
C. Baroglio et al. (Eds.): Reasoning Web 2008, LNCS 5224, pp. 240–268, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Web Services Discovery Utilizing Semantically
Annotated WSDL

Jorge Cardoso1, John A. Miller2, and Savitha Emani2

1 SAP Research CEC Dresden
Chemnitzer Strasse 48

01187 Dresden, Germany
jorge.cardoso@sap.com

2 LSDIS Lab, Department of Computer Science
University of Georgia

Athens, GA 30602 – USA
jam@cs.uga.edu, emani@cs.uga.edu

Abstract. To make semantic Web services accessible to users, providers use
registries to publish them. Unfortunately, the current registries use discovery
mechanisms which are inefficient, as they do not support discovery based on
the semantics of the services and thus lead to a considerable number of irrele-
vant matches. Semantic discovery and matching of services is a promising ap-
proach to address this challenge. This paper presents an algorithm to match a
semantic Web service request described with SAWSDL against semantic Web
service advertisements. The algorithm is novel in three fundamental aspects.
First, the similarity among semantic Web service properties, such as inputs and
outputs, is evaluated using Tversky’s model which is based on concepts
(classes), their semantic relationships, and their common and distinguishing fea-
tures (properties). Second, the algorithm, not only takes into account services’
inputs and outputs, but it also considers the functionality of services. Finally,
the algorithm is able to match a semantic Web service request against adver-
tisements that are annotated with concepts that are with or without a common
ontological commitment. In other words, it can evaluate the similarity of con-
cepts defined in the context of different ontologies.

Keywords: We Semantic Web, Web services, Ontologies.

1 Introduction

Semantic Web services are the new paradigm for distributed computing. They have
much to offer towards the integration of heterogeneous, autonomous and large scale
distributed systems. Several standards such as WSDL [1, 2], UDDI [3], and SOAP [4]
have been developed to support the use of Web services. Significant progress has been
made towards making Web services a pragmatic solution for distributed computing on
the scale of the World Wide Web. With the proliferation of Web services and the evolu-
tion towards the semantic Web comes the opportunity to automate various Internet
related tasks. Applications should be able to automatically or semi-automatically

 Web Services Discovery Utilizing Semantically Annotated WSDL 241

discover, invoke, compose, and monitor Web services offering particular services and
having particular properties [5].

Given the dynamic environment in e-businesses, the power of being able to discover
Web services on the fly, to dynamically create business processes is highly desirable.
The discovery of Web services has specific requirements and challenges compared to
previous work on information retrieval systems and information integration systems.
Several issues need to be considered. The discovery has to be based, not only on syn-
tactical information, but also on data, as well as functional and QoS semantics [6].

Discovery is the procedure of finding a set of appropriate Web services that meets
user requirements [7]. The discovery of Web services to model Web processes differs
from the search for tasks/activities to model traditional processes, such as workflows.
One of the main differences is in terms of the number of Web services available to the
composition process. On the Web, potentially thousands of Web services are available
which make discovery a difficult procedure. One cannot expect a designer to manu-
ally browse through all the Web services available and select the most suitable one.
Therefore, one of the problems that needs to be overcome is how to efficiently
discover Web services [6].

Currently, the industry standards available for registering and discovering Web
services are based on UDDI specifications [3]. An important challenge is that of find-
ing the most appropriate Web service within a registry [7]. This challenge arises due
to the discovery mechanism supported by UDDI. In an attempt to disassociate itself
from any particular Web service description format, UDDI specification does not
support registering the information from the service descriptions in the registry.
Hence the effectiveness of UDDI is limited, even though it provides a very powerful
interface for keyword and taxonomy based searching. Suggestions [8] have been
made to register WSDL descriptions, which are the current industry’s accepted stan-
dard, in UDDI. However, since WSDL descriptions are syntactic, registering them
would only provide syntactical information about the Web services. The problem with
syntactic information is that the semantics implied by the information provider are not
explicit, leading to possible misinterpretation by others. Therefore, discovering Web
services using UDDI is relatively inefficient since the discovery mechanism only
takes into account the syntactic aspect of Web services by providing an interface for
keyword and taxonomy based searching.

The key to enhance the discovery of Web services is to describe Web services se-
mantically [9] and use semantic matching algorithms (e.g. [6, 10-12]) to find appro-
priate services. Semantic discovery allows the construction of queries using concepts
defined in a specific ontological domain. By having both the advertisement descrip-
tion and request query explicitly declare their semantics, the results of discovery are
more accurate and relevant than keyword or attribute-based matching. Adding seman-
tics to Web service descriptions can be achieved by using ontologies that support
shared vocabularies and domain models for use in the service description [7]. Using
domain specific ontologies, the semantics implied by structures in service descrip-
tions, which are known only to the writer of the description, can be made explicit.
While searching for Web services, relevant domain specific ontologies can be referred
to, thus enabling semantic matching of services.

In this paper, we will review the state-of-the-art in the discovery of Web services.
We then present a new algorithm for Web service discovery that is novel in three

242 J. Cardoso, J.A. Miller, and S. Emani

fundamental aspects. First, the similarity among semantic Web service properties,
such as inputs and outputs, are determined based on a feature-based model, Tversky’s
model. Using Tversky’s model, we consider that similarity is a judgment process that
requires two services to be decomposed into aspects in which they are the same and
aspects in which they are different. Evaluating the similarity is based on concepts
(classes), their semantic relations, and their common and distinguishing features
(properties). Second, the algorithm, not only takes into account services’ inputs and
outputs, but it also considers the functionality of services. This allows for increasing
the precision of search. Providers can express in a better way the objective of their
services and customers can give a better characterization of the services they are look-
ing for. Finally, the algorithm is able to match a semantic Web service request against
advertisements that are annotated with concepts that are with or without a common
ontology commitment. In other words, it can evaluate the similarity of concepts de-
fined in the context of different ontologies. This last characteristic is important since
in some situations it is perfectly acceptable to find similar services (or even equivalent
services) annotated with semantic concepts that exist in the context of different on-
tologies.

The remainder of this paper is structured as follows. Section 2 provides an over-
view on how Web services can be semantically annotated or described so that they
can be considered semantic Web services. We present an approach to add semantics
to WSDL. The tool Radiant is used to exemplify the essential functionalities needed
for an annotation tool. In section 3, we present our semantic Web service matching
function (called SM-T) to discover services. It also describes a ranking algorithm that
uses the matching function previously presented and that can be used by discovery
mechanisms. Section 4 explains how the SM-T function can be integrated in the ME-
TEOR-S Web Services discovery infrastructure. This system supplies an infrastruc-
ture of registries for semantic publication and discovery of Web services. Section 5
discusses the related work in this area and the last section presents our conclusions.

2 Semantic Web Service

Many believe that a new Web will emerge in the next few years, based on the
large-scale research and development ongoing on the semantic Web and Web ser-
vices. The intersection of these two, semantic Web services, may prove to be even
more significant. Academia has mainly approached this area from the semantic Web
side, while industry is beginning to consider its importance from the Web services
side [13]. Three main approaches have been developed to bring semantics to Web
services:

• The first approach uses OWL-S, a Web Service description language that seman-
tically describes the Web using OWL ontologies. OWL-S services are then
mapped to WSDL operations and inputs and outputs of OWL-S are mapped to
WSDL messages.

• The second approach, WSMO, is a meta-model for semantic Web services devised
to facilitate the automation of discovering, combining and invoking electronic ser-
vices over the Web. WSMO elements include: Ontologies, Web services, Goals
and Mediators.

 Web Services Discovery Utilizing Semantically Annotated WSDL 243

Fig. 1. OWL-S: Service ontology overview

• The third approach to creating semantic Web services is by mapping concepts in
a Web service description (WSDL specification) to ontological concepts. The
WSDL elements that can be marked up with metadata are operations, messages,
preconditions and effects, since all the elements are explicitly declared in a
WSDL description.

The approaches will be discussed in the following subsections.

2.1 OWL-S

OWL-S [14] (formerly DAML-S) is a standard ontology or language which gives
providers a computer-interpretable description of a Web service. It supplies a set of
classes and properties which describes capabilities of a Web service in an unambigu-
ous, computer form. This ontology uses OWL as the web compatible representational
language. As OWL-S gives a markup to the Web services it helps in automated dis-
covery, composition and interoperation of services. OWL-S employs an upper level
ontology to describe Web services. It consists of three parts expressed in accordance
with OWL ontologies: the service profile (What does the service provide for prospec-
tive clients?), the service model (How is it used?), and the service grounding (How
does one interact with it?), each of these perspectives provide essential information
about the service (Figure 1).

The Service Profile used to discover a Web service gives complete information on
whether a particular service meets the requirement of a user or not. This information
involves what the service capabilities are, its limitations and the quality of service. It
gives detailed information about the name, contact, description of the service, specifi-
cation of parameters (properties) according to the process ontology, Inputs, Outputs,
Preconditions and Effects (IOPE). The Service Model gives a layout of how a con-
sumer should pass requests and how the service accomplishes the task. When services

244 J. Cardoso, J.A. Miller, and S. Emani

are composed the consumer can use the description in different ways: to analyze
whether the service meets the requirements in detail, to compose multiple services for
a specific task, to synchronize and coordinate different participants and to monitor the
execution of the services. The services are modeled as processes; the IOPEs declared
in the service profile are referenced here. If the processes are connected with each
other then the dataflow between these processes is specified. The Service Grounding
specifies the communication protocol, message formats and other details used to
access the web service. Concrete messages are specified in grounding i.e., how the
inputs and outputs are of a process are realized as messages in some transmittable
format. WSDL is used to support initial grounding mechanism as a set of endpoints
for messages along with SOAP binding where HTTP is the communication protocol
that is used.

2.2 WSMO

The Web Service Modeling Ontology (WSMO [15]) comprises an ontology of core
elements for semantic Web services, described in WSML (Web Services Modeling
Language), a formal description language, and also an execution environment called
WSMX (Web Service Execution Environment). In WSMO, ontologies provide the
terminology used by other WSMO elements to describe the relevant aspects of the
domains of discourse. Goals symbolize user desires which can be satisfied by execut-
ing a Web service and Mediators express elements that surmount interoperability
problems between distinct WSMO elements. WSMO and OWL-S, both accept the
same view towards having service ontologies to construct semantic Web services.
WSMO has it own family of languages, WSML, which is based on Description
Logics and Logic Programming.

As WSMO provides ontological specifications for the elements of Web services it
is designed on the basis of few principles: it identifies the resources with the help of
URIs, it is based on an ontology model and supports ontology languages designed for
the semantic Web, each resource is defined independently, it handles heterogeneity, it
separates between client and the available services, it provides and differentiates be-
tween description and implementation, it describes Web services that provide access
to a service (actual value obtained after a Web service is invoked).

WSMO uses different approaches to discover Web services which require different
annotation and description of goals and services. Web service discovery is done by
matching goal descriptions with semantic annotations of Web services. This type of
discovery happens in an ontological level. Two main processes are required for this
discovery: the user input will be generalized to more abstract descriptions and ser-
vices and their descriptions should be abstracted to classes of services.

2.3 Adding Semantics to WSDL

It has been recognized [5] that due to the heterogeneity, autonomy and distribution of
Web services and the Web itself, new approaches should be developed to describe
and advertise Web services. The most notable approaches rely on the use of semantics
to describe Web services. This new breed of Web services, termed semantic Web
services, will enable the automatic annotation, advertisement, discovery, selection,

 Web Services Discovery Utilizing Semantically Annotated WSDL 245

composition, and execution of inter-organization business logic, making the Internet
become a common global platform where organizations and individuals communicate
with each other to carry out various commercial activities and to provide value-added
services. The academia has mainly approached this area from the semantic Web side,
while industry is beginning to consider its importance from the point of view of Web
services [13]. As we have already seen, three main approaches have been developed
to bring semantics to Web services: SAWSDL (formally WSDL-S), OWL-S [14], and
WSMO [15]. Since our work has been carried out with the research group that has
defined SAWSDL, we will focus our study on this specification.

2.3.1 WSDL
WSDL [2] is primarily an interface description language for Web services, just as IDL
was for CORBA. As an interface, it describes capabilities that Web services implement-
ing the interface should provide. The main thing to describe about an interface is the set
of operations. In WSDL, the meaning of an operation is given by the operation name,
the input parameter names and types, the output parameter names and types as well as
the possible faults that can be thrown. In addition, further information can be obtained
from the interface itself and in WSDL 2.0 one interface can extend another (interface
inheritance).

A WSDL document describes a Web service as a collection of ports. Messages
specify data being exchanged between the services and port types are collection of
operations. As such a WSDL document has certain elements to define data types,
messages, operations, port types, binding, ports and services. Figure 2 shows a com-
plete example of how a WSDL looks like.

<?xml version="1.0" encoding="UTF-8" ?>
<!-- Published by JAX-WS RI at http://jax-ws.dev.java.net.
RI's version is JAX-WS RI 2.1.2-hudson-182-RC1.-->
<!-- Generated by JAX-WS RI at http://jax-ws.dev.java.net.
RI's version is JAX-WS RI 2.1.2-hudson-182-RC1. -->

<definitions xmlns:wsu="http://docs.oasis-
open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-
1.0.xsd"
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:tns="http://stock/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns=http://schemas.xmlsoap.org/wsdl/
 targetNamespace="http://stock/" name="estockincService">

<types>
 <xsd:import namespace=http://stock/ “
schemaLocation="http://localhost:8080/WebService/estockincServi
ce?xsd=1" />
</types>

<message name="stockquoterequest">

Fig. 2. An example WSDL Document

246 J. Cardoso, J.A. Miller, and S. Emani

 <part name="parameters" element="tns:stockquoterequest" />
</message>
<message name="stockquoterequestResponse">
 <part name="parameters" ele-
ment="tns:stockquoterequestResponse" />
</message>

<portType name="estockinc">
 <operation name="stockquoterequest">
 <input message="tns:stockquoterequest"/>
 <output message="tns:stockquoterequestResponse"/>
 </operation>
</portType>

<binding name="estockincPortBinding" type="tns:estockinc">
 <soap:binding trans-
port="http://schemas.xmlsoap.org/soap/http" style="document" />
 <operation name="stockquoterequest">
 <soap:operation soapAction="" />
 <input>
 <soap:body use="literal" />
 </input>
 <output>
 <soap:body use="literal" />
 </output>
 </operation>
</binding>

<service name="estockincService">
 <port name="estockincPort" bind-
ing="tns:estockincPortBinding">
 <soap:address
location="http://localhost:8080/WebService/estockincService" />
 </port>
</service>
</definitions>

Fig. 2. (continued)

Although the intent of WSDL is to give the syntax of a Web service interface,
some level of semantics or meaning is necessary for the interface and its operations to
be usable. The real issue is not whether WSDL descriptions themselves have any
semantics, but rather how complete and precise are the semantics, and whether the
semantics can be effectively and automatically processed.

2.3.2 SAWDL
WSDL as it stands is most useful if standards (naming conventions and even standard
predefined interfaces) are used. Then automation is possible if exact matching is used
and you are sure everyone has fully followed the standard. Automation tools for dis-
covery and composition may blindly find and connect components. Unfortunately,
this brittle solution has only worked in the past in narrow domains or with controlled
organizations and is unlikely to scale to the Web.

 Web Services Discovery Utilizing Semantically Annotated WSDL 247

Table 1. Allowable SAWSDL annotations

 Model
Reference

Lifting
SchemaMapping

Lowering
SchemaMapping

<interface> Yes No No
<operation> Yes No No
<complexType> Yes Yes Yes
<simpleType> Yes Yes Yes
<element> Yes Yes Yes
<attribute> Yes No No
<fault> Yes No No

One could jump to an approach that provides a much richer and more formalized
description of Web services (e.g., OWL-S [14]), but maybe a simple augmentation of
WSDL may suffice (or at least provide substantial improvement). This is the idea
behind WSDL-S [16] and the even simpler Semantic Annotations for WSDL
(SAWSDL). As of August 2007, SAWSDL has been accepted as a W3C recommen-
dation or standard for augmenting WSDL and associated XML Schema documents
with semantic annotations. Although SAWSDL was designed for WSDL 2.0, which
itself was accepted as a W3C recommendation in July 2007, SAWSDL also works
with WSDL 1.1 as it is the one currently in predominate use. SAWSDL focuses on
the Interface portion of WSDL 2.0 (or PortType in WSDL 1.1) and its sub-elements.
Semantics is attached to the principal elements within an interface description, simply
by annotating them with concepts from a semantic model (e.g., classes within an
OWL ontology). These annotations are innocuous in that they can be easily filtered
out, leaving the original WSDL.

There are three types of annotations provided by SAWSDL: model references, lift-
ing schema mappings and lowering schema mappings. The model references tell what
an element means in the ontological world, while the mappings allow data to be trans-
formed up (lifted) to the ontological world and returned back down (lowered). Note
that these mappings are really descriptions as well, since they need not be applied
directly at run time. For example, when one service may need to invoke another, a
semantic discovery and composition tool could use these mappings to determine what
services can talk to each other. In composition, the mappings could be composed
providing transformations from one XSD to another and never actually going up to
the ontological world. In Table 1, the SAWSDL annotations are cross referenced with
the elements they annotate.

Let us now consider how this information can be used to discover Web services.
Note that this information is also useful in the composition of Web services, but that
is not the focus of this paper (see [17] for its use in composition). One may reasonably
discover Web services by either looking for operations or interfaces. The other ele-
ments annotated by SAWSDL are too low level, but of course come into play when
looking for operations or interfaces. Let us begin by considering the discovery of
operations. The following is a fragment of SAWSDL from the Rosetta Ontology [18].

<wsdl:operation name="order"
pattern="http://www.w3.org/2006/01/wsdl/in-out"
sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/s
pec/ontology/purchaseorder#RequestPurchaseOrder">

248 J. Cardoso, J.A. Miller, and S. Emani

<wsdl:input element="OrderRequest" />
<wsdl:output element="OrderResponse" />

</wsdl:operation>

The annotation of the operation named order is a model reference to the Request-
PurchaseOrder class in the purchaseorder ontology. This ontology is loosely
based on the RosettaNet standard for e-commerce, which includes well-defined opera-
tions and sub-operation in their Partner Interface Process (PIP) specifications. In other
words, essential functionality is prescribed. One could view this as a high-level descrip-
tion of functionality or in some cases simply as a categorization of functionality. Other
aspects of an operation include the inputs and outputs and even preconditions and ef-
fects (preconditions and effects are part of WSDL-S, but are initially left out of
SAWSDL for simplicity). Next we look at annotations related to the order operation’s
input.

<xs:element name="OrderRequest"
sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl/s
pec/ontology/purchaseorder#OrderRequest"
sawsdl:loweringSchemaMapping="http://www.w3.org/2002/ws/s
awsdl/spec/mapping/RDFOnt2Request.xml">
<xs:complexType>
 <xs:sequence>
 <xs:element name="customerNo" type="xs:integer" />
 <xs:element name="orderItem" type="item"
 minOccurs="1" maxOccurs="unbounded" />
 </xs:sequence>
</xs:complexType>

</xs:element>

Here the OrderRequest element is annotated with OrderRequest from the
ontology. This reference opens up the richer typing structures of a language like
OWL versus XSD (e.g., classes, subclasses, named references and restrictions) as
well as inferencing capabilities (e.g., subsumption). Finally, we examine annotations
related to the order operation’s output.

<xs:element name="OrderResponse" type="confirmation" />
<xs:simpleType name="confirmation"
sawsdl:modelReference="http://www.w3.org/2002/ws/sawsdl

/spec/ontology/purchaseorder#OrderConfirmation">
 <xs:restriction base="xs:string">
 <xs:enumeration value="Confirmed" />
 <xs:enumeration value="Pending" />
 <xs:enumeration value="Rejected" />
 </xs:restriction>
</xs:simpleType>

 Web Services Discovery Utilizing Semantically Annotated WSDL 249

Here the OrderResponse element is annotated with OrderConfirmation from the
ontology. Similar annotations can be provided for faults, while this is likely to be
more important for composition than discovery.

Although operation discovery is fundamental, practically speaking one often
wishes to invoke multiple operations from a Web service, so in this sense interface
discovery is also important. In this paper, we mainly leave this aspect for future work,
but of course some of the obvious issues are the following: discovery of a set of
operations, temporal dependencies between the operations and statefulness. From a
two party point of view these issues are of concern to a conversation protocol, if gen-
eralized to multiple parties they are of concern to a choreographer (e.g., following the
emerging WS-CDL standard). From the point of view of one of the parties, they can
orchestrate their interactions with the other parties (or partners) via a process specifi-
cation (e.g., following the WS-BPEL standard).

2.3.3 Using Radiant to Add Semantics to WSDL
Radiant [19] is a tool that can be used for marking up Web service descriptions with
ontologies. Radiant is a part of an ongoing project, METEOR-S, in an effort to create
semantic Web processes, at the LSDIS lab – University of Georgia. This tool provides
support for WSDL-S, a joint UGA-IBM specification and SAWSDL. WSDL-S and
SAWSDL allow users to easily add semantics to Web services by using the extensi-
bility elements of WSDL. Radiant provides an intuitive UI for annotation of WSDL
files using ontologies. All the annotations described in the WSDL-S/SAWSDL speci-
fications are supported by this tool. The framework includes algorithms to match and
annotate WSDL files with relevant ontologies using domain ontologies to categorize
Web services into domains. A key enabling capability is to achieve annotation with as
much automation as possible without losing quality (see [19] to understand how
automation is achieved). Figure 3 shows a screenshot of the interface used for annota-
tion. In this figure, the interface provides the user with capabilities of a specifying
WSDL file (on the left side) and an ontology (on the right side) used for mapping.
The user may then simply drag an element (a class or property) from the ontology on
drop it an element in the WSDL file.

While many other efforts have talked about adding semantics to Web services,
practical implications of actually annotating Web services with the use of real world
applications and ontologies have not been discussed in great detail. Manifestly, there
is a lack of real world systems and solutions. The following steps can be followed to
annotate Web services using Radiant

1. Start the Eclipse Workbench1.
2. Open the “Help“ menu.
3. Open the “Software Updates“ submenu
4. Select “Find and Install“
5. Select the “Search for new features to install“ radio button and click next
6. Click “New Remote Site“
7. Enter “http://lsdis.cs.uga.edu/Radiant/UpdateSite“ without the quotes in the URL

box.
8. Enter “Radiant“ without quotes for the name field.

1 http://www.eclipse.org/

250 J. Cardoso, J.A. Miller, and S. Emani

Fig. 3. Radiant tool to annotated WSDL-S and SAWSDL documents

9. Make sure there is a check in the box next to Radiant and click next.
10. Click Finish.
11. When the new dialog box opens, put a check next to Radiant and click next.
12. Select the “I accept terms in the license agreement“ radio button and click next.
13. Then follow any onscreen dialogs and the plug-in will be installed.
14. Click on window drop down menu select open perspective and select Radiant.

The Eclipse screen is divided into three parts one is the navigator/outline part, the
uddi, wsdl viewer and editor, ontology navigator.

1. Create a new project and open an existing WSDL document.
2. On the ontology navigator load the ontology by clicking on or icon.
3. From the Annotation type drop down menu select the annotation type.
4. Click on outline to get the tree view of the WSDL document and select the con-

cept for annotation. Drag the element to the appropriate section of the WSDL
tree. The annotations are added to the document automatically.

3 Matching Algorithm for Semantic Web Services

This section presents an algorithm for matching semantic Web services, called SM-T
(Semantic Matching Web services using Tversky’s model). The algorithm presented
computes the degree of match between two output concepts, two input concepts, and
two functionality concepts of a service request and advertisement, represented by an

 Web Services Discovery Utilizing Semantically Annotated WSDL 251

ontology. Given a service request and several advertisements for available Web ser-
vices, this algorithm can be used to find the more suitable Web services. Web services
can be annotated using Radiant [20], as explained previously, and MWSDI [7] and
Lumina [21] can use the SM-T algorithm as part of its discovery infrastructure to
discover Web services.

We exploit the fact that the input, output, and functionality concepts which are
matched may have (in addition to their name) properties (e.g., in the form of attrib-
utes) associated with them, and we also take into account the level of generality
(or specificity) of each concept within the ontology as well as their relationships with
other concepts. Notice that in contrast to semantic-based matching, syntactic-based
matching cannot use this information.

Matching input, output, and functionality concepts differs slightly from calculating
their semantic similarity. One difference is that the functions to compute the semantic
similarity of ontological concepts are usually symmetric, while matching functions
are asymmetric [6]. For example, let us assume that SUMO Finance Ontology2 in
Figure 4 is used to semantically annotate or describe a set of Web services (only an
extract of the ontology is shown). The METEOR-S SUMO Finance Ontology was
created by converting SUMO financial ontology from KIF to OWL.

Fig. 4. Example of the SUMO Finance ontology used to semantically annotate a set of Web
services

2 http://lsdis.cs.uga.edu/projects/meteor-s/wsdl-s/ontologies/SUMO_Finance.owl

252 J. Cardoso, J.A. Miller, and S. Emani

Let us assume that we have a semantic Web service request R with the input con-
cept FinanceAccount (c1) and an advertisement A with the input concept Contract
(c2). In this scenario, request R matches advertisement A (i.e., match(c1, c2)=true),
since FinanceAccount is a subclass of Contract. Our rationale is that if A is able to
deal with the input Contract it must also be able to deal with the input FinanceAc-
count. We can think that when the Web service is invoked there will be some kind of
cast (as in C programming) from FinanceAccount to Contract. This idea and concept
have been first introduced in [22].

Now, let us assume that we have a semantic Web service request R with the input
concept Contract (c2) and an advertisement A with the input concept FinanceAccount
(c1). In this scenario, it is possible that the semantic Web service A cannot be invoked
with the input Contract since A may need properties that only exist in the class Fi-
nanceAccount. Therefore, match(c2, c1)=false. As we can see from these two scenar-
ios, the function match is asymmetric, since match(c1, c2) ≠ match (c2, c1).

3.1 Formal Definition of a Semantic Web Service

One way to handle functionality of a Web service operation is through preconditions,
postconditions and effects. These specifications are usually detailed and precise enough
to work at runtime and may be unwieldy for discovery. Usually, they should be speci-
fied in a rule language like SWRL or RIF. For discovery, however, there are advantages
to sticking with description logic (e.g., OWL). Like other concepts in semantic Web
services, a functionality concept is given meaning according to where it stands in a
hierarchy and by considering its sub-functions. Of course, a fully detailed specification
of sub-functions along with control and data flow could degenerate into a complete
specification of the code for the service. What we are looking for is a concise, high-level
description that facilitates comparison between services. Consequently, we assign a
concept from an ontology to describe the overall functionality of the Web service opera-
tion. This functional concept must specialize its parent concept and generalize all of its
child concepts.

The functional concept can include component functional concepts (children)
which one can think of as carrying out the steps required for the overall functional
concept. Again, programmatic level details should not be included, as they would get
in the way (similar to the situation in the early and mid phases of software design
following a software engineering methodology). The need for annotating inputs and
outputs follows the same rational.

Since we are dealing with input parameters, output parameters, and the functional-
ity of semantic Web services operations (represented with ci, co and cf, respectively),
we define a Web service operation as a finite sequence of ontological concepts as:

sws(ci, co, cf)

The number of elements can be other than 3 if we consider more or fewer concepts to
be used in a match. The functionality and QoS of Web services [6] can also be con-
sidered when matching requests with advertisements. The functions and algorithm
that we present can be easily extended to include the notion of functionality, since
functionality can be treated in a similar way as inputs or outputs. What the reader

 Web Services Discovery Utilizing Semantically Annotated WSDL 253

needs to keep in mind is that we always use the Tversky’s model [23] to match re-
quests with advertisements, independently of the elements (e.g. inputs, outputs, func-
tionality, QoS, etc) being considered.

3.2 Comparing Semantic Web Services Based on a Single Common Ontology

In this scenario, Web service input, output, and functionality concepts are related to
one global and unique ontology providing a common vocabulary for the specification
of semantics. Comparing a concept with the ontology is translated into searching for
the same or similar concepts within the ontology.

There are several functions that can be adapted and used to compute the degree of
match between two input, output, or functionality concepts belonging to the same
ontology. The following four main techniques have been identified [24]:

1. Ontology based approaches. These approaches [25-27] use an ontology and

evaluate the semantic relations among concepts. The most basic metric simply
computes the distance between two concepts in an ontology. This corresponds to
calculating the distance of nodes in a graph.

2. Corpus based approaches. These approaches [28-30] use a corpus to establish
the statistical co-occurrence of words. The rationale is that if two words con-
stantly appear together we may conclude that some relation exists between them.

3. Information theoretic approaches. These approaches [23, 31-33] consider both
a corpora and an ontology, and use the notion of information content from the
field of information theory. By statistically analyzing corpora, probabilities are
associated to concepts based on word occurrences. The information content for
each concept is computed in such a way that infrequent words are more informa-
tive than frequent ones. By knowing the information content of concepts it is
possible to calculate the semantic similarity between two given concepts.

4. Dictionary based approaches. These approaches [34, 35] use a machine readable
dictionary to discover relations between concepts. For example, one approach
determines the sense of a word in a given text by counting the overlaps between
dictionary definitions of the various senses.

Most of these approaches are not suitable to compute the degree of matching between
input and output concepts of the semantic Web services. All these metrics are sym-
metric (except [23]). This means that f(c1, c2) = f(c2, c1). As explained previously,
when matching inputs, outputs and functionality, the matching function needs to be
asymmetric.

Furthermore, ontology-based approaches are rather limited since only the taxonomy
of the ontology is used to find similarities between concepts. Corpus and dictionary-
based approaches require associating a probability with each concept and finding a
specific meaning of a word according to the context in which it is found in a dictionary,
respectively. These approaches are not simple to implement for Web services. Ques-
tions raised include which corpus and dictionaries to use and how to deal with the
heterogeneity of Web service discourse domains.

In our opinion, Tversky’s model [23] needs to be considered when matching se-
mantic Web services, since it has been considered one of the most powerful similarity

254 J. Cardoso, J.A. Miller, and S. Emani

models to date [36]. It is also known as a feature-counting metric or feature-contrast
model. This model is based on the idea that common features tend to increase the
perceived similarity of two concepts, while feature differences tend to diminish per-
ceived similarity. The model takes into account the features that are common to two
concepts and also the differentiating features specific to each. More specifically, the
similarity of concept c1 to concept c2 is a function of the features common to c1 and
c2, those in c1 but not in c2 and those in c2 but not in c1. For instance, a truck (Sport
Utility Vehicle) and a sedan are similar by virtue of their common features, such as
wheels, engine, steering wheel, and gears, and are dissimilar by virtue of their differ-
ences, namely the number of seats and the loading capacity.

Based on Tversky’s model, we introduce the matching functions),(ARi ccS = ,

),(ARo ccS
=

 and (,)f R AS c c= which analyze the number of properties (which may be

inherited) shared among two input, output or functionality concepts cR and cA (R
stands for a Web service request, A stands for a Web service advertisement, i stands
for input, o stands for output, and f stands for functionality) conceptualized within the
same ontology. In our functions S=, function p(c) retrieves all the properties associated
with concept c and function |s| calculates the number of elements in set s. The equal
symbol between two concepts (e.g, cR=cA) indicates that the concepts are the same.
The symbol ‘>’ between two concepts (e.g. cR>cA) indicates that concept cR is a spe-
cialization of concept cA. Finally, the symbol ‘<’ between two concepts (e.g. cR<cA)
indicates that cR is a generalization of concept cA (cR<cA).

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

≠∩

<

>
=

==

AR
A

AR

AR
A

R

AR

AR

ARi

cc
cp

cpcp

cc
cp

cp
cc

cc

ccS

,
|)(|

|)()(|

,
|)(|
|)(|

,1

,1

),(

1,

| () |
,

| () |
(,) (,)

1,

| () () |
,

| () |

R A

A
R A

R
o R A f R A

R A

R A
R A

R

c c

p c
c c

p c
S c c S c c

c c

p c p c
c c

p c

= =

=⎧
⎪
⎪ >
⎪

= = ⎨ <⎪
⎪ ∩ ≠⎪
⎩

Since functions),(ARi ccS = , (,)o R AS c c= and (,)f R AS c c= are very similar we will

only describe function =
iS . Four distinct cases can occur:

Case 1: In the first case, since the two input concepts are equal (cR=cA) their similarity
is maximal and therefore the degree of match is one.

 Web Services Discovery Utilizing Semantically Annotated WSDL 255

Case 2: In the second case, concept cR is a specialization of concept cA (cR>cA). As a
result, a Web service with input concept cA is able to process concept cR. For example,
let us consider the ontology from Fig. 4. If a Web service request specifies concept
FinanceAccount as input and an advertisement specifies concept Contract as input
then the advertised service is able to process the input concept FinanceAccount. This
is because the concept cR is a subclass of concept cA and it has at least the same set of
properties as cA. In this case, the similarity is also one.

Case 3: In the third case, if the request concept cR is a generalization of advertisement
concept cA (cR<cA), then cA has probably some properties that do not exist in cR.
Therefore, it is possible that a Web service advertisement with input cA is not able to
process the input concept cR due possibly to missing properties. For example, if a
Web service request R specifies concept Record as input and an advertisement A
specifies concept FinanceAccount as input then Web service A may not be able to
process the input concept Contract. This is because A may need the property Degree
and Competencies of the input concept to work properly.

Case 4: In the last case, concepts cR and cA are not equal and do not subsume each
other in any way (cR ≠ cA). In this scenario, we evaluate the matching by analyzing
how many common properties exist between the two concepts and how many proper-
ties are different. Also, we analyze the percentage of input advertisement properties
that were satisfied.

As an example, let us illustrate the use of function),(ARi ccS = for the four cases –

1), 2), 3) and 4) – that can occur when matching a request cR with an advertisement
cA. In our example, the Web services’ input is annotated with concepts from the on-
tology illustrated in Figure 4. The four cases that may occur are listed in Table 2 and
are evaluated as follows:

 In case 1), both cR and cA are associated with the same concept (FinanceAccount).
Since the request matches the advertisement perfectly. The result is 1.

 In case 2), the request cR is associated with the concept FinanceAccount and the
advertisement cA is associated with the concept Contract. Since the concept Con-
tract is a generalization of concept FinanceAccount, the properties of the concept
FinanceAccount (the set {agreementMember, agreementPeriod, effectiveDate,
insured, accountHolder, amountDue}) is a superset of the properties of the con-
cept Contract (the set {agreementMember, agreementPeriod, effectiveDate,
insured}). All the properties of cA exist in cR. As a result, the similarity is evalu-
ated to 1.

 In case 3), the request cR is associated with the concept FinanceAccount and the
advertisement cA is associated with the concept DepositAccount. Since the concept
FinanceAccount is a superclass of concept DepositAccount, the properties of the
concept FinanceAccount (the set {agreementMember, agreementPeriod, effective-
Date, insured, accountHolder, amountDue}) is a subset of the properties of the
concept DepositAccount (the set {agreementMember, agreementPeriod, effective-
Date, insured, accountHolder, amountDue, simpleInterest, agreementBalance,
availableCash}). In this case, when the request cR matches the advertisement cA
some properties of cA are left unfulfilled (the properties simpleInterest, agreement-
Balance, and availableCash). To indicate this mismatch the matching is set to the

256 J. Cardoso, J.A. Miller, and S. Emani

ratio of the number of properties of cR and the number of properties of cA, which
in this case is |p(cR)|/|p(cA)| = 6/9 = 0.67.

 In the last case (4), the request cR is associated with the concept FinanceAccount
and the advertisement cA is associated with the concept Option. The concept Fi-
nanceAccount has the set of properties {agreementMember, agreementPeriod, ef-
fectiveDate, insured, accountHolder, amountDue} and the concept Option has
the set of properties {agreementMember, agreementPeriod, effectiveDate, in-
sured, atTheMoney, inTheMoney, optionHolder}. Since the concepts do not have
a parent/children relationship, we compute the percentage by the advertisement’s
properties that are fulfilled with a property from cR. The similarity is evaluated as
follows:

7
4

|)(|
|)()(|

),(=∩==

A

AR
ARi cp

cpcp
ccS

The result of evaluating the function indicates a low degree of matching between the
concepts FinanceAccount and Option. Only one of the three advertisement’s proper-
ties are satisfied by request properties. The following table shows the results for the
four cases presented.

Table 2. An example of matching inputs with a common ontology commitment

Request cR Advertisement cA),(ARi ccS =

FinancialAccount FinancialAccount 1
FinancialAccount Contract 1
FinancialAccount DepositAccount 0.67
FinancialAccount Option 0.57

As we can see, the concept DepositAccount is closer to the concept FinanceAc-

count than the concept Option. This result corroborates our perception and visual
analysis of the ontology and its concepts.

3.3 Comparing Semantic Web Services Based on Multiple Ontologies

In this scenario, different Web services are described by different ontologies. Since
there is no common ontology commitment, there is no common vocabulary which
makes the comparison of different concepts a more complicated task.

Web service parameters (such as inputs, outputs, and functionality) are identified
by words (classes) and there are two major linguistic concepts that need to be consid-
ered: synonymy and polysemy. Polysemy arises when a word has more than one
meaning (i.e., multiple senses). Synonymy corresponds to the case when two different
words have the same meaning. To tackle with the existence of these linguistic con-
cepts we will use a feature-based similarity measure that compares concepts based on
their common and distinguishing features (properties).

The problem of determining the similarity of concepts defined in different ontolo-
gies is related to the work on multi-ontology information system integration. Most of
the similarity measures previously presented [25-35] cannot be directly used to match

 Web Services Discovery Utilizing Semantically Annotated WSDL 257

Web services since they are symmetric, and more importantly, they can only be used
when the concepts to be compared are defined in the same ontology.

Nonetheless, the Tversky’s feature-based similarity model [23] is interesting since
it takes into account the features or properties of concepts and not the taxonomy that
defines the hierarchy of concepts. When matching inputs and outputs, the features of
concepts need to be considered, especially when we compare concepts from different
ontologies we cannot rely on their taxonomy. One can argue that, in scenarios with
different ontologies, we need to take into account the context of ontologies when
comparing concepts. In our approach, the context of a concept is transparently repre-
sented by its inherited properties.

Based on Tversky’s model, we introduce matching functions),(ARi ccS ≠ ,
),(ARo ccS ≠ and (,)f R AS c c≠ for semantic Web services with no common ontology

commitment based on the number of properties shared among two input or output
concepts cR and cA conceptualized within the same ontology. The function computes
the geometric distance between the similarity of the domains of concept cR and con-
cept cA and the ratio of matched input properties from the concept cA. Our similarity
functions are defined as follows:

((), ()) ((), ())
(,) *

| () () | ((), ()) | () |
R A R A

i R A
R A R A A

p c p c p c p c
S c c

p c p c p c p c p c
≠ Π Π=

∪ −Π

((), ()) ((), ())
(,) (,) *

| () () | ((), ()) | () |
R A R A

o R A f R A
R A R A R

p c p c p c p c
S c c S c c

p c p c p c p c p c
≠ ≠ Π Π= =

∪ −Π

Function Π establishes a mapping between the properties of two concept classes. Figure 5
illustrates two ontologies involved in a mapping.

For example, when matching the class concepts DepositAccount and Deposit we
need to establish a mapping between the properties of the two classes. The mapping is

Contract

FinancialContract

FinancialAccount

DepositAccount

availableCash

agreementBalance

accountHolder

amountDue

insured

owl:Thing

Contract

Deposit

sinterest

agreeBalance

owl:Thing

money

effectiveDate
agreementPeriod

agreementMember

Option

atTheMoney
inTheMoney

Liability

optionHolder

simpleInterest

date

per

member

Fig. 5. Two ontologies involved in a mapping

258 J. Cardoso, J.A. Miller, and S. Emani

computed with the function Π(p(DepositAccount), p(Deposit)), which is equivalent to
Π({agreementMember, agreementPeriod, effectiveDate, insured, accountHolder,
amountDue, simpleInterest, agreementBalance, availableCash}, {member, per, date,
sinterest, agreedBalance, money}). Possible mappings that can be established are the
following:

 Πi,1: (simpleInterest , sinterest)
 Πi,2: (agreementBalance , agreeBalance)
 Πi,3: (availableCash, money)

Function Π establishes the best mapping between two sets of properties, pl1 and pl2,
and it is defined as follows:

1 2

1 1 2 2 1 2 1 2 1 2

1 1 2 2 1 2 1 2

1 2

(,)

((,) (,)), (,) 1 and

(,), (,) 0 and

0,

pl pl

Max pl p pl p ss p p ss p p pl pl

pl p pl p ss p p pl pl

pl pl

∏ =
∏ − − + = ≠ ∅ ∧ ≠ ∅⎧

⎪
⎪⎪ ∏ − − = ≠ ∅ ∧ ≠ ∅⎨
⎪
⎪

= ∅ ∨ = ∅⎪⎩

Function ss(p1, p2) determines if two properties are considered to be equal using func-
tion g. If two properties match syntactically then function ss returns 1, otherwise it
returns 0. Properties match syntactically only if function g determines that the syntac-
tic similarly is greater that a constant β.

⎩
⎨
⎧

<
≥

=
β
β

),(,0

),(,1
),(

21

21
21 ppg

ppg
ppss

Function g(p1, p2) is a function that computes the syntactic similarity of two words. In
our approach, we use “string-matching” as a way to calculate similarity. Function g
can be implemented using several existing methods such as equality of name, canoni-
cal name representations after stemming and other preprocessing, q-grams, syno-
nyms, similarity based on common sub-strings, pronunciation, soundex, abbreviation
expansion, stemming, tokenization, etc. Other techniques borrowed from the informa-
tion retrieval area may also be considered. A very good source of information on
retrieval techniques can be found in [37]. Constant β determines the sensibility of the
matching. As β gets closer to 1, the matching function returns less false positives. As
β gets closer to 0, it returns more false positives.

For example, let us consider the request query with cR = “DepositAccount“ and an
advertisement with cA =”Deposit”. When computing Π(p(“DepositAccount”),
p(“Deposit”)) of these inputs, we obtain value 2. This number represents the two
valid mappings obtained:

 Πi,1: (simpleInterest , sinterest)
Πi,2: (agreementBalance , agreeBalance)

Mapping Πi,1 is found since the results of ss(“simpleInterest“, ”sinterest”) and ss
(agreementBalance , agreeBalance), using the q-grams methodology [38] as an

 Web Services Discovery Utilizing Semantically Annotated WSDL 259

implementation of g with β = 0.5, is greater than 0.58 (e.g., g(“agreementBalance“,
”agreeBalance”)=0.58). Please refer to [38] to understand this result from applying
q-grams. As a result, in both cases ss is evaluated to 1.

All the other mappings are not part of Π. For example, if we compute
ss(“agreementBalance”, “money”) we obtain a result of 0 (function g has a value of
0), which means that we do not consider the properties to be syntactically equal.

The result of computing),(ARi ccS ≠ is done in the following way. The

concept DepositAccount has 9 properties (i.e., agreementMember, agreementPeriod,
effectiveDate, insured, accountHolder, amountDue, simpleInterest, agreementBal-
ance, availableCash) and concept Deposit has 6 properties (i.e., member, per, date,
interest, balance, cash). Furthermore, Π(p(“DepositAccount”), p(“Deposit”))=2.

Applying function),(ARi ccS ≠ we obtain:

2265.0
39
2

3
1

*
13
2

6
2

*
2)69(

2
),(===

−+
=≠

ARi ccS

This result corroborates our intuition since only two of the six properties of the con-
cept Deposit are satisfied by the properties of concept DepositAccount. Furthermore,
the concepts DepositAccount and Deposit are rather distinct since only two properties
are shared between the two.

3.4 Ranking Algorithm

In this section we present the actual algorithm for ranking Web service advertise-
ments, following the functions presented previously.

REQ(ci, co, cf) = Web service request
ADVj (cji, cjo, cjf) = List of advertisement

For all j get ADVj(cji, cjo, cjf)
If same_ontology(ci , cji) i =),(jiii ccS =

else i =),(jiii ccS ≠

If same_ontology(co ,cjo) o =),(jooo ccS =

else o =),(jooo ccS ≠

If same_ontology(cf ,cjf) f = (,)f f jfS c c=

else f = (,)f f jfS c c≠

match[j] = (i+o+f)/3;

Forall
Sort match[j]

260 J. Cardoso, J.A. Miller, and S. Emani

The algorithm uses the function same_ontology that determines if two concepts are
defined in the same ontology. Once the matching degree of the input, output, and
functionality between a Web service request and a Web service advertisement is cal-
culated, we define the overall degree of the match as the arithmetic mean of the input
match degree, output match degree, and functionality match degree. Of course, a
weighted function can be implemented if one of the dimensions (inputs, outputs, and
functionality) is more important than the others to a service provider or consumer.

4 Using SM-T with METEOR–S WSDI and Lumina

The SM-T algorithm can be integrated in the implementation of METEOR-S Web
Services Discovery Infrastructure (MWSDI) [7] and Lumina [21]. One of the authors
of this paper was one of the architects of MWSDI and Lumina. Both projects utilize
the METEOR-S Discovery API that matches a semantic Template with closely
matching Web services that, for example, could be plugged into an abstract process
with little or no human intervention. The METEOR-S Discovery API is built on of
jUDDI discovery engine and maps semantic information to the business, service and
tModel components of UDDI. It thus provides a semantically enhanced UDDI.

4.1 UDDI

UDDI [39], sponsored by OASIS, is an XML-based registry for business and Web
services world-wide to list services in the internet. The focus of UDDI is it dynami-
cally allows businesses or enterprises to publish and discover Web services. That is
UDDI provides a foundation for both publicly available Web services as well as those
which present internally in an organization. UDDI model has persistent data struc-
tures called entities expressed in XML and stored in UDDI nodes. The information
model is made of the following entity types:

• businessEntity: represents an business
• businessService: the set of Web services that are provided by a business
• bindingTemplate: provides information on how to use a Web service
• tModel: gives a technical model categorizing Web service type
• publisherAssertion: provides the relationship between business entities
• subscription: reports changes in the business entities

The programming interface of UDDI has two parts: inquiry and publishing. To
inquire for a Web service through the UDDI several methods are available. The com-
binations of these search methods can be used through the registry to get optimized
results. The methods can be used according to the business of interest by keyword
search which gives a set of summarized results for further or deeper search, look for
services based on a particular category a business offers and tModel search which
returns a set of tModels from different services according to the search criteria. As we
go deeper, we can search for the operations a business service offers.

 Web Services Discovery Utilizing Semantically Annotated WSDL 261

4.2 Approaches to Discovery

Service registries need to provide suitable discovery mechanisms to consumers. We
can categorize matchmaking approaches according to various criteria. One possible
classification is to take into account what elements are used to match a service adver-
tisement and a service request. We present four approaches: IO matching, multilevel
matching, graph-based approaches, and syntactic matching.

IO matching. One of the first works in the field of service discovery (semantic Web
service discovery) is described in [40] and [6, 41]. Paolucci [40] follow the idea that
“an advertisement matches a request when all the outputs of the request are matched
by the outputs of the advertisement, and all the inputs of the advertisement are
matched by the inputs of the request”. Cardoso also takes into account the semantic
and syntactic similarity of concepts using Tversky model. Thus, these methods takes
into account only the inputs and outputs of services during matchmaking. Cardoso
and Sheth [6] go a step further and include the QoS of services during the matching
process.

Multilevel Matching. Using this matching strategy, presented by Jaeger [42], the
matchmaking process is performed at many levels, that is, between inputs/outputs,
service categories and other custom service parameters (e.g., related to QoS issues).
Such approach reflects the intuition that ideal service discovery should exploit as
much of the available functional and non-functional service information as possible.

A Graph-Based Approach. Trastour [43] proposes a semantic graph matching ap-
proach. A service description (request or advertisement) is represented as a directed
graph (RDF-graph), whose nodes are instances of concepts (i.e., individuals) and arcs
are properties (i.e., concept roles) relating such instances. The root node of each graph
is the individual representing the service advertisement/request itself. The other nodes
refer to concepts borrowed from domain ontologies (capabilities, constraints, etc.).
The matchmaking between two graphs, one representing a service request and another
representing a service advertisement, is performed with a recursive algorithm.

Syntactic matching. While the IO matching, multilevel matching, and graph-based
matching rely on exploiting the subsumption relations in various ontologies in order
to assess the similarity of services, service capabilities, this is not sufficient to enable
an effective discovery. One extension that can be made is to use similarity measures
and information retrieval (IR) techniques. The objective is to use implicit semantics of
services, besides the explicit semantics that are described by the domain ontologies.
The core idea in this approach is that IR similarity measures could be applied when
logic-based (subsumption) matching fails. For example, TFIDF (Term Fre-
quency/Inverse Document Frequency) term weighting schemes [44] can be used to
evaluate the semantic distance/closeness between concepts, words or documents.

4.3 Lumina

The focus of Lumina works closely with MWSDI [7] to provide a user friendly GUI
for specifying semantic templates and discovering matching services. MWSDI is an
infrastructure that addresses the challenge of integrating a large number of registries

262 J. Cardoso, J.A. Miller, and S. Emani

from diverse domains. MWSDI supplies an infrastructure of registries for semantic
publication and discovery of Web services. The primary motivation was the expected
growth in the number of registries and the lack of semantics in Web service represen-
tation. The system provides a scalable architecture to access such registries. In addi-
tion, it provides semantic publication and discovery capabilities by using a domain
specific ontology for each registry. Two algorithms are made available for semantic
publication and discovery using WSDL descriptions. Both these algorithms map in-
puts and outputs of Web services to ontological concepts. Subsequently, searching
can be carried out using constructed templates using the ontological concepts.

MWSDI was implemented with an underlying peer-to-peer network which gives
the scalability and flexibility required for creating an infrastructure for diverse Web
service registries.

Lumina may be viewed as Radiant’s companion. While Radiant annotates and
publishes semantic Web services, Lumina is used for discovering these published
services. It allows to search for services, individual operations or interfaces (i.e.,
combinations of operations). In order to create a semantic template, the GUI provides
input text boxes and selections that can be filled in by data entry, mouse clicking or
dragging a class or property from an ontology. Figure 6 illustrates how to fill in a
semantic template using Lumina.

Fig. 6. Semantic template using Lumina

Lumina was designed to support WSDL-S and this provides a means for specifying
inputs, outputs, functionality/category, preconditions and effects. Later a simplified
SAWSDL mode was added that does not support preconditions and effects.

SM-T, MWSDI and Lumina basically follow the same approach concerning their
vision of Web services. They all treat a Web service as an abstract interface (black
box) consisting of multiple operations which each having its own set of inputs and set

 Web Services Discovery Utilizing Semantically Annotated WSDL 263

of outputs as well as functionality. Annotating the inputs, outputs and functionality of
Web service operations gives a significant improvement in discovery and is better
than the approach used by current UDDI registries. This is because current UDDI
implementations are only based on the syntactic matching of properties. Semantic
approaches have already shown in several domains to improve search precision. Sec-
tion 3.2 and section 3.3 show that the SM-T algorithm is able to compare concepts
beyond a simple syntactic match. Let us assume that a user issues a request to a UDDI
registry for a service with an input FinanceAccount (see Section 3).

Let us also assume that the registry has only an advertisement with the input Con-
tract. In such a case, the registry informs the user that no Web service matching the
search criteria was found. This search was based solely on a syntactic analysis. Now,
let us assume that Web services descriptions are annotated with ontological concepts.
The two Web services’ inputs, FinanceAccount and Contract, are annotated with con-
cepts with the same name in the ontology shown in Figure 4 (the names are the same
for simplicity reasons, they could be different). Using this ontology, a semantically
enhanced UDDI registry can use the ontological information to improve the search.

In such a situation, the results of the match would return a Web service since the
concept Contract is a generalization of concept FinanceAccount. That is, the proper-
ties of the concept FinanceAccount,

{agreementMember, agreementPeriod, effectiveDate, insured, accountHolder,
amountDue}

are a superset of the properties of the concept Contract,

{agreementMember, agreementPeriod, effectiveDate, insured}.

Since all the properties of Contract exist in FinanceAccount, there is a match and a
reference to the Web service is returned to the user. This example shows that different
concepts from the same ontology can be matched by our algorithm even when their
properties do not match semantically. The example shown in section 3.3 also illus-
trates that two concepts from two different ontologies can be matched by our algo-
rithm even if their properties do not match syntactically.

From the business perspective SM-T, MWSDI, and Lumina are all about grouping
services and distributing them in different registries based on domain knowledge, for
locating the right services easily. On the other hand, from the technical perspective,
SM-T, MWSDI, and Lumina can provide a scalable infrastructure for accessing mul-
tiple registries and semantic enhancements to current service discovery mechanisms.
We believe that to develop processes in the current network economy [45], architec-
tures and algorithms like SM-T, MWSDI, and Lumina will drive the evolution of
businesses’ interactions using Web services. This infrastructure will also help Web
services by changing the focus from a static to a more dynamic business settings. To
discover Web services using Lumina the following steps can be followed:

• Download Lumina and install it as the eclipse plug in. Radiant has to be in-
stalled before installing Lumina.

• The screen is divided into six parts: Navigator/Outline, UDDI editor WSDL
editor, Information list, Discovered results and Ontology navigator.

264 J. Cardoso, J.A. Miller, and S. Emani

• Follow the same steps as for Radiant to load the ontology, create a new project
and WSDL.

• Click on the Registry drop down menu and select registry. A window pops up.
Add a new registry and connect.

• Click on the Publish menu and publish a business followed by the WSDL.
• In the UDDI editor select the operation, input, and output according to what

you want to discover the web service and drag and drop the concept on them
from the ontology navigator.

• At the information list the selected operations or IOPEs will be displayed se-
lect on them and click on discover.

• The web services discovered will be displayed on the discovered results pane.

5 Related Work

The discovery of services “boils down” to determining the similarity of services’ prop-
erties which are typically annotated with ontological concepts. In the literature we can
find four distinct approaches to calculate the semantic relations among concepts. In
[25-27], ontology based approaches are presented. The most basic metric simply com-
putes the distance between two concepts in an ontology. Corpus based approaches are
described in [28-30]. These approaches use a corpus to establish the statistical co-
occurrence of words. Information theoretic approaches [23, 31-33] consider both a
corpora and an ontology, and use the notion of information content from the field of
information theory. By statistically analyzing corpora, probabilities are associated to
concepts based on word occurrences. Dictionary based approaches [34, 35] use a ma-
chine readable dictionary to discover relations between concepts. For example, one
approach determines the sense of a word in a given text by counting the overlaps be-
tween dictionary definitions of the various senses.

Some of the above approaches, to calculate the semantic relations among concepts,
have been used to deploy discover algorithm for semantic Web services. The OWL-
S/UDDI Matchmaker [46] introduces semantic search into the UDDI directory by em-
bedding an OWL-S Profile in a UDDI data structure, and augmenting the UDDI registry
with an OWL-S matchmaking component. The matching algorithm recognizes four
degrees of match between two concepts defined in the same ontology: (1) exact, (2)
plug in, (3) subsume, and (4) fail. The function used by the algorithm is asymmetric and
is based on the existence of relationships between concepts. When no direct relationship
exists among two concepts the algorithm simply returns fail. Unlike the algorithm pre-
sented in this paper, the OWL-S/UDDI Matchmaker searches for services based on
inputs and outputs within the IOPEs (Input, Output, Precondition, and Effect) of the
profile which must belong to the same ontology. Our approach allows evaluating the
similarities of IOPE that are annotated with concepts from distinct ontologies.

The METEOR-S [20] Web Service Annotation Framework (WSAF) allows semi-
automatically matching WSDL concepts (such as inputs and outputs) to DAML and RDF
ontologies using text-based information retrieval techniques (for example, synonyms, n-
grams and abbreviation). The strength of matches (SM) is calculated using a scoring
formula which involves element (ElemMatch) and structure level schema (Sche-
maMatch) matching. The ElemMatch function performs the element level matching

 Web Services Discovery Utilizing Semantically Annotated WSDL 265

based on the linguistic similarity of the names of the two concepts. The SchemaMatch
function examines the structural similarity between two concepts. A concept in an ontol-
ogy is usually defined by its properties, superclasses and subclasses. Since concept labels
are somewhat arbitrary, examining the structure of a concept description can provide
more insight into its semantics. In WSAF, the XML representation of WSDL is matched
against the concepts of a given ontology. The best match between WSDL and ontological
concepts are returned to users as a suggestion of potential mappings. It should be noticed
that the work presented in [20] cannot be easily adapted to our problem. There are several
reasons for this. First, the weight values for calculating the MS function were set without
empirical testing and validation. Also, the weights are not defined for a set of ElemMatch
and SchemaMatch values. For example, if 0.5<ElemMatch<0.65 then no weights are
suggested. Furthermore, the function that computes the ElemMatch of a WSDL concept
and an ontological concept is not defined when the MatchScore is other than zero, but is
less than one, using the NGram or Synonym matching algorithms.

In [47], the authors present a hybrid approach to Semantic Web service matching.
The hybrid matchmaker, called OWLS-MX, is to be used to find service requests
specified in OWL-S. OWLS-MX can be seen as an extension of the OWL-S/UDDI
Matchmaker presented in [46]. Their approach is somewhat similar to our in that they
“complement logic based reasoning with approximate matching based on syntactic
information retrieval (IR) based similarity computations”. The IR based methods used
include: the extended Jacquard similarity coefficient, the cosine similarity value, and
the Jensen-Shannon information divergence based similarity value. Our approach dif-
fers in the sense that we have used q-grams for syntactic matching. But this is only a
minor difference since, as we have explained previously in section 4.3, in our approach
other syntactic matching functions can be used such as: soundex, abbreviation expan-
sion, stemming, tokenization and other techniques borrowed from the information
retrieval (see [37].), including the matching function used by OWLS-MX. The major
difference in our work lies on the use of the Tversky’s model. While OWLS-MX
mainly compares concepts syntactically when the logic-based comparison fails, in our
approach we compare syntactically, not the concepts themselves, but the properties of
the concepts. For example, if the concepts ‘car’ and ‘automobile’ are compared using
OWLS-MX and the concepts are not related with a parent -child relationship (i.e., an
exact, plug-in, or subsumes relationship is not found), the algorithm will answer fail,
meaning that there is no match. Using SM-T, the algorithm will try to syntactically
match the properties of the concepts. Therefore, if the concept ‘car’ has the properties:
‘engine’, ‘body’ and ‘wheels’ and the concept ‘automobile’ has the properties; ‘bigen-
gine’, ‘car_body’ and ‘fourwheels’, the SM-T algorithm will indicate that there is a
partial match (this will be expressed with a normalized value).

6 Conclusions

In this paper we have described a semantic matching algorithm to be used by UDDI
registries enhanced with semantics. Our algorithm can work with Web services de-
scribed with WSMO and OWL-S, or annotated with SAWSDL (previously WSDL-S).
Compared to previous work [46], we do not limit the classification of the accuracy of
matching a request with an advertisement using a four value schema (i.e. exact, plug

266 J. Cardoso, J.A. Miller, and S. Emani

in, subsume, and fail). The accuracy of matching is assessed with a continue function
with the range [0..1]. Furthermore, and compared to [46], we allow the matching of
semantic Web services both with and without a common ontology commitment. This
aspect is important since it is not realistic to assume that Web services will always be
defined by the same ontology. In some cases, similar services may be defined by
different ontologies. Furthermore, we take into account functionality.

Our algorithm relies on Tversky’s feature-based similarity model to match requests
with advertisement. This model takes into account the features or properties of onto-
logical concepts and not the taxonomy that defines the hierarchy of concepts. We
believe that when matching inputs, outputs and functionality, the analysis of features
of concepts is fundamental when matching concepts from different ontologies, since
they typically have distinct taxonomies. The matching process can be easily extended
to include non-functional capabilities of services.

References

1. Chinnici, R., et al.: Web Services Description Language (WSDL) Version 1.2, W3C
Working Draft 24 (2003)

2. Chinnici, R., et al.: Web Services Description Language (WSDL) Version 2.0 Part 1: Core
Language (2006), http://www.w3.org/TR/wsdl20/

3. UDDI. Universal Description, Discovery, and Integration (UDDI v3.0) (2005),
 http://www.uddi.org/

4. SOAP. Simple Object Access Protocol 1.2 (2003),
 http://www.w3.org/TR/soap12-part1/

5. Cardoso, J., Sheth, A.P.: Introduction to Semantic Web Services and Web Process Compo-
sition. In: Cardoso, J., Sheth, A.P. (eds.) Semantic Web Process: powering next generation
of processes with Semantics and Web services, pp. 1–13. Springer, Heidelberg (2005)

6. Cardoso, J., Sheth, A.: Semantic e-Workflow Composition. Journal of Intelligent Informa-
tion Systems (JIIS) 21(3), 191–225 (2003)

7. Verma, K., et al.: METEOR-S WSDI: A Scalable P2P Infrastructure of Registries for Se-
mantic Publication and Discovery of Web Services. Journal of Information Technology
and Management (ITM), Special Issue on Universal Global Integration 6(1), 17–39 (2005)

8. Curbera, F., Ehnebuske, D., Rogers, D.: Using WSDL in a UDDI Registry, Version 1.07, UDDI
Best Practice, May 21 (2002), http://www.uddi.org/pubs/wsdlbestpractices-
V1.07-Open-20020521.pdf (Retrieved October 12, 2006)

9. Sheth, A., Meersman, R.: Amicalola Report: Database and Information Systems Research
Challenges and Opportunities in Semantic Web and Enterprises. SIGMOD Record 31(4),
98–106 (2002)

10. Smeaton, A., Quigley, I.: Experiment on Using Semantic Distance Between Words in Im-
age Caption Retrieval. In: 19th Intemational Conference on Research and Development in
Information Retrifval SIGIR 1996, Zurich, Switzerland (1996)

11. Rodríguez, A., Egenhofer, M.: Determining Semantic Similarity Among Entity Classes
from Different Ontologies. IEEE Transactions on Knowledge and Data Engineering 15(2),
442–456 (2002) (in press)

12. Klein, M., Bernstein, A.: Searching for Services on the Semantic Web Using Process On-
tologies. In: International Semantic Web Working Symposium (SWWS), Stanford Univer-
sity, California, USA (2001)

 Web Services Discovery Utilizing Semantically Annotated WSDL 267

13. Cardoso, J., et al.: Academic and Industrial Research: Do their Approaches Differ in Add-
ing Semantics to Web Services. In: Cardoso, J., Sheth, A. (eds.) Semantic Web Process:
powering next generation of processes with Semantics and Web services, pp. 14–21.
Springer, Heidelberg (2005)

14. Martin, D., et al.: Bringing Semantics to Web Services: The OWL-S Approach. In: Car-
doso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387. Springer, Heidelberg (2005)

15. Roman, D., et al.: WWW: WSMO, WSML, and WSMX in a nutshell. In: Mizoguchi, R.,
Shi, Z.-Z., Giunchiglia, F. (eds.) ASWC 2006. LNCS, vol. 4185. Springer, Heidelberg
(2006)

16. Akkiraju, R., et al.: Web Service Semantics - WSDL-S (2006),
 http://www.w3.org/Submission/WSDL-S (Retrieved October 10, 2006)

17. Sivashanmugam, K., et al.: Framework for Semantic Web Process Composition. Interna-
tional Journal of Electronic Commerce (IJEC), Special Issue on Semantic Web Services
and Their Role in Enterprise Application Integration and E-Commerce 9(2), 71–106
(2004-2005)

18. Farrell, J., Lausen, H.: Semantic Annotations for WSDL (2006),
 http://www.w3.org/2002/ws/sawsdl/spec/SAWSDL.html

19. Gomadam, K., et al.: Radiant: A tool for semantic annotation of Web Services. In: 4th In-
ternational Semantic Web Conference ISWC 2005, Galway, Ireland (2005)

20. Patil, A., et al.: MWSAF - METEOR-S Web Service Annotation Framework. In: 13th
Conference on World Wide Web, New York City, USA (2004)

21. Cardoso, J., Sheth, A.: Semantic Web Services, Processes and Applications. In: Jain, R.,
Sheth, A. (eds.) Semantic Web and Beyond: Computing for Human Experience. Springer,
Heidelberg (2006)

22. Paolucci, M., et al.: Semantic Matching of Web Services Capabilities. In: Horrocks, I.,
Hendler, J. (eds.) ISWC 2002. LNCS, vol. 2342. Springer, Heidelberg (2002)

23. Tversky, A.: Features of Similarity. Psychological Review 84(4), 327–352 (1977)
24. Zavaracky, A.: Glossary-Based Semantic Similarity in the WordNet Ontology, in Depart-

ment of Computer Science, University College Dublin, Dublin (2003)
25. Wu, Z., Palmer, M.: Verb Semantics and Lexical Selection. In: 32nd Annual Meeting of

the Associations for Computational Linguistics (ACL 1994), Las Cruces, New Mexico
(1994)

26. Rada, R., et al.: Development and Application of a Metric on Semantic Nets. IEEE Trans-
actions on Systems, Man, and Cybernetics 19(1), 17–30 (1989)

27. Leacock, C., Chodorow, M.: Combining local context and WordNet similarity for word
sense identification. In: Fellbaum, C. (ed.) WordNet: An Electronic Lexical Database, pp.
265–283. MIT Press, Cambridge (1998)

28. Turney, P.D.: Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In: 12th
European Conference on Machine Learning. Springer, Heidelberg (2001)

29. Keller, F., Lapata, M.: Using the Web to Obtain Frequencies for Unseen Bigrams. Compu-
tational Linguistics (2003)

30. Church, K.W., Hanks, P.: Word association norms, mutual information, and Lexicography.
In: Vancouver, B.C. (ed.) 27th Annual Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics, Vancouver (1989)

31. Lin, D.: An information-theoretic definition of similarity. In: 15th International Conf. on
Machine Learning. Morgan Kaufmann, San Francisco (1989)

32. Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In:
14th International Joint Conference on Artificial Intelligence (1995)

268 J. Cardoso, J.A. Miller, and S. Emani

33. Jiang, J., Conrath, D.: Semantic Similarity Based on Corpus Statistics and Lexical Taxon-
omy. In: Intemational Conference on Computational Linguistics (ROCLINGX), Taiwan
(1997)

34. Lesk, M.: Automatic sense disambiguation using machine readable dictionaries: how to
tell a pine cone from an ice cream cone. In: 5th annual international conference on Systems
documentation. ACM Press, New York (1986)

35. Banerjee, S., Pedersen, T.: Gloss Overlaps as a Measure of Semantic Relatedness. In:
Eighteenth International Joint Conference on Artificial Intelligence, Acapulco, Mexico
(2003)

36. Richardson, R., Smeaton, A.: Using WordNet in a Knowledge-Based Approach to Infor-
mation Retrieval. Dublin City University/School of Computer Applications, Dublin, Ire-
land (1995)

37. Belew, R.K.: Finding Out About: A Cognitive Perspective on Search Engine Technology
and the WWW, p. 356. Cambridge University Press, Cambridge (2000)

38. Salton, G.: Automatic Text Processing: The Transformation, Analysis and Retrieval of In-
formation by Computer. Addison-Wesley, Massachusetts (1988)

39. UDDI. UDDI Spec. Technical Committee, UDDI Version 3.0.2, (2004),
 http://uddi.org/pubs/uddi_v3.htm

40. Paolucci, M., et al.: Semantic matching of Web services capabilities. In: First International
Semantic Web Conference on the Semantic Web, Sardinia, Italy. LNCS. Springer, Heidel-
berg (2002)

41. Cardoso, J.: Quality of Service and Semantic Composition of Workflows, in Department
of Computer Science, p. 215. University of Georgia, Athens (2002)

42. Jaeger, M.C., Tang, S.: Ranked matching for service descriptions using DAML-S. In:
Persson, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084. Springer, Heidelberg (2004)

43. Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A Semantic Web approach to service de-
scription for matchmaking of services. In: The first Semantic Web Working Symposium,
California, USA (2001)

44. Cohen, W., Ravikumar, P., Fienberg, S.: A comparison of string distance metrics for
name-matching tasks. In: Kurumatani, K., Chen, S.-H., Ohuchi, A. (eds.) IJCAI-WS 2003
and MAMUS 2003. Springer, Heidelberg (2003)

45. Sheth, A.P., v.d Aalst, W., Arpinar, I.B.: Processes Driving the Networked Economy.
IEEE Concurrency 7(3), 18–31 (1999)

46. Srinivasan, N., Paolucci, M., Sycara, K.: An efficient algorithm for OWL-S based seman-
tic search in UDDI. In: Cardoso, J., Sheth, A. (eds.) Lecture Notes in Computer Science.
Springer, Heidelberg (2005)

47. Klusch, M., Fries, B., Sycara, K.: Automated Semantic Web Service Discovery with
OWLS-MX. In: Alonso, E., Kudenko, D., Kazakov, D. (eds.) AAMAS 2000 and AAMAS
2002. ACM Press, New York (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

