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Abstract. Organizations have been aware of the importance of Quality of 
Service (QoS) for competitiveness for some time. It has been widely recognized 
that workflow systems are a suitable solution for managing the QoS of 
processes and workflows. The correct management of the QoS of workflows 
allows for organizations to increase customer satisfaction, reduce internal costs, 
and increase added value services. In this paper we show a novel method, 
composed of several phases, describing how organizations can apply data 
mining algorithms to predict the QoS for their running workflow instances. Our 
method has been validated using experimentation by applying different data 
mining algorithms to predict the QoS of workflow.  
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1   Introduction 

The increasingly global economy requires advanced information systems. Business 
Process Management Systems (BPMS) provide a fundamental infrastructure to define 
and manage several types of business processes. BPMS, such as Workflow 
Management Systems (WfMS), have become a serious competitive factor for many 
organizations that are increasingly faced with the challenge of managing e-business 
applications, workflows, Web services, and Web processes. WfMS allow 
organizations to streamline and automate business processes and reengineer their 
structure; in addition, they increase efficiency and reduce costs.  

One important requirement for BMPS and WfMS is the ability to manage the 
Quality of Service (QoS) of processes and workflows [1]. The design and 
composition of processes cannot be undertaken while ignoring the importance of QoS 
measurements. Appropriate control of quality leads to the creation of quality products 
and services; these, in turn, fulfill customer expectations and achieve customer 
satisfaction. It is not sufficient to just describe the logical or operational functionality 
of activities and workflows. Rather, design of workflows must include QoS 
specifications, such as response time, reliability, cost, and so forth. 

One important activity, under the umbrella of QoS management, is the prediction 
of the QoS of workflows. Several approaches can be identified to predict the QoS of 



workflows before they are invoked or during their execution, including statistical 
algorithms [1], simulation [2], and data mining based methods [3, 4]. 

The latter approach, which uses data mining methods to predict the QoS of 
workflows, has received significant attention and has been associated with a recent 
new area coined as Business Process Intelligence (BPI). In this paper, we investigate 
the enhancements that can be made to previous work on BPI and business process 
quality to develop more accurate prediction methods. 

The methods presented in [3, 4] can be extended and refined to provide a more 
flexible approach to predict the QoS of workflows. Namely, we intend to identify the 
following limitations that we will be addressing in this paper with practical solutions 
and empirical testing: 

 
1. In contrast to [4], we carry out QoS prediction based on path mining and by 

creating a QoS activity model for each workflow activity. This combination 
increases the accuracy of workflow QoS prediction. 

2. In [4], time prediction is limited since workflow instances can only be classified 
to “have” or “not to have” a certain behavior. In practice, it means that it is only 
possible to determine that a workflow instance will have, for example, the “last 
more than 15 days” behavior or will not have that behavior. This is insufficient 
since it does not give an actual estimate for the time a workflow will need for its 
execution. Our method is able to deduce that a workflow wi will probably take 5 
days and 35 minutes to be completed with a prediction accuracy of 78%. 

3. In [4], the prediction of the QoS of a workflow is done using decision trees. We 
will show that MultiBoost Naïve Bayes outperforms the use of decision trees to 
predict the QoS of a workflow. 

 
This paper is structured as follows: In Section 2, we present our method of carrying 
out QoS mining based on path mining, QoS activity models, and workflow QoS 
estimation. Section 3 describes the set of experiments that we have carried out to 
validate the QoS mining method we propose. Section 4 presents the related work in 
this area. Finally, section 5 presents our conclusions. 

2   Motivation 

Nowadays, a considerable number of organizations are adopting workflow 
management systems to support their business processes. The current systems 
available manage the execution of workflow instances without any quality of service 
management on important parameters such as delivery deadlines, reliability, and cost 
of service. 

Let us assume that a workflow is started to deliver a particular service to a 
customer. It would be helpful for the organization supplying the service to be able to 
predict how long the workflow instance will take to be completed or the cost 
associated with its execution. Since workflows are non-deterministic and concurrent, 
the time it takes for a workflow to be completed and its cost depends not only on 
which activities are invoked during the execution of the workflow instance, but also 



depends on the time/cost of its activities. Predicting the QoS that a workflow instance 
will exhibit at runtime is a challenge because a workflow schema w can be used to 
generated n instances, and several instances wi (i≤n) can invoke a different subset of 
activities from w. Therefore, even if the time and cost associated with the execution 
of activities were static, the QoS of the execution of a workflow would vary 
depending on the activities invoked at runtime. 

For organizations, being able to predict the QoS of workflows has several 
advantages. For example, it is possible to monitor and predict the QoS of workflows 
at any time. Workflows must be rigorously and constantly monitored throughout their 
life cycles to assure compliance both with initial QoS requirements and targeted 
objectives. If a workflow management system identifies that a running workflow will 
not meet initial QoS requirements, then adaptation strategies [5] need to be triggered 
to change the structure of a workflow instance. By changing the structure of a 
workflow we can reduce its cost or execution time. 

3   QoS Mining  

In this section we focus on describing a new method that can be used by organizations 
to apply data mining algorithms to historical data and predict QoS for their running 
workflow instances. The method presented in this paper constitutes a major and 
significant difference from the method described in [4]. The method is composed of 
three distinct phases (figure 1) that will be explained in the following subsections.  

 

 

Fig. 1. Phases of workflow QoS mining  

In the first phase, the workflow log is analyzed and data mining algorithms are 
applied to predict the path that will be followed by workflow instances at runtime. 
This is called path mining. Path mining identifies which activities will most likely be 
executed in the context of a workflow instance. Once we know the path, we also 
know the activities that will be invoked at runtime. For each activity we construct a 
QoS activity model based on historical data which describes the runtime behavior 
(duration and cost) of an activity. In the last phase, we compute the QoS of the overall 
workflow based on the path predicted and from the QoS activity models using a set of 
reduction rules. 



3.1   Path Mining 

As we have stated previously, the QoS of a workflow is directly dependent on which 
activities are invoked during its execution. Different sets of activities can be invoked 
at runtime because workflows are non-deterministic. Path mining [6, 7] uses data 
mining algorithms to predict which path will be followed when executing a workflow 
instance.  

 
Definition (Path): A path P is a continuous mapping P: [a, b] → Co, where P(a) is the 
initial point, P(b) is the final point, and Co denotes the space of continuous functions. 
A path on a workflow is a sequence {t1, t2, …, tn} such that {t1, t2}, {t2, t3}, …,{tn-1, tn} 
are transitions of the workflow and the ti are distinct. Each ti is connected to a 
workflow activity. 

 
A path is composed of a set of activities invoked and executed at runtime by a 

workflow. For example, when path mining is applied to the simple workflow 
illustrated in figure 2, the workflow management system can predict the probability of 
paths A, B, and C being followed at runtime. Paths A and B have each 6 activities, 
while path C has only 4 activities. In figure 2, the symbol ⊕ represented non-
determinism (i.e., a xor-split or xor-join). 

 

 

Fig. 2. Path mining 

To perform path mining, current workflow logs need to be extended to store 
information indicating the values and the type of the input parameters passed to 
activities and the output parameters received from activities. The values of 
inputs/outputs are generated at runtime during the execution of workflow instances. 
Table 1 shows an extended workflow log which accommodates input/output values of 
activity parameters that have been generated at runtime. Each ‘Parameter/Value’ entry 
as a type, a parameter name, and a value (for example, string loan-type=”car-loan”).  

Additionally, the log needs to include path information: a path describing the 
activities that have been executed during the enactment of a process. This information 
can easily be stored in the log. From the implementation perspective it is space 
efficient to store in the log only the relative path, relative to the previous activity, not 



the full path. Table 1 shows the full path approach because it is easier to understand 
how paths are stored in the log. 

Table 1.  Extended workflow log  

Workflow 
log extension 

 

… Parameter/Value Path 
… int SSN=7774443333; 

string loan-type=”car-
loan” 

… 

… 

… string name=jf@uma.pt; 
… 

{FillLoanRequest, 
CheckLoanType, 
CheckCarLoan, 
ApproveCarLoan, 
NotifyCarLoanClient, 
ArchiveApplication} 

… … … 
 

During this phase, and compared to [3, 4], we only need to add information on paths 
to the log. Once enough data is gathered in the workflow log, we can apply data 
mining methods to predict the path followed by a process instance at runtime based 
on instance parameters. In section 4.2, we will show how the extended workflow log 
can be transformed to a set of data mining instances. Each data mining instance will 
constitute the input to machine learning algorithm. 

3.2   QoS activity model construction 

After carrying out path mining, we know which activities a workflow instance will be 
invoking in the near future. For each activity that will potentially be invoked we build 
what we call a QoS activity model. The model includes information about the activity 
behavior at runtime, such as its cost and the time the activity will take to execute [1]. 

Each QoS activity model can be constructed by carrying out activity profiling. This 
technique is similar to the one used to construct operational profiles. Operational 
profiles have been proposed by Musa [8, 9] to accurately predict future the reliability 
of applications. The idea is to test the activity based on specific inputs. In an 
operational profile, the input space is partitioned into domains, and each input is 
associated with a probability of being selected during operational use. The probability 
is employed in the input domain to guide input generation. The density function built 
from the probabilities is called the operational profile of the activity. At runtime, 
activities have a probability associated with each input. Musa [9] described a detailed 
procedure for developing a practical operational profile for testing purposes. In our 
case, we are interested in predicting, not the reliability, but the cost and time 
associated with the execution of workflow activities. 

During the graphical design of a workflow, the business analyst and domain expert 
construct a QoS activity model for each activity using activity profiles and empirical 
knowledge about activities. The construction of a QoS model for activities is made at 



design time and re-computed at runtime, when activities are executed. Since the initial 
QoS estimates may not remain valid over time, the QoS of activities is periodically re-
computed, based on the data of previous instance executions stored in the workflow 
log. 

The re-computation of QoS activity metrics is based on data coming from designer 
specifications (i.e. the initial QoS activity model) and from the workflow log. 
Depending on the workflow data available, four scenarios can occur (Table II): a) For 
a specific activity a and a particular dimension Dim (i.e., time or cost), the average is 
calculated based only on information introduced by the designer (Designer 
AverageDim(a)); b) the average of an activity a dimension is calculated based on all its 
executions independently of the workflow that executed it (Multi-Workflow 
AverageDim (a)); c) the average of the dimension Dim is calculated based on all the 
times activity a was executed in any instance from workflow w (Workflow 
AverageDim(t, w)); and d) the average of the dimension of all the times activity t was 
executed in instance i of workflow w (Instance AverageDim(t, w, i)).  

Table 2.  QoS dimensions computed at runtime  

a) QoSDim(a) = Designer AverageDim(a) 
b) QoSDim’(a) = wi1* Designer AverageDim(a) + 

wi2* Multi-Workflow AverageDim(a) 
c) QoSDim(a, w) = wi1* Designer AverageDim(a) + 

wi2* Multi-Workflow AverageDim(a) + 
wi3*Workflow AverageDim(a, w) 

d) QoSDim(a, w, i) 
= 

wi1* Designer AverageDim(a) +  
wi2* Multi-Workflow AverageDim(a) +  
wi3* Workflow AverageDim(a, w) +  
wi4* Instance Workflow AverageDim(a,w, i) 

 

Let us assume that we have an instance i of workflow w running and that we desire to 
predict the QoS of activity a ∈ w. The following rules are used to choose which 
formula to apply when predicting QoS. If activity a has never been executed before, 
then formula a) is chosen to predict activity QoS, since there is no other data available 
in the workflow log. If activity a has been executed previously, but in the context of 
workflow wn, and w != wn, then formula b) is chosen. In this case we can assume that 
the execution of a in workflow wn will give a good indication of its behavior in 
workflow w. If activity a has been previously executed in the context of workflow w, 
but not from instance i, then formula c) is chosen. Finally, if activity a has been 
previously executed in the context of workflow w, and instance i, meaning that a loop 
has been executed, then formula d) is used. 

The workflow management system uses the formulae from Table II to predict the 
QoS of activities. The weights wik are manually set. They reflect the degree of 
correlation between the workflow under analysis and other workflows for which a set 
of common activities is shared. At this end of this second phase, we already know the 
activities of a workflow instance that will most likely be executed at runtime, and for 
each activity we have a model of its QoS, i.e. we know the time and cost associated 
with the invocation of the activity.  



3.3   Workflow QoS Estimation 

Once we know the path, i.e. the set of activities which will be executed by a workflow 
instance, and we have a QoS activity model for each activity, we have all the elements 
required to predict the QoS associated with the execution of a workflow instance. 

To compute the estimated QoS of a process in execution, we use a variation of the 
Stochastic Workflow Reduction (SWR) algorithm [1]. The variation of the SWR 
algorithm that we use does not include probabilistic information about transitions. 
The SWR is an algorithm for computing aggregate QoS properties step-by-step. At 
each step a reduction rule is applied to shrink the process. At each step the time and 
cost of the activities involved is computed. This is continued until only one activity is 
left in the process. When this state is reached, the remaining activity contains the QoS 
metrics corresponding to the workflow under analysis. For the reader interested in the 
behavior of the SWR algorithm we refer to [1]. 

For example, if the path predicted in the first phase of our QoS mining method 
includes a parallel system, as show in Figure 3, the parallel system reduction rule is 
applied to a part of the original workflow  (Figure 3.a) and a new section of the 
workflow is created (Figure 3.b). 

A system of parallel activities t1, t2, …, tn, an and split activity ta, and an and join 
activity tb can be reduced to a sequence of three activities ta, t1n, and tb. In this 
reduction, the incoming transitions of ta and the outgoing transition of activities tb 
remain the same. The only outgoing transitions from activity ta and the only incoming 
transitions from activity tb are the ones shown in the figure below. 

 

tbta
*

(a) (b)

* tbta t1n

t1

t2

tn

 
Fig. 3. Parallel system reduction  

The QoS of the new workflow is computed using the following formulae (the QoS of 
tasks ta and tb remain unchanged): 

 
Time(t1n) = Maxi∈{1..n} {Time(ti)} and 

 Cost(t1n) = ∑
≤≤ ni .1

Cost(ti) 

 
Reduction rules exist for sequential, parallel, conditional, loop, and network systems 
[1]. These systems or pattern are fundamental since a study on fifteen major workflow 
management systems [10] showed that most systems support the reduction rules 



presented. Nevertheless, additional reduction rules can be developed to cope with the 
characteristics and features of specific workflow systems. 

Our approach to workflow QoS estimation – which uses a variation of the SWR 
algorithm – addresses the third point that we raised in the introduction and shows that 
the prediction of workflow QoS can be used to obtain actual metrics (e.g. the 
workflow instance w will take 3 days and 8 hours to execute) and not only 
information that indicates if an instance takes “more” than D days or “less” than D 
days to execute. 

 

 
Fig. 4. The loan process 

4   Experiments 

In this section, we describe the data set that has been used to carry out workflow QoS 
mining, how to apply different data mining algorithms and how to select the best ones 
among them, and finally we discuss the results obtained. While we describe the 
experiments carried out using the loan process application (see Figure 4), we have 
replicated our experiments using a university administration process. The conclusions 
that we have obtained are very similar to the one presented in this section. 

4.1   Workflow scenario 

A major bank has realized that to be competitive and efficient it must adopt a new and 
modern information system infrastructure. Therefore, a first step was taken in that 
direction with the adoption of a workflow management system to support its 
processes. One of the services supplied by the bank is the loan process depicted in 
Figure 4. While the process is simple to understand, a complete explanation of the 
process can be found in [6].  



4.2   Path mining 

To carry out path mining we need to log information about the execution of workflow 
instances. But before storing workflow instances data we need to extended our 
workflow management log system, as explained in section 3.1, to store information 
indicating the values of the input parameters passed to activities and the output 
parameters received from activities (see [6, 7] for an overview of the information 
typically stored in the workflow log). The information also includes the path that has 
been followed during the execution of workflow instances.  

To apply data mining algorithms to carry out path mining, the data present in the 
workflow log need to be converted to a suitable format to be processed by data 
mining algorithms. Therefore, we extract data from the workflow log to construct data 
mining instances. Each instance will constitute an input to machine learning and is 
characterized by a set of six attributes: 

 
income, loan_type, loan_amount, loan_years, Name, SSN 

The attributes are input and output parameters from the workflow activities. The 
attributes income, loan_amount, loan_years and SSN are numeric, whereas the 
attributes loan_type and name are nominal. Each instance is also associated with a 
class (named [path]) indicating the path that has been followed during the execution 
of a workflow when the parameters were assigned specific values. Therefore, the final 
structure of a data mining instance is: 

 
income, loan_type, loan_amount, loan_years, Name, SSN, [path] 

In our scenario, the path class can take one of six possible alternatives indicating 
the path followed during the execution of a workflow when activity parameters were 
assigned specific values (see Figure 4 to identify the six possible paths that can be 
followed during the execution of a loan workflow instance). 

Having our extended log ready, we have executed the workflow from Figure 4 and 
logged a set of 1000 workflow instance executions. The log was then converted to a 
data set suitable to be processed by machine learning algorithms, as described 
previously.  

We have carried out path mining to our data set using four distinct data mining 
algorithms: J48 [11], Naïve Bayes (NB), SMO [12], and MultiBoost [13]. J48 was 
selected as a good representative of a symbolic method, Naïve Bayes as a 
representative of a probabilistic method, and the SMO algorithm as representative of a 
method that has been successfully applied in the domain of text-mining. Multiboost is 
expected to improve performance of single classifiers with the introduction of meta-
level classification. 

Since when we carry out path mining to a workflow not all the activity input/ouput 
parameters may be available (some activities may not have been invoked by the 
workflow management system when path mining is started), we have conducted 
experiments with a variable number of parameters (in our scenario, the parameters 
under analysis are: income, loan_type, loan_amount, loan_years, name, and SSN) 
ranging from 0 to 6. We have conducted 64 experiments (26); analyzing a total of 
64000 records containing data from workflow instance executions. 



 
Accuracy of path mining. The first set of experiments was conducted using J48, 
Naïve Bayes, and SMO methods with and without the Multiboost (MB) method. We 
obtained a large number of results that are graphically illustrated in figure 5. The chart 
indicates for each of the 64 experiments carried out, the accuracy of path mining. 
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Fig. 5. Accuracy analysis of path mining 

The chart indicates, for example, that in experiment nº12, when we use two 
parameters to predict the path that will be followed by a workflow instance from 
Figure 4, we achieve a prediction accuracy of 87,13% using the J48 algorithm. Due to 
space limitation, the chart in Figure 4 does not indicate which parameters or the 
number of parameters that have been utilized in each experiment. 

Table 3.  Summary results of accuracy analysis of path mining  

 J48 NB SMO 

Avg 
acc. 

75,43% 78,84% 77,79% 

Min 
acc. 

24,55% 30,84% 29,04% 

Max 
acc. 

93,41% 96,41% 93,11% 

 MB 
J48 

MB 
NB 

MB 
SMO 

Avg 
acc. 

79,74% 81,11% 78,28% 

Min 
acc. 

24,55% 30,84% 29,04% 

Max 
acc. 

94,61% 97,31% 96,11% 

 



For reasons of simplicity and as a summary, we computed the average, the minimum, 
and the maximum accuracy for each method for all the experiments carried out. The 
results are shown in Table 3. 

On average the Naïve Bayes approach performs better than all other single 
methods when compared to each other. When the number of parameters is increased, 
the accuracy of Naïve Bayes improves. It can be seen that all the methods produced 
more accurate results when a more appropriate set of parameters was proposed. The 
worst results were produced by the J48 and SMO algorithms. It is safe to assume that 
these algorithms overfitted and were not able to find a generalized concept. That is 
probably a result  of the nature of the dataset that contains parameters and that 
introduced noise. These results address the third point that was raised in the 
introduction and show that path prediction using MultiBoost Naïve Bayes 
outperforms the use of decision trees. 

Next we added the meta-level of the multiboost algorithm and repeated the 
experiments. As expected, the multiboost approach made more accurate prognoses. 
All the classifiers produced the highest accuracy in experiment 16, since this 
experiment includes the 4 most informative parameters (i.e. income, loan_type, 
loan_amount, and loan_years). In order to evaluate which parameters are the most 
informative, we have used information gain. 

4.3   QoS activity model construction 

Once we have determined the most probable path that will be followed by a workflow 
at runtime, we know which activities a workflow instance will be invoking. At this 
stage, we need to construct a QoS activity model from each activity of the workflow. 
Since this phase is independent of the previous one, in practice it can be carried out 
before path mining. 

Since we have fourteen activities in the workflow illustrated in Figure 4, we need 
to construct fourteen QoS activity models. Each model is constructed using a profiling 
methodology (profiling was described in section 3.2). When carrying out activity 
profiling we determine the time an activity will take to be executed (i.e. Activity 
Response Time (ART)) and its cost (i.e. Activity cost (AC)). Table 4 illustrates the 
QoS activity model constructed for the Check Home Loan activity in Figure 4 using 
profiling. 

Table 4.  QoS activity model for the Check Home Loan activity  

 Static QoS model 
 Min value Avg value Max value 

Time (min) 123 154 189 
Cost (euros) 4,80 5,15 5,70 

 

This static QoS activity model was constructed using activity profiling. When a 
sufficient number of workflows have been executed and the log has a considerable 
amount of data, we re-compute the static QoS activity at runtime, originating a 



dynamic QoS activity model. The re-computation is done based on the functions 
presented in Table 2. Due to space limitations we do not show the dynamic QoS 
activity model. It has exactly the same structure as the model presented in Table 4, but 
with more accurate values since they reflect the execution of activities in the context 
of several possible workflows. 

4.4   Workflow QoS Estimation 

As we have already mentioned, to compute the estimated QoS of a workflow in 
execution, we use a variation of the Stochastic Workflow Reduction (SWR) 
algorithm. The SWR aggregates the QoS activity models of each activity step-by-step. 
At each step a reduction rule is applied to transform and shrink the process and the 
time and cost of the activities involved is computed. This is continued until only one 
activity is left in the process. When this state is reached, the remaining activity 
contains the QoS metrics corresponding to the workflow under analysis. A graphical 
simulation of applying the SWR algorithm to our workflow scenario is illustrated in 
Figure 6.  

 

 

Fig. 6. SWR algorithm applied to our workflow example 

The initial workflow (a) is transformed to originate workflow b) by applying the 
conditional reduction rule to two conditional structures identified in the figure with a 
box (dashed line). Workflow b) is further reduced by applying the sequential 
reduction rule to three sequential structures also identified with a box (dashed line). 
The resulting workflow, workflow c), is transformed several times to obtain workflow 
d) and, finally, workflow e). The final workflow (e) is composed of only one activity. 
Since at each transformation step SWR algorithm aggregates the QoS activity models 
involved in the transformation, the remaining activity contains the QoS metrics 
corresponding to the initial workflow under analysis. 



4.5   QoS experimental results 

Our experiments have been conducted in the following way. We have selected 100 
random workflow instances from our log. For each instance, we have computed the 
real QoS (time and cost) associated with the instance. We have also computed the 
predicted QoS using our method. The results of QoS prediction for the loan process 
are illustrated in Figure 7. 
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Fig. 7. QoS prediction for time 
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Fig. 8.. QoS prediction for cost 

The results clearly show that the QoS mining method yields estimations that are very 
close to the real QoS of the running processes. 



5   Related Work 

Process and workflow mining is addressed in several papers and a detailed survey of 
this research area is provided in [14]. In [3, 4], a Business Process Intelligence (BPI) 
tool suite that uses data mining algorithms to support process execution by providing 
several features, such as analysis and prediction is presented. In [15] and [16] a 
machine learning component able to acquire and adapt a workflow model from 
observations of enacted workflow instances is described. Agrawal, Gunopulos et al. 
[17] propose an algorithm that allows the user to use existing workflow execution 
logs to automatically model a given business process presented as a graph. 
Chandrasekaran et al., [2] describe a simulation coupled with a Web Process Design 
Tool (WPDT) and a QoS model [1] to automatically simulate and analyze the QoS of 
Web processes. While the research on QoS for BMPS is limited, the research on time 
management, which is under the umbrella of QoS process, has been more active and 
productive. Eder et al. [18] and Pozewaunig et al. [19] present an extension of CMP 
and PERT frameworks by annotating workflow graphs with time, in order to check 
the validity of time constraints at process build-time. 

6   Conclusions 

The importance of QoS (Quality of Service) management for organizations and for 
workflow systems has already been much recognized by academia and industry. The 
design and execution of workflows cannot be undertaken while ignoring the 
importance of QoS measurements since they directly impact the success of 
organizations. In this paper we have shown a novel method that allows us to achieve 
high levels of accuracy when predicting the QoS of workflows. Our first conclusion 
indicates that workflow QoS mining should not be applied as a one-step methodology 
to workflow logs. Instead, if we use a methodology that includes path mining, QoS 
activity models, and workflow QoS estimation, we can obtain very good prediction 
accuracy. Our second conclusion indicates that the MultiBoost (MB) Naïve Bayes 
approach is the data mining algorithm that yields the best workflow QoS prediction 
results.  
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