notations were analyzed.
Figure 4 depicts the resulting 20 modeling nota-
tions. This set of notations is only one possible

Figure 4. The integrated service engineering (ISE) workbench implementing the ISE framework

135

Modeling Services Using ISE Framework

selection. For each chosen notation, a suitable
editor was integrated into the workbench to de-
sign all service aspects from different angles. The
strategic perspective uses the mind map notation
to elicit the information. The conceptual perspec-
tive employs mostly the UML diagrams, a semi-
formal graphical notation. Whereas, the logical
perspective makes use of formal notations, the
technical perspective applies formal languages,
such as BPEL and WSDL.

Next to existing notations, new languages were
developed, where necessary. The service prop-
erty notation is a domain-specific language and
describes services from a provider’s perspective
in a non-technical fashion and includes informa-
tion about capabilities, price & payment, delivery
channels, rating, legal aspects, and provider de-
tails in order to facilitate service discovery. The
Universal Service Description Language (USDL)
(Cardoso, Winkler, & Voigt, A Service Descrip-
tion Language for the Internet of Services, 2009)
is a XML specification that holds facts about
business information, operational information,
and technical information related to the service.
The Canonical Abstract Prototypes (CAP) editor
provides an abstract description of a user interface
structure. Finally, the service archive (SAR) is an
XML schema and denotes how to bundle technical
models for deployment.

Model Transformations

The ISE Workbench offers model transformation
for flexibility, speed, and accuracy in design.
Since the union of all models defines a service
they need to be integrated and synchronized.
This integration task is facing major challenges
because of the various people involved within the
development process and the rising complexity
of the models. To cope with these challenges we
propose to integrate the models automatically by
model transformations.

The ISE models contain artifacts represent-
ing a service’s five dimensions: service, process,

actor, rule, and data. Furthermore, each of these
models is divided into four layers (levels) of ab-
straction. This leads to multiple representations
of information on different layers of abstraction
in the corresponding dimensions. Changes in one
model have to be propagated into the affected
models holding the overlapping information. This
is a time-consuming and challenging task since
each of the models has to be aware of changes and
needs to be adjusted. For a structured approach
we separate the dependencies between models
into two classes: vertical and horizontal.

Vertical dependencies cover the synchroniza-
tion of dependencies between models on different
layers of abstraction in one dimension. It represents
the bridging of layers of abstraction by transform-
ing between multiple representations of artifacts.

Horizontal dependencies define the synchro-
nization of models on the same layer of abstraction.
This describes dependencies between models of
different dimensions which refer to artifacts of
other dimensions. This also includes multiple
representations of an artifact on the same layer
of abstraction.

These dependencies form the integration of
the models and have to be implemented manually
or by automatic support. Being more precise, a
dependency is defined by a mapping. Formally
a mapping assigns to a set of artifacts a set of
artifacts; where one sets corresponds to the other.
That means the different representations of infor-
mation are assigned to each other. To illustrate
the dependencies, Figure 5 Example for vertical
and horizontal model transformation. Figure 5
shows an example which depicts the dependen-
cies between two layers of abstraction as well as
between models on the same layer but of differ-
ent dimensions. The process dimension shown
is specified regarding the conceptual and logical
layers. The conceptual layer is represented by
an UML activity diagram. The Business Process
Modeling Notation (BPMN) is used to represent
the logical layer. The arrows depict artifacts that

136

Modeling Services Using ISE Framework

need to be synchronized and are mapped onto
each other.

The Actions modeled in the activity diagram
are again represented in BPMN as tasks. Therefore,
Action A needs to be synchronized with Task A.
That means that UML actions need to be mapped
to BPMN tasks. The XOR between Task B and
Task C of the BPMN model is mapped from Ac-
tion B or C of the UML model. Furthermore, the
Information I artifact used in the workflow is
defined in the OWL-model (i.e., it depends on it).
When one model changes (e.g. renaming or dele-
tion), the depending models have to be updated.
These updates can be done manually or by provid-
ing an automatic support. One solution to enable
an automatic approach is by using model trans-
formations for implementing mappings.

The first step to enable the implementation of
model transformations is to define one common
formal representation of models. This can be done
using ontology formalism or more mature concepts
like the Meta Object Facility (MOF). Based on this
formalism, a domain specific language for model

transformation can be used to define rules and
apply them to the models. During the last years
many model transformation languages have been
proposed, both by academia and industry. For
an overview, we refer to Czarnecki and Helsens
classification of today’s approaches (Czarnecki &
Helsen, 2006). The two most prominent propos-
als in the context of Model Driven Architecture
(MDA) are Query, View and Transformation
(QVT) and the ATLAS Transformation Language
(ATL).

We have chosen to rely on MDA to support
model transformations because of matured con-
cepts, well established infrastructure for model
management and transformation, and available
OMG standards. A model transformation is the
process of converting one model to another model
of the same system. Thus a model transforma-
tion is an implementation of a mapping (model
dependency specification). We follow Kleppe and
Warmer (Kleppe & Warmer, 2003) refining this
definition to an automatic generation of a target
model from a source model, following a transfor-

Figure 5. Example for vertical and horizontal model transformation

137

Modeling Services Using ISE Framework

mation definition. A transformation definition is a
set of rules describing formally how a source model
can be transformed into a target model. Using a
rule-based language like QVT to define model
transformations executed by an engine allows
for incremental and traceable transformations.

For automatic model integration we argue for
model transformations as the implementation of
mappings. Using and applying these concepts
enables automatic model synchronization. This
supports both the implementation of vertical and
horizontal dependencies, thus reducing the com-
plexity, effort and errors in modeling a service
using ISE.

The ISE Workbench also offers deployment
capabilities for seamless service execution. The
service archive (SAR) is an XML schema and
denotes how to bundle technical models. After
service design with the ISE Workbench, the tool
generates a SAR file and deploys it on a service
runtime environment.

ISE Architecture

The ISE workbench is a part of larger TEXO ser-
vice ecosystem architecture as depicted in Figure 6
in detail. The overall architecture mainly includes
four components including the ISE workbench to

perform further operations for a seamless service
provisioning. The ISE workbench component
is built on an Eclipse1 platform and has several
internal building blocks: Model editors, model
repository and model transformation engine en-
ables to develop services in a model-driven way
as introduced in the ISE matrix above. Specifi-
cally, we have 20 separate models each of which
is associated with the corresponding editors and
transformation among them.

In addition, SAR wizard interacts with the
Tradable Service Runtime (TSR) which is a com-
ponent to handle deployment and execution of a
service in the Service Execution phase of the
service lifecycle. It mainly includes Adaptation,
Monitoring and Process/Service Engines required
for runtime functionality. Besides, there are
other blocks included in the ISE Workbench to
enable the service engineer to interact with Service
Management Platform (SMP) for further service
related tasks. Discovery Wizard enables the service
engineer to interact with Service Discovery that,
in turn, searches the repository to discover avail-
able services to be composed into the service.
Process Pattern Matching, Context Backend and
Dependency Analysis are all special extensions
to the ISE workbench which will be explained in
detail in the subsequent sections.

Figure 6. Architecture of ISE workbench

138

Modeling Services Using ISE Framework

Finally, the TEXO Portal is an end-user inter-
face which does not have a direct connection to the
ISE workbench, but its functionality to negotiate
service agreements, to search for available services
and to test and execute them is very crucial in the
architecture. It allows the end-users to use the
services engineered in the ISE workbench with the
help of the TSR and SMP components. Currently,
the ISE workbench employs some well-known
editors for service engineering, which are widely
adopted by Eclipse community. These include the
WSDL editor or the BPEL editor. Some other edi-
tors are also developed from scratch such as the
SLA model editor or the context modeler.

MODELING EXTENSIONS

Running Example

This section introduces an example that is utilized
throughout the rest of the chapter to motivate the
three advanced modeling ISE extensions. Figure 1
shows three companies. Company A’s IT depart-
ment offers the Manage Desktop Hardware (MDH)
service, that allows outsourcing the purchase
and the maintenance of computer hardware. The
service’s target customers are company A’s own
business units who pays for computer hardware
leasing. The benefits for business units include
lower transaction costs, lower labor costs, lower
IT costs, and latest hardware. The MDH service is
provided with four service levels: (1) out of order

hardware is to be replaced within two hours, (2)
new hardware is installed within two working
days after ordering, (3) every 24 hours a backup
is performed, and (4) backups can be played
back within 30 minutes. The price that business
units need to pay for the MDH service depends
on contextual information, including business
units’ location, usage data, and whether business
units are standard or premium customers. The IT
department itself utilizes two services in order to
offer desktop hardware management. Company
B, a storage provider, performs a backup service
and company C, a computer repair shop, conducts
installations as well as repair services at business
units’ location.

In order to develop the MDH service, service
provider (i.e. IT department) needs to deal with
some challenges in terms of realizing a service
composition, describing the realized service and
ensuring its proper functioning. First, the service
provider should be supported to identify suitable
services that can be reused for realizing the MDH
service. This is especially important to assign
concrete services to high-level business tasks for
an executable process realization. Furthermore,
there is a need for a mechanism to describe the
service in such a way that service context is
taken into account. Specifically, some service
properties (e.g. service price) cannot be determined
in advance due to the dynamicity and depen-
dency on the context. Another challenge for
service provider is to manage the interplay of
services for a proper functioning. Here, SLA

Figure 7. Overall process of hardware maintenance service

139

Modeling Services Using ISE Framework

compatibility comes into play since different
problems may occur due to SLA incompatibility
such as violations (e.g. negotiated composite QoS
(new hardware in 24 hours) cannot be met due to
negotiated atomic QoS (backup data, replace
hardware, and restore data).

Service Composition by
Process Pattern Matching

To manage the transition from the business per-
spective to the technical perspective (Cardoso,
Voigt, & Winkler, 2009) (Kett, Voigt, Scheithauer,
& Cardoso, 2009), ISE supports the transformation
of BPMN models to executable BPEL models. As
shown in Figure 8(a), two different methods are
supported to assign services to BPMN tasks. The
first method is a direct transformation, where the
designer statically assigns a set of existing atomic
or composite services to a task. Alternatively, if a
suitable service does not already exist, the designer
can add a goal specification to the task which is
represented by a fragmented process model con-
structed by process patterns. This specification can
then be used by the automatic service composition
component to automatically compose services that
satisfy the given specification.

The automatic service composition component
applies process pattern matching to identify suit-
able services. An important foundation for this
action is the use of a formal description language
for processes with well-defined semantics. For
that reason, we have chosen the Parallel Activities
Specification Scheme (PASS) (Fleischmann,
1994) as a description language. PASS graphs

allow to model processes in a subject oriented
way, which is also well-suited for SOA. Subject-
orientation introduces an approach that gives a
balanced consideration to the actors in business
processes (persons and systems as subjects), their
actions (predicates), and their goals or the subject
matter of their actions (objects). It is based on the
fact that humans, machines and services can be
modeled in the same manner. All receive and
deliver information by exchanging messages.
Humans, e.g., exchanges emails, office documents,
or voice messages. Furthermore, the subject-
oriented modeling approach enables the modeling
of business processes in any arbitrary size because
of the feature of composing services which is
provided by the underlying model.

Reusability is one of the main motivations for
the SOA paradigm and in the context of TEXO, the
reusable modules are web services. In the case of
a large number of services, automatic composition
methods gain importance and one requirement for
automatic composition approaches is the use of
formal service descriptions.

The formalism of PASS is founded on top of
the process algebra CCS (Milner, 1995) (Calculus
of Communicating Systems) and the language
constructs of PASS can be transformed down to
pure CCS. Process algebras provide a suitable
means for modeling distributed systems. They
offer well-studied algorithms for verification
and formalisms, e.g., for defining behavioral
equivalences. In addition, the CCS hiding operator
facilitates a hierarchization and modularization of
the model, allowing to handle business processes
of arbitrary size.

Figure 8. Transformation from BPMN to BPEL

140

Modeling Services Using ISE Framework

Figure 8(b) shows the most important steps of
our service composition method. In the following,
we briefly describe each of these steps.

Defining a Goal for Business Tasks

In order to add a goal specification to a BPMN
task, we extended the BPMN editor by an addi-
tional property sheet to create a goal for each task,
but this is only necessary if no suitable service
could be found.

To specify goals, we have integrated the jPASS
editor from jCOM12 into the ISE workbench. Fig-
ure 9 shows the basic concepts of the specification
scheme. The two model levels, subject interactions
and internal behavior of service, are available to
specify a valid goal. Figure 9(a) depicts the sub-
ject interaction level and Figure 9(b) and Figure
9(c) depict examples for the internal behavior of
services. The relationships between subjects and
the types of exchanged messages are defined on
the subject interaction level. The description of
service behavior is explained in more detail below.

In accordance to our motivating scenario, the
Service Consumer represents the Business Units,
Service 1 the IT department, and Services 2 and
3 the Backup Service and the Installation & Repair
Service. We assume that the IT department con-
ducts the most maintenance and backup work by
itself, but in certain cases it is dependent on both
external services. How to model the internal be-
havior of each service is shown in the Figure 9(b)
and 4(c). It is modeled using three different basic
types of activities:

1. 	 Send message.
2. 	 Receive message.
3. 	 Function (= F Figure 9 (b), (c))

The first two types enable services to exchange
messages, and the function activity allows to call
internal functions. The ⊠ symbol marks the end
of the process description. To make the matching
of activities work, it is vitally important that the
activities in the search pattern and in the process
description of a service are modeled using the same
vocabulary. To ensure this, an activity catalogue
is also introduced.

To describe process patterns, the PASS lan-
guage was extended. Figure 9(c) shows a process
pattern. In contrast to regular PASS graphs, process
patterns do not have to be fully connected graphs
and may contain the _ wildcard operator. This op-
erator is a place holder for arbitrary subgraphs and
is part of the fragment depicted in Figure 9(c). The
process patterns are used for service matching and
their modeling differs from that of fully-specified
processes in the following two aspects:

1.	 In the model of the composite service, only
activities which are essential for the process
are specified. This simplifies modeling since
the service engineer does not have to specify
all functionalities and does not have to take
care about each detail activity. E.g., he could
omit modeling the payment branch in the
process. If services have such branches, they
would still be included, unless the engineer

Figure 9. Parallel activities specification scheme (PASS) models

141

Modeling Services Using ISE Framework

explicitly models the exclusion of certain
behavior.

2. 	 The order of activities can be defined in a
more general way as in traditional process
models. The ~ operator can be used in con-
junction with multiple isolated subgraphs to
express an order between activities, instead
of a single sequential order. This is useful,
e.g., to enforce a certain behavior or com-
munication pattern, while only concentrating
on the essential parts of a process.

Service Composition

The first step in a composition is to find matching
service candidates. To match goal specifications
with service descriptions, we use the programmed
graph rewriting system GRL. GRL stands for
Graph Rewrite Library and is a Java library that
provides the core functions of a graph rewriting
system by supporting queries and rewrite opera-
tions. Rewrite rules are described in the declarative
language GRL RDL (Rule Description Language).
GRL operates on directed, attributed graphs,
whose data structures are defined by the respec-
tive application. Nodes and edges of the graph can
be attributed by arbitrary Java objects. Its basic
building blocks are predicates (tests) and produc-
tions (rewrite rules). Rewrite rules are specified
textually Complex attribute tests and transforma-
tions can be performed by calling Java methods
from inside RDL programs. RDL programs are
compiled, optimized using heuristics, and then
executed on a virtual machine. Hence, GRL pro-
vides highly efficient graph matching. The rule
description language RDL is nondeterministic.

The service descriptions are used as work
graphs and the goal specifications are translated
into query expressions in the language GRL-RDL.
To match the pattern with services, it is required
that each service comes with a fully-specified
PASS description. Applying graph algorithms
leads to candidate lists for each specified pattern
or goal.

Verification

The graph-based representation is suitable for
finding candidate services, but it is not directly
suitable for verification, because it lacks a theoreti-
cal foundation. For this purpose, we transform a
graph into a CCS description and use this formal
representation for advanced validation.

We currently use the CWB-NC Workbench3
which supports various behavioral equivalences
as well as features such as model checking. The
model checking rules are described with the
µ-calculus, which is temporal logic. Firstly, this
allows to identify services that expose equivalent
behavior. At runtime, such services might be used
as replacements in case the original service fails.
Secondly, a choreography conformance check
can be performed. In a valid composition, it must
be ensured that the involved services are able to
communicate with each other. For this purpose,
we have developed a method for checking the
communication of each pair of services. Two
requirements have to be fulfilled: First, the stati-
cal interfaces of both services have to match and
second, the dynamic interfaces have to match, i.e.,
the communication pattern has to match.

BPEL Generation

To determine all possible combinations of services,
the first step was to discover all candidate services
using process graph pattern matching. Next, these
combinations were checked in the verification step
and all incorrect combinations were discarded.
Finally, for each valid combination, an executable
BPEL process is generated, which orchestrates
the constituent services.

In order to deploy a process on a process ex-
ecution engine, several additional files are needed
beside the main BPEL file describing the process.
Figure 10 shows how business, technical, and
deployment concerns are separated and how the
different description files are interrelated.

142

Modeling Services Using ISE Framework

The generation of BPEL starts from the subject
interaction diagram as shown in Figure 9(a). In
the previous processing steps, a list of candidate
services has been generated for each subject in
the diagram. If existing services are used, then
the corresponding WSDL files, which describe
the technical interface, already exist. Alterna-
tively, if a subject has a fully specified PASS
graph, then an executable BPEL process together
with a WSDL interface description can be auto-
matically generated for the subject. This involves
the following parts:

•	 Process: To generate the main flow of the
process, the elements of the PASS descrip-
tion are processed according to the control
flow and corresponding BPEL elements
are generated.

•	 Variables hold the state information as-
sociated with each instance of a process.
Because the generator generates code to
orchestrate existing services with given
WSDL files, it has to generate message
mediation code translating web service re-
quests and replies to the types of the pro-
cess instance variables as well.

•	 Correlations are needed during asynchro-
nous interactions with services. When the
process invokes a service and later re-
ceives the reply, it must be able to identify
the correct process instance to which the
incoming message belongs. The set of key

variables used to uniquely identify a pro-
cess instance is defined in correlation sets.

•	 Properties and PropertyAliases define
mappings from the properties in variables
to the properties in service-specific mes-
sages. They allow to describe which prop-
erties of different message types are equiv-
alent, despite their different names.

•	 PartnerLinks describe the possible in-
teractions between every interacting pair
of services and defines their roles in the
interaction.

•	 PartnerLinkTypes map from roles to port
types and thereby define the message types
exchanged during the interaction between
partners.

Our generator supports ActiveBPEL and
Apache ODE as output formats. While the BPEL
and WSDL parts are standardized and (in prin-
ciple) portable, the different engines require some
proprietary supplemental files, which concern
deployment aspects:

•	 Deployment Descriptor (for Apache ODE):
The deployment descriptor defines which
services a process provides and which ser-
vices a process uses. This is done by link-
ing the PartnerLinkType tags defined in
the WSDL of the process to the Service
tags defined in the WSDL files of the cor-
responding services. This simple deploy-

Figure 10. Separation of concerns in BPEL processes

143

Modeling Services Using ISE Framework

ment descriptor only points to the services
of the first valid composition.

•	 Process Deployment Descriptor (for
ActiveBPEL): Similar to above, this file
defines which services a process provides
and which services it uses, but in a differ-
ent format. This simple deployment de-
scriptor only points to the services of the
first valid composition.

•	 Catalog (for ActiveBPEL): The catalog
file lists all references to the WSDL files
used by the process.

•	 Endpoints File (for Theseus/TEXO): The
endpoints file lists the service candidates
for all valid service compositions. When
the process is deployed on a suitable pro-
cess engine, this information can be used
to bind or replace services at runtime.

Semantic Context Modeling
and Service Descriptions

Another important extension of ISE is its support
to annotate services semantically with the incor-
poration of context information emerging from
service environment. Services need to operate in
a knowledge-intensive environment that, in turn,
affects the service provisioning and procurement
process. The information captured from the envi-
ronment is also known as context. The techniques
that enable the exploitation of contextual informa-
tion in services are generally known as “context
handling” techniques, while the use of context to
provide relevant information and/or services to
the user, where relevancy depends on the users
task, is known as “context-awareness”. Context
handling is of vital importance for developers and
service architects since it provides dynamic service
behaviour, content adaptation and simplicity in
service usage.

Let us consider service price as an example.
Due to the dependency on many context dimen-
sions, it is hard to determine a fixed price for a
service, especially at the time of service design.

This is mostly regarded as price discrimination
in the business literature (Lehmann & Buxmann,
2009), where the determination of price can be
based on relevant information such as user’s lo-
cation, service agreement, usage data, temporary
discounts, surcharges, etc., which we regard as
context in this work. In such a setting, different
price values can show up by the emergence of
dynamic context data. Therefore, it becomes a
challenging issue to obtain a consistent service
description – e.g. to specify what is the price of
a service – with the incorporation of this context
data.

Figure 11 illustrates our approach for interpret-
ing context information within semantic service
description. All collected information conforms to
a service ontology which is explained in Section
“Service Ontology”. Semantic IoS-based service
description includes static service information
(e.g. service name, provider, parameters, etc.) as
well as viewpoints that are defined at design time
to incorporate different perceptions of service
based on possible contexts. At runtime, emerg-
ing context information is interpreted by these
viewpoints to incorporate specific views during
runtime procedures – e.g. service discovery, agree-
ment, or execution.

Service Ontology

In order to capture both service descriptions and
context information semantically, we rely on the
service ontology which was previously introduced
in detail in (Oberle, Bhatti, Brockmans, Niemann,
& Janiesch, 2009). It provides a consistent and
holistic way of capturing information by defining
different aspects of a service and service related
concepts as well as any relevant information that
emerges as context.

Figure 12 presents an excerpt of service ontol-
ogy for the purposes of this chapter (see (Oberle,
Bhatti, Brockmans, Niemann, & Janiesch, 2009)
for a detailed description). The concepts in the
upper part are based on the DOLCE founda-

144

Modeling Services Using ISE Framework

tional ontology (Oltramari, Gangemi, Guarino, &
Masolo, 2002) providing us with a generic set of
concepts and relations as well as ontology design
patterns. Based on this upper part, several concepts
are introduced to prescribe service information
common to every service (e.g., service description,
provider or parameters such as quality of service).
This allows to capture service descriptions as a
set of axioms within a knowledge-base (KB). For
example, the MDH service in our scenario has the
following ontological (assertion) axioms based on
the concepts and relations in the service ontology:

ServiceDescription(#MDH),
hasParam(#MDH;#MDHPrice),
provides(#CompA;#MDH)

Similarly, context information is captured as
axioms based on the ontology. Although, from an

ontological point of view, there is no distinction
between the axioms describing services and con-
text, in the course of service offering, context
information dynamically emerges from various
sources and is incorporated into KB as depicted
in Figure 11. For example, information about
service consumers’ profile, or service contracts
of a consumer for particular services can all be
obtained from, e.g., Service Management Platform
(see Figure 6) and be represented as axioms
similar to the following:

ServiceConsumer(#BusUA),
hasAddress(#BusUA;#Germany)
hasSLA(#BusUA;#SLA1),
serviceType(#SLA1;#Premium)

The central notion about using a service ontol-
ogy to maintain all this information is to address

Figure 11. Overview of viewpoints and interpretation of context information

Figure 12. An excerpt of service ontology

145

Modeling Services Using ISE Framework

the information integration challenge that emerges
from the existence of several components in the
design and offering of IoS-services. However,
dynamic context information in the KB may result
in different interpretations of a service descrip-
tion that requires the introduction of viewpoints
as elaborated in the followings.

Viewpoints and Rules

According to the context information collected
in the KB based on the service ontology, we can
determine the subparts of service description,
e.g. service price, tax rates, discounts etc., by
using ontology-based rules. However, since all
these information is managed in one KB for our
service management platform, we need to create
different viewpoints for different users in order to
provide individualized values based on context.
For example, to associate the German tax value
for the business units in Germany, the following
rule was defined for the MDH service:

C1: ServiceConsumer(?c) ˄ hasAddress
(?c,#Germany) ˄ consume(?c,#MDH)

˄ hasParam(#MDH, ?p) ˄ Price(?p) →
hasPart(?p,#GermanTax)

Similar rules can also be specified to associate
further contextual information with the service
descriptions such as offering discounts for SLA
violations or different price values for standard
and premium contracts. What is crucial in our
approach is that every rule is associated with a
viewpoint identifier (e.g. C1) that parameterizes
the result of a rule into different viewpoints.
Context modeler utilizes a reasoning mechanism
defined in (Baader, Knechtel, & Penaloza, 2009)
at the backend to generate different, e.g., pricing
schemes for the same service.

SLA Management of
Composite Services

ISE supports composite service providers when
creating service compositions using existing
services from the TEXO service marketplace.
This is achieved by the functionality provided by
the process modeling tools as shown in Figure 6.
Atomic services are composed to collaboratively
achieve tasks of higher complexity. The execution
of atomic and composite services is regulated by
service level agreement (SLA). SLAs regulate
the tasks of the service, required and provided
resources (i.e. what the service requires to execute
and what it provides as result), different quality
of service (QoS) and legal aspects, and start and
end times of a service.

We developed an approach to support compos-
ite service providers to manage interdependencies
between services in service compositions which
they are offering. The approach is based on the
assumption that information regarding dependen-
cies between services is implicitly contained in
the composite service process description and the
SLAs negotiated between the composite service
provider, atomic service providers, and the service
consumer. We will now outline the approach and its
integration into the ISE Workbench and illustrate
its use based on the MDH scenario.

Dependency Management Approach

In order to manage the dependencies in service
compositions, we developed an approach which
captures dependencies between services in a
dependency model. The model contains infor-
mation about the different services involved in
a service composition, the SLAs negotiated for
the atomic services, the service composition,
and a detailed description of the different de-
pendencies between the dependant that depends
on one or more antecedents (Winkler & Schill,
2009). This model is created at design time by a
semi-automatic approach. At runtime it is used to

146

Modeling Services Using ISE Framework

support the composite service provider to handle
the dependencies.

The lifecycle associated with dependency
model consists of four phases. During the creation
and re computation phase the dependency model
is created based on the composite service process
description and SLA information. The created
dependency model can be extended manually
with dependency information, which cannot be
detected automatically. The model needs to be
recalculated if conflicts are detected with respect
to the dependencies, SLAs change, or the process
description is adapted. In the MDH scenario dif-
ferent time dependencies are discovered (see Table
2). The Backup Data service needs to finish before
Replace Hardware can start. Replace Hardware
needs to finish before Restore Data can start.

The validation phase is necessary to ensure
that the created dependency model is valid. It is
also necessary to validate the negotiated SLAs,
which can be supported by the dependency
model. In the case that problems are detected the
model needs to be re-computed. In our scenario
it is necessary to schedule the different services
according to the dependency model, i.e. the
backup of data is scheduled before the replace-
ment of hardware and the restoring of data after-
wards. During the usage phase, the dependency
model supports runtime dependency evaluation
tasks such as the determination of SLO (Service
Level Objective) violation effects or handling
SLA renegotiation requests. In the case of rene-
gotiation, the model may need to be adapted ac-
cordingly. In our scenario company C needs to
renegotiate the scheduled data for hardware re-

placement due to availability problems of the
hardware. The request is evaluated based on the
dependency model and a conflict is detected with
the scheduled time for the service for restoring
data. Thus, a new slot needs to be arranged for
restoring the data. During the retirement phase,
the dependency model is discarded when is not
used or referenced.

Architecture and Integration with ISE

The functionality for the handling of dependencies
is provided by three main components, which are
integrated into the ISE workbench (see Figure 13).
They implement the lifecycle presented above.
The Dependency Analysis component is used for
the semi-automatic dependency analysis at design
time and the recomputation of the dependency
model at runtime, i.e. the first phase of the lifecycle.
For the creation of the dependency model, the
BPMN process description and the SLA informa-
tion for the different services are analysed. Both
are requested from the Service Model Repository.
Temporal relationships between services are de-
tected based on the process description. Resource
and location dependencies are discovered based
on the negotiated SLAs. QoS and price dependen-
cies are calculated based on SLA information as
well as the composite service process structure.
While various dependencies can be discovered
automatically, there is a need for extending the
generated dependency model with information

Table 2. Service dependencies of the MDH sce-
nario

Antecedent Dependency Dependant

Backup Data finish-to-start Replace Hardware

Replace Hard-
ware

finish-to-start Restore Data

Figure 13. Architecture for SLA dependency
management

147

Modeling Services Using ISE Framework

which cannot be discovered. This is achieved by
a dependency model editor, which is part of the
Dependency Analysis component. Upon changes
to the SLAs related to the composite service and
the business process itself, the dependency model
needs to be re-computed using the semi-automatic
approach presented.

The Dependency Model Management com-
ponent manages different instances of depen-
dency models and is responsible for model cre-
ation, storage, retrieval, and removal. It is
integrated with the Dependency Analysis and
Runtime Dependency Evaluation components to
support their work at design time and runtime.
Furthermore, the validation of dependency mod-
els and the associated SLAs is realized by the
Dependency Model Management component. It
assures that only validated dependency models
are used for runtime evaluation. It also detects
conflicts between different SLAs (e.g. start/end
time) based on the dependency model. Thus, while
supporting the Dependency Creation & Re-
computation and Usage phases, it realizes the
Validation and Retirement lifecycle phases.

The Runtime Dependency Evaluation com-
ponent implements the Usage phase. It uses the
dependency model at runtime to evaluate the de-
pendencies that take effect e.g. when a SLA shall
be renegotiated. The evaluation of dependencies
is triggered by the SLA Negotiation component
upon SLA renegotiation requests. The dependency
evaluation can also be initiated by the Monitoring
Cockpit upon receiving information about SLO
violations.

RELATED WORK

WSMF, WSML, WSMT, and WSMO provide
frameworks, tools and an integrated modeling en-
vironments (see (Kerrigan, 2005) and (Paolucci &
Wagner, 2006)) to describe semantic Web services.
Compared to ISE, these approaches concentrate
their attention on the use of ontologies to enhance

the expressiveness of descriptions of technical
Web services and their interfaces (i.e. WSDL).
While ISE also relies on ontologies, their use is
not limited to the interfaces of services and can
be also used to increase the expressiveness of the
organizational and IS models that can be found,
for example, in the business rule and human
resource aspects.

SoaML (Sadovykh, Hahn, Panfilenko, Shafiq,
& Limyr, 2009), MIDAS (Lopez-Sanz, Acuna,
Cuesta, & Marcos, 2008), and UML-S (Dumez,
Gaber, & Wack, 2008) also follow an MDA
approach for service modeling but target the
development of SOA-based solutions and Web
information systems. In contrast to ISE, these
approaches rely uniquely on UML models and
UML extensions for service modeling. The in-
existence of organizational and IS perspectives,
and the purely UML-based approach difficult the
participation of business stakeholders (e.g. CEO,
CTO, CIO) when defining IoS- based services.
Furthermore, advanced modelling mechanisms,
such as business process design based on patterns
and context-based modeling were not yet explored.
One interesting aspect of UML-S is the provision
of transformation rules between UML-S and
adapted Petri nets to solve to verify and validate
the models created. ISE relies on the use of CCS
(Milner, 1995) since it has proven to provide a
suitable means for modeling business processes.

Commercial applications that target the use of
multiple models to design services or SOA-based
architectures are currently available from several
companies. For example, Select Architect4, Busi-
ness Architect5, and Enterprise Architect6 typically
rely on business motivation modeling, business
process modeling, component-based models, and
corporate data models to design IS/IT. While they
rely on MDA approaches for code generation,
they lack precise mapping and synchroniza-
tion techniques between models. Furthermore,
since these tools mainly target the design of IS/
IT solutions, and do not directly target business
services, important aspects of services such as

148

Modeling Services Using ISE Framework

pricing models and marketing channels models
are not available.

CONCLUSION

In this chapter, we presented ISE framework and
its three advanced extensions to meet the require-
ments emerging from the inherent complexity of
IoS-based services. ISE framework utilizes sepa-
ration of concerns and model-driven techniques
to overcome the inherent complexity in a service
engineering process. The process pattern match-
ing approach provides a semi automatic means
to identify suitable services for the assignment
to particular business tasks while constructing
executable service compositions. Furthermore,
semantic context modeling and service description
extension enables an ontology-based approach to
specify the service context and descriptions and to
define dynamic service properties by incorporating
the changes in context. Finally, the SLA manage-
ment approach supports service providers to man-
age dependencies between the services in their
composition to assure a proper execution. Future
work includes further case studies to improve the
modeling experience and to gather requirements
from different business service domains.

REFERENCES

Alves, A., Arkin, A., Askary, S., Barreto, C.,
Bloch, B., Curbera, F., et al. (2007). Web services
business process execution language, version
2.0 (OASIS Standard). WS-BPEL TC OASIS.
Retrieved from http://docs.oasis-open.org/wsb-
pel/2.0/wsbpel-v2.0.html

Baader, F., Knechtel, M., & Penaloza, R. (2009).
A generic approach for large-scale ontological
reasoning in the presence of access restrictions
to the ontology axioms (p. 49).

Baida, Z., Gordijn, J. & Omelayenko, B. (2004).
A shared service terminology for online service
provisioning.

Barros, A., & Dumas, M. (2006). The rise of
Web service ecosystems. IT Professional, 31–37.
doi:10.1109/MITP.2006.123

Bellwood, T., Clement, L., Ehnebuske, D., Hately,
A., Hondo, M., & Husband, Y. L. (2002). UDDI
Version 3.0. Published specification. Oasis.

Blau, B., Kramer, J., Conte, T., & van Dinther,
C. (2009). Service value networks. Proceedings
of the 11th IEEE Conference on Commerce and
Enterprise Computing.

Booth, D., Haas, H., McCabe, F., Newcomer,
E., Champion, M., Ferris, C., et al. (2004). Web
Services Architecture. W3C Working Group Note,
11(1).

Briscoe, G., & De Wilde, P. (2006). Digital ecosys-
tems: Evolving service-orientated architectures.
In Bio-inspired models of network, information
and computing systems, (pp. 1-6).

Bullinger, H. (2003). Service engineering–me-
thodical development of new service products.
International Journal of Production Economics,
275–287. doi:10.1016/S0925-5273(03)00116-6

Cardoso, J., & Sheth, A. (2003). Semantic
e-workflow composition. Journal of Intel-
ligent Information Systems, 21, 191–225.
doi:10.1023/A:1025542915514

Cardoso, J., Voigt, K., & Winkler, M. (2008).
Service engineering for the Internet of Services
(pp. 17–25). Springer.

Cardoso, J., Voigt, K., & Winkler, M. (2009).
Service engineering for the Internet of Services
(pp. 15–27). Berlin, Heidelberg: Springer.

Cardoso, J., Winkler, M., & Voigt, K. (2009). A
service description language for the Internet of
Services. Proceedings First International Sym-
posium on Services Science (ISSS’2009). Berlin:
Logos Verlag.

149

Modeling Services Using ISE Framework

Chang, E., & West, M. (2006). Digital ecosystems
a next generation of the collaborative environment.
Proceedings from the Eight International Confer-
ence on Information Integration and Web-Based
Applications & Services, (pp. 3-24).

Christensen, E., Curbera, F., Meredith, G. &
Weerawarana, S. (2001). Web Services Descrip-
tion Language (WSDL) 1.1.

Czarnecki, K., & Helsen, S. (2006). Feature-based
survey of model transformation approaches. IBM
Systems Journal, 45(3). doi:10.1147/sj.453.0621

Dogac, A., Kabak, Y., Laleci, G. B., Mattocks, C.,
Najmi, F., & Pollock, J. (2005). Enhancing ebXML
registries to make them OWL aware. Distributed
and Parallel Databases, 18, 9–36. doi:10.1007/
s10619-005-1072-x

Dumez, C., Gaber, J., & Wack, M. (2008). Model-
driven engineering of composite web services
using UML-S (pp. 395–398). ACM.

Fleischmann, A. (1994). Distributed systems:
Software design and implementation. Springer.

Fuger, S., Najmi, F. & Stojanovic, N. (2005).
ebXML registry information model, version 3.0.

Herzum, P., & Sims, O. (2000). Business compo-
nent factory. New York: John Wiley.

Janiesch, C., Niemann, M., & Repp, N. (2009).
Towards a service governance framework for
the Internet of Services. Proceedings of the 17th
European Conference on Information Systems.
Verona, Italy.

Kerrigan, M. (2005). Web Service Modeling Toolkit
(WSMT). Techreport.

Kett, H., Voigt, K., Scheithauer, G. & Cardoso, J.
(2009). Service engineering for business service
ecosystems.

Kleppe, A., & Warmer, J. (2003). MDA rxplained.
The model driven architecture: Practice and
promise. Addison-Wesley.

Kopecky, J., Vitvar, T., Bournez, C., & Farrell,
J. (2007). SAWSDL: Semantic annotations for
WSDL and XML schema. IEEE Internet Comput-
ing, 11, 60–67. doi:10.1109/MIC.2007.134

Lehmann, S., & Buxmann, P. (2009). Pricing
strategies of software vendors. Journal of Business
and Information Systems Engineering, 6, 1–10.

Lopez-Sanz, M., Acuna, C. J., Cuesta, C. E., &
Marcos, E. (2008). Defining service-oriented
software architecture models for a MDA-based de-
velopment process at the PIM level (pp. 309–312).
IEEE Computer Society.

Milner, R. (1995). Communication and concur-
rency. Prentice Hall PTR.

Moser, O., Rosenberg, F., & Dustdar, S. (2008).
Non-intrusive monitoring and service adaptation
for WS-BPEL. Proceedings of the World Wide
Web Conference, (pp. 815-824). New York: ACM.

Oberle, D., Bhatti, N., Brockmans, S., Niemann,
M., & Janiesch, C. (2009). Countering service
information challenges in the Internet of Services.
Business and Information Systems Engineering, 1,
370–390. doi:10.1007/s12599-009-0069-9

Oltramari, A., Gangemi, A., Guarino, N., &
Masolo, C. (2002). Sweetening ontologies with
DOLCE. Springer.

Paolucci, M., & Wagner, M. (2006). Grounding
OWL-S in WSDL-S (pp. 913–914). IEEE Com-
puter Society.

Papazoglou, M. P., Traverso, P., Dustdar, S., Ley-
mann, F., & Kramer, B. J. (2008). Service-oriented
computing: A research roadmap. International
Journal of Cooperative Information Systems,
17, 223–255. doi:10.1142/S0218843008001816

Peneder, M., Kaniovski, S., & Dachs, B. (2003).
What follows tertiarisation? Structural change
and the role of knowledge-based services. The
Service Industries Journal, 23, 47–66. doi:10.10
80/02642060412331300882

150

Modeling Services Using ISE Framework

Preist, C. (2004). A conceptual architecture for
semantic Web services (pp. 395–409). Springer.

Riedl, C., Bohmann, T., Leimeister, J. M., &
Krcmar, H. (2009). A framework for analys-
ing service ecosystem capabilities to innovate.
Proceedings of 17th European Conference on
Information Systems.

Sadovykh, A., Hahn, C., Panfilenko, D., Shafiq, O.,
& Limyr, A. (2009). SOA and SHA tools developed
in SHAPE project (p. 113). University of Twente.

Sampson, S. & Froehle, C. (2006). Foundations
and implications of a proposed unified services
theory. Production and Operations Management.

Scheithauer, G., Voigt, K., Bicer, V., Heinrich,
M., Strunk, A. & Winkler, M. (2009). Integrated
service engineering workbench: Service engineer-
ing for digital ecosystems.

Studer, R., Grimm, S., & Abecker, A. (2007).
Semantic Web services: Concepts, technolo-
gies, and applications. New York. Secaucus, NJ:
Springer-Verlag Inc.

Tapscott, D., Ticoll, D., & Lowy, A. (2000). Digital
capital: Harnessing the power of business Webs.
Harvard Business School Press.

Teboul, J. (2005). Service is in front stage.

White, S.A. (2004). Introduction to BPMN. IBM
Cooperation, 2008-029.

Winkler, M., & Schill, A. (2009). Towards de-
pendency management in service compositions
(pp. 79–84).

Zachman, J. A. (1987). A framework for informa-
tion systems architecture. IBM Systems Journal,
26, 276–292. doi:10.1147/sj.263.0276

ENDNOTES

1 	 http://www.eclipse.org/
2 	 http://www.jcom1.com
3 	 http://www.cs.sunysb.edu/_cwb/
4 	 http://www.selectbs.com/adt/analysis-and-

design/select-architect
5 	 http://www.ids-scheer.com/en/Software/

ARISSoftware/ARISBusinessArchi-
tect/3731.html

6 	 http://www.sparxsystems.com.au/

