
Chapter 10

DEVELOPING COURSE MANAGEMENT
SYSTEMS USING SEMANTIC WEB
TECHNOLOGIES

Jorge Cardoso
Department of Mathematics and Engineering, University of Madeira, 9000-390, Funchal,
Portugal, jcardoso@uma.pt

Abstract. While semantic Web technologies have reached a certain
level of maturity, the industry is still skeptical about its potential and
applicability. Many vendors seem to be adopting a “wait-and-see”
approach while emerging standards and solutions become more fully
developed. The industry and its main players are waiting to see how
real-world applications can benefit from the use of semantic Web
technologies. The success of the Semantic Web vision is dependant on
the development of practical and useful semantic Web-based
applications. To demonstrate the applicability and the benefits of
using semantic Web technologies, we have developed a real-world
application, a Semantic Course Management System (S-CMS),
entirely based on the semantic Web that uses the latest technologies of
this field such as OWL, RQL, RDQL, and SWRL.

1. INTRODUCTION

Many researchers believe that a new Web will emerge in the next
few years based on the ongoing large-scale research and developments
on the semantic Web. Nevertheless, the industry and its main players
are adopting a “wait-and-see” approach to see how real-world

The Semantic Web and its Applications

2

applications can benefit from semantic Web technologies (Cardoso,
Miller et al. 2005). The success of the semantic Web vision (Berners-
Lee, Hendler et al. 2001) is dependant on the development of practical
and useful semantic Web-based applications.

While the semantic Web has reached considerable stability from
the technological point of view, with the development of languages to
represent knowledge (such as OWL (OWL 2004)), to query
knowledge bases (RQL (Karvounarakis, Alexaki et al. 2002) and
RDQL (RDQL 2005)), and to describe business rules (such as SWRL
(Ian Horrocks, Peter F. Patel-Schneider et al. 2003)), the industry is
still skeptical about its potential. For the semantic Web to gain
considerable acceptance from the industry it is indispensable to
develop real-world semantic Web-based applications to validate and
explore the full potential of the semantic Web (Lassila and
McGuinness 2001). The success of the semantic Web depends on its
capability to support applications in commercial settings (Cardoso,
Miller et al. 2005).

In several fields, the technologies associated with the semantic
Web have been implemented with a considerable degree of success.
Examples include semantic Web services (OWL-S 2004), tourism
information systems (Cardoso 2004), semantic digital libraries,
(Shum, Motta et al. 2000), semantic Grid (Roure, Jennings et al.
2001), semantic Web search (Swoogle 2005), and bioinformatics
(Kumar and Smith 2004).

To take the development and widespread character of semantic
Web applications a step further, we have developed a Course
Management System (CMS) (Mandal, Sinha et al. 2004) based on an
infrastructure entirely designed using the technologies made available
by the semantic Web, namely OWL, RQL, RDQL, SPARQL, Bossom
(Bossom 2005), and SWRL.

CMSs are becoming increasingly popular. Well-known CMSs
include Blackboard.com and WebCT.com whose focus has centered
on distance education opportunities. Typically, a CMS includes a
variety of functionalities, such as class project management,
registration tools for students, examinations, enrolment management,
test administration, assessment tools, and online discussion boards
(Meinel, Sack et al. 2002).

The system that we have developed is part of the Strawberry
project1 and explores the use of semantic Web technologies to develop
an innovative Semantic Course Management System (S-CMS). The S-
CMS provides a complete information and management solution for

Developing Course Management Systems Using Semantic Web
Technologies

3

students and faculty members. Our focus and main objective is to
automate the different procedures involved when students enroll or
register for class projects. Managing a large course and its class
projects is a complex undertaking. Many factors may contribute to this
complexity, such as a large number of students, the variety of rules
that allow students to register for a particular project, students’
background, and students’ grades.

2. S-CMS ARCHITECTURE

The architecture of our system is composed of seven distinct layers
(Figure 1): source layer, connection layer, instance layer, query layer,
inference layer, application layer, and presentation layer. The layers
are articulated in the following way. The source layer includes all the
data and information needed by our semantic course management
system. It typically includes data stored in relational databases (other
types of data source are also supported). At this level, we can find
information which describes which faculty members teach which
courses, which students are enrolled for a particular course, which
students are enrolled in a degree, personal information about students
and teachers, etc. The next layer, the connection layer, is responsible
for connecting to the data sources, using a variety of protocols.

The instance layer is the first layer that uses semantic Web
technologies. It is responsible for managing ontologies describing
university domain information such as courses, students, projects, and
teachers. It is also in charge of transforming the data and information
extracted from the data sources into a set of ontology instances.
Essentially, this layer creates a knowledge-base that will be used by
the upper layers. It gets the local schema of heterogeneous data
sources under consideration and creates a unique and virtual global
scheme (i.e., an ontology). Since all data sources refer to the same
ontology, theoretically there are not syntactic neither semantic
conflicts.

The Semantic Web and its Applications

4

Figure 10-1. S-CMS Architecture

The query layer supplies an interface that allows querying the
knowledge-base. The inference layer allows carrying out inference
using semantic rules on the knowledge-base. For example, it is
possible to inquire if all the students enrolled in a project have all
passed on the Knowledge Engineering course. The application layer
provides the Course Management System per se to teachers and
students. Teachers are able to create projects associated with courses
and define semantic enrolment rules. Students are able to specify that
they wish to enroll for a specific project. Additionally this layer
gathers the knowledge inferred from applying the semantic rules to the
semantic knowledge-base and formats it into a suitable presentation
medium (such as PDF or HTML). In the next section we will describe
each of the layers of our architecture in detail.

2.1 Source layer

Course management systems need to access a variety of data
sources to access data and information about students, teachers,
degrees, physical resources (such as class rooms and computing
facilities), courses, and grades. To develop robust course information
management applications it is important to develop an architecture
that can access and integrate unstructured, semi-structured, and
structured data. We will see that the use of an ontology will allow us
to integrate data with different structures, resolving the structural
heterogeneity of data sources.

Developing Course Management Systems Using Semantic Web
Technologies

5

Data sources are uniquely identifiable collections of stored data,
called data sets for which there exist programmatic access and for
which it is possible to retrieve or infer a description of the structure of
the data, i.e. its schema. We have recognized various data sources that
need to be considered when integrating university management
systems: flat files, HTML Web pages, XML, and relational databases.

At the University of Madeira we have identified two main types of
data sources that needed to be accessed in order to retrieve relevant
information about courses and projects: HTML and databases data
sources. Therefore, we have developed two Eclipse plug ins to access
these types of sources (see next section).

HTML. Most, if not all, the Universities have Web sites for
storing and advertising the description of their course, degrees, and
projects. Course management systems require integrating Web-based
data sources in an automated way for querying, in a uniform way,
across multiple heterogeneous Web sites, containing university related
information.

Databases. In universities, it is almost unavoidable to use

databases to produce, store, and search for critical data. Yet, it is only
by combining the information from various database systems that
course management systems can take a competitive advantage from
the value of data. Different university departments use distinct data
sources. To develop course management systems, the most common
form of data integration is achieved using special-purpose applications
that access data sources of interest directly and combine the data
retrieved with the application itself. While this approach always
works, it is expensive in terms of both time and skills, fragile due to
the changes to the underlying sources, and hard to extend since new
data sources require new fragments of code to be written. In our
architecture, the use of semantics and ontologies to construct a global
view makes the integration process automatic, and there is no need for
a human integrator. The University of Madeira database that we have
used had around 200 tables, 600 views, a diversity of data types and a
large dataset. The number of students is in the range of 13 000. One
main problem that we found is that there was no documentation
available describing the tables, attributes, and views.

The Semantic Web and its Applications

6

2.2 Connection layer

The connection layer maintains a pool of connections to several
data sources (in our implementation we use relational databases and
HTML online Web pages). We use a connection layer to achieve two
goals: abstraction and efficiency. On the one hand, the connection
layer adds a level of abstraction over the data sources and it is
responsible for presenting a single interface to the underlying data
sources. On the other hand, the connection layer provides connection
pooling to considerably increase application processing. When the
instance layer requires data from the connection layer, connections to
the data sources must be established, managed, and then freed when
the access is complete. These actions are time and resource
consuming. The use of a connection layer minimizes the opening and
closing time associated with making or breaking data source
connections. For the S-CMS application, we have developed three
Eclipse plug ins. Two of the plug ins are customized to access
MySQL and Microsoft SQLServer 2000 databases, while the third
plug in is dedicated to retrieve information from HTML Web pages.

At this state the major difficulty that we had was to obtain a copy
of the University database from the administrative department with
real data. The authorization to use the database has taken more than 3
months to arrive. Furthermore, the copy of the database that was given
to us had the data fields with sensitive information altered. Examples
these fields included students’ PIN and phone numbers.

2.3 Instance layer

Data integration is a challenge for course management systems
since they need to query across multiple heterogeneous, autonomous,
and distributed (HAD) university data sources produced
independently by multiple organizations units. Integrating HAD data
sources involves combining the concepts and knowledge in the
individual university data sources into an integrated view of the data.
The construction of an integrated view is complicated because
organizations store different types of data, in varying formats, with
different meanings, and referenced using different names (Lawrence
and Barker 2001).

We have identified four types of information heterogeneity (Sheth
1998; Ouskel and Sheth 1999) that may arise when we try to
integrated HAD university data sources:

Developing Course Management Systems Using Semantic Web
Technologies

7

1. System heterogeneity: Applications and data may reside in

different hardware platforms and operating systems.
2. Syntactic heterogeneity: Information sources may use different

representations and encodings for data. Syntactic interoperability
can be achieved when compatible forms of encoding and access
protocols are used to allow information systems to communicate.

3. Structural heterogeneity: Different information systems store
their data in different document layouts and formats, data models,
data structures and schemas.

4. Semantic heterogeneity: The meaning of the data can be expressed
in different ways leading to heterogeneity. Semantic heterogeneity
considers the content of an information item and its intended
meaning.

Approaches to the problems of semantic heterogeneity should

equip heterogeneous, autonomous, and distributed software systems
with the ability to share and exchange information in a semantically
consistent way (Sheth 1999).

To allow the seamless integration of HAD university data sources
rely on the use of semantics. Semantic integration requires knowledge
of the meaning of data within the university data sources, including
integrity rules and the relationships across sources. Semantic
technologies are designed to extend the capabilities of data sources
allowing to unbind the representation of data and the data itself and to
give context to data. The integration of university data sources
requires thinking not of the data itself but rather the structure of those
data: schemas, data types, relational database constructs, file formats,
etc.

As a solution to the problem of integrating heterogeneous data
sources we provide a uniform access to data. To resolve syntactic and
structural heterogeneity we map the local data sources schema into a
global conceptual schema. Since semantic problems can remain, we
use ontologies to overcome semantic heterogeneity. An ontology is an
agreed vocabulary that provides a set of well-founded constructs to
build meaningful higher level knowledge for specifying the semantics
of terminology systems in a well defined and unambiguous manner.
Ontologies can be used to increase communication either between
humans and computers. The three major uses of ontologies (Jasper
and Uschold 1999) are:
1. To assist in communication between humans.

The Semantic Web and its Applications

8

2. To achieve interoperability and communication among software
systems.

3. To improve the design and the quality of software systems.

The main component of the instance layer is the Instance

Generator. The data extracted by the connection layer is formatted and
represented using two different ontologies, the RUD (University
Resource Descriptor) and SUD (Student University Descriptor). In the
following sections we describe the two ontologies and their instances.

2.3.1 Ontology Creation

To deploy our ontologies we have adopted the most prominent
ontology language, OWL (OWL 2004). The development of an
ontology-driven application typically starts with the creation of an
ontology schema. Our ontology schemas contain the definition of the
various classes, attributes, and relationships that encapsulate the
business objects that model a university domain. After conducting an
analysis of ontology editors, we have selected Protégé (Knublauch,
Fergerson et al. 2004) to construct our ontologies.

Since the objective of S-CMS application was to develop a system
which provided the ability to a student enroll in a course projects, the
inference over OWL documents (RUD and SUD) needed to answer to
questions which included:

• Who are the teachers and students?
• What courses are offered by a department?
• Which courses are assigned for a specific teacher?
• For which courses a student is enrolled?
• Which projects are assigned to a course?
• What are the students’ grades of taken courses?

The RUD and SUD ontologies have the following characteristics.

RUD (University Resource Descriptor). A University Resource
Descriptor is a semantic knowledge-base that integrates information
coming from several external data sources spread throughout the
University of Madeira. As we have seen in section 2.1, data describing
important resources to our S-CMS application were stored in
relational databases or HTML Web pages. Our RUD integrated
information about the physical recourses of the university, classes,
courses and degrees offered, faculty members, students enrolled at the

Developing Course Management Systems Using Semantic Web
Technologies

9

university, etc. All the information is represented in OWL. The RUD
schema has much more information than the one that comes from the
various data sources since it establishes hundreds of relationships
between concepts. The relationships are fundamental and will be used
by the inference layer to infer new knowledge.

SUD (Student University Descriptor). A Student University
Descriptor is a resource that describes a university student. Each
student of the university has a SUD. A SUD includes information such
as the student’s name, ID, courses taken, courses enrolled, degree,
telephone number, age, etc. In our architecture, each SUD is
represented in OWL.

Students can make available their SUD using two alternatives.
They can simply put their SUD in their university home page or they
can rely on the SUD management system to manage and advertise
their SUD. The idea of SUDs was inspired by the concept of RSS
(RSS 2005) (Really Simple Syndication). The technology of RSS
allows Internet users to subscribe to websites that have provided RSS
feeds; these are typically sites that change or add content regularly.
Unlike RSS subscriptions, SUD do not include information about
news but about students. Figure 4 illustrates part of the SUD schema
for students.
(...)
<owl:Class rdf:ID="Student">
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1
 </owl:cardinality>

 <owl:onProperty>
 <owl:DatatypeProperty
rdf:ID="AverageScore"/>
 </owl:onProperty>
 </owl:Restriction>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Class rdf:ID="Person"/>
 </rdfs:subClassOf>
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty>
 <owl:DatatypeProperty
rdf:ID="StudentID"/>
 </owl:onProperty>

The Semantic Web and its Applications

10

 <owl:cardinality rdf:datatype=

"http://www.w3.org/2001/XMLSchema#int">1
 </owl:cardinality>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>
(...)

Figure 10-2. SUD schema represented in OWL

2.3.2 Ontology population

By ontology population we refer to a process, where the class
structure of the RUD and SUD ontologies already exists and is
extended with instance data (individuals). This can be done either by a
computer or by a human editor. In our case, the RUD and SUD
instances are created automatically by the instance generator. Figure 5
illustrates the SUD instance created for the student Lee Hall.
<Student rdf:ID="LeeHall2041999">
(...)
 <StudentID rdf:datatype=

"http://www.w3.org/2001/XMLSchema#nonNegativeInteg
er">
 2041999
 </StudentID>
 <StudentName>Lee Hall</StudentName>
 <Degree>Computer Science </Degree>
 <StudentEmail>lhall@mail.pt
 </StudentEmail>
 <Studies>
 <Subject rdf:ID="Semantic_Web">
 <SubjectName>Semantic Web</SubjectName>
(...)
 </Subject>
 </Studies>
(...)
</Student>

Figure 10-3. A SUD instance represented in OWL

Developing Course Management Systems Using Semantic Web
Technologies

11

2.3.3 Difficulties in creating and populating the ontology

During the process of creating the RUD and SUD ontology and
generating the instance to populate the ontologies schema we have
found the following difficulties:

• Since the University database has 200 tables and there was no
documentation available it was difficult to identify and decide
the relevant classes, subclasses and properties.

• There was a considerable amount of duplicate values in the
database. Selecting the most appropriate values involved also
a considerable ffort.

• There was no direct mapping between OWL classes and the
corresponding database tables. The same happen with the
HTML Web pages.

• Make use OWL expressiveness, namely with the especial
properties such as transitivity, symmetry, inverse, functional,
inverse functional.

• The examples of OWL documents that we have found in the
Internet were few and simple and did not represent the true
complexity of OWL documents.

• To take advantage of the expressive capabilities of OWL we
had to increase the complexity of representation which was
difficult to manage.

• As the classes and properties are connected in a recursive
fashion we could not simply create all instances of a certain
class because other might need to already have been defined.

• The tool that we have used to create ontologies, Protégé,
although being very intuitive in its usage had an error when
translating OWL documents.

• The Jena API (Jena 2005), used to programmatically
manipulate OWL ontology models, did not load the models
after a change.

• The generator of instances developed was not generic. It
specific to this particular RUD and SUD schema, this brings
some disadvantages in further enhancements because any
change in the schema can led to modification at the
programmatic level.

The Semantic Web and its Applications

12

2.4 Query layer

The query layer provides a query interface to the knowledge-base
formed with all the RUD and SUD ontology instances automatically
generated. The query interface understands three distinct semantic
query languages: RQL (RDF Query Language), RDQL (RDF Data
Query Language), Buchingae, SPARQL. These languages allow
querying ontology classes, navigating to its subclasses, and
discovering the resources which are directly classified under them.
Our initial objective was to make available to users a language that
would enable us to query the native representation of our knowledge-
base, i.e. OWL, but no suitable query language of this type exists yet.

Using this layer, teachers are able to query student and university
information. For example, the following query expressed in RDQL
allows selecting the students that have a GPA greater than 4.0 marks.
SELECT ?x,?c,?z
WHERE
 (?x <http://apus.uma.pt/RUD.owl#HasGPA> ?y),
 (?x <http://apus.uma.pt/RUD.owl#Studies> ?c),
 (?y <http://apus.uma.pt/RUD.owl#Value> ?z)
 AND ?z>4.0

As another example, the following query expressed in Buchingae
allows a teacher to inquire about the students that are enrolled in a
specific course,
query qu is p:Studies(?st, ?course) and
 p:Teaches(?prof, ?course);

2.5 Inference layer

We have implemented a rule management system to extract and
isolate course management logic from procedural code. Since the rules
associated with the enrollment of students for class projects may
change quite often, these changes cannot be handled efficiently by
representing rules embedded in the source code of the application
logic. The option to detach enrolment rules from the source code gives
teachers an effective way of creating the rule base and of building and
changing rules. The following list considers some advantages of
separating enrolment rules from the application logic:

1. Student enrolment rule reuse across other course management

systems.

Developing Course Management Systems Using Semantic Web
Technologies

13

2. A better understanding of enrolment rules through separate business
rules.

3. Documentation of enrolment decisions through rules.
4. Lower application maintenance costs.
5. Ease of changing enrolment rules by using visual tools.

In S-CMS, the rules are defined in SWRL (Semantic Web Rule

Language) or Buchingae. They correspond to axioms about classes
(concept) or their properties of the instance stored in the OWL
knowledge-base. By applying these rules to the set of facts it is
possible to infer new facts.

SWRL was designed to be the rule language of the semantic Web
enabling rule interoperation on the Web. SWRL is based on a
combination of the OWL DL and OWL Lite. It provides the ability to
write Horn-like rules expressed in terms of OWL for reasoning about
OWL individuals.

Since SWRL rules are fairly well-known, we give an example of a
Buchingae rule. The rule states that only students that have taken the
course Knowledge Engineering (CS6100) and Logic Programming
(CS6550) are eligible to enroll for a the class project of the course
Introduction to Semantic Web (CS8050),
prefix builtin =
 http://www.etri.re.kr/2003/10/bossam-
builtin#;
prefix RUD = http://apus.uma.pt/RUD.owl#;
namespace is http://www.etri.re.kr/samples#;

rulebase rb01
{
 (...)
 rule R01 is
 if
 classTaken(?x, RUD:CS6100) and
 classTaken(?x, RUD:CS6550)
 then
 eligible(?x, RUD:CS8050)
}

A large number of rule engines are available as open source
software. Some of the most popular engines include Jess, Algernon,
SweetRules, and Bossam. We chose Bossam (Bossom 2005), a
forward-chaining rule engine, as the first rule engine candidate for our
semantic course management system since it supports OWL
inferencing, it works seamlessly with Java, is well documented, and is
very easy to use and configure.

The Semantic Web and its Applications

14

2.6 Application layer

The application layer is composed of two applications: the S-CMS
manager and the dynamic enrolment Web site.

S-CMS Manager. We have developed an integrated class project
management environment using Eclipse SDK 3.1.1 (Eclipse 2005).
Eclipse is an open source framework focused on providing an
extensible development platform and application frameworks for
building software.

When a teacher interacts with the system, a list of all the courses
that he is currently teaching is displayed. This information is retrieved
from the RUD knowledge-base. The teacher is then able to create and
delete class projects associated with a given course. Figure 6 shows
the main screen of the S-CMS application.

Figure 10-4. Strawberry main application

For each class project created, the teacher is responsible for
creating and managing the semantic enrolment rules. The integrated
class project management environment has a SWRL and Buchingae
rule editor available for this purpose. Semantic enrolment rules can be
defined for specific projects (project enrolment rules), for a specific

Developing Course Management Systems Using Semantic Web
Technologies

15

course (course enrolment rules), or for all the projects independently
of the course (global enrolment rules). As explained previously, a
teacher can define a project enrolment rule for the project Merging
Ontologies Semi-Automatically of the course Semantic Web
(CS8050) which states that only students that have taken the
Knowledge Engineering course (CS6100) and Logic Programming
(CS6550) can enrol.

Dynamic Enrolment Web site. The Enrolment Web site is one of the
interfaces for the Strawberry project. It has two main functions. First,
it allows for students to enroll into projects proposed by their lecturers
and second, it allows the teacher to post reports and other relevant
information so that students can easily access it, better enabling the
communication process between teachers and students.

A student can enroll in a class project using the S-CMS as a single
portal via HTTP/HTML. The S-CMS provides an overview Web page
for each class project in which the student can enroll. The Web pages
are automatically generated from the S-CMS manager.

Students can be added to a class project either by a bulk upload
from the information stored in the RUD, or individually. In the latter
case, the student has to indicate the URL of its SUD. The SUD will be
read by the S-CMS and matched against a student instance in the
RUD. All the information of a student relevant to enrolling for a class
project will be retrieved automatically from the RUD. If a student may
decide to drop out of a class project he only needs to resend his SUD
to the system indicating that he wishes to drop out of a given project.

Figure 10-5. General structure of the Dynamic Enrollment Web site

The Semantic Web and its Applications

16

Figure 7 illustrates the general structure of the Dynamic
Enrollment Web site. The Web site reflects the current state of the S-
CMS manager. The interaction with the S-CMS manager is the
following:
a) Using the S-CMS manager, professors can dynamically deploy a

Web site for students’ enrollment. Professors do not have do deal
with Web pages in any way, all the process is automatic. When a
professor selects the deploy option, an HTTP connection is
established with the Web server and an XML configuration file is
uploaded. This file contains a listing of all the courses and project
that should be shown in the Web site. Each course has an id, a
name, a lecturer and a set of projects. Each project has an id, a
name, a description, a last update date and a color.

b) The Web site automatically and dynamically creates a set of Web
pages to enable students to register for projects. The module that
carry out these tasks was build in PHP because it does not require
any other software other than a simple HTTP Server with PHP, it
allows to create pages physically dynamically, and made possible
the use of XML to exchange data with the S-CMS manager.

c) Students register for projects
d) The list of students that have registered for a particular project is

downloaded to the S-CMS manager using XML.

Report Generator. Once students have enrolled for class projects, it
is helpful for teachers to have a tool to automatically generate a report
indicating which students are in fact allowed to be part of a class
project for which they want to enroll. Not all the students that send
their SUD to enroll in a class project can indeed carry out the project.
The decision that determines if a student can actually carry out a
specific project is based on the semantic enrolment rules.

At the presentation layer, the teacher is able to generate enrolment
reports that indicate which students are allowed to carry out a project
and which are not. We support several formats for the reports. We use
the Formatting Objects Processor (FOP 2005) to convert the results
from applying enrolment rules to PDF, TXT, and HTML. The
Formatting Objects Processor (FOP) is an open source Java API that
can convert XML data into reports in PDF format, as well as other
relevant formats such as TXT, SVG, AWT, MIF, and PS.

The Grading Ontology and its Plug-In. The grading plug-in is a
feature of the Strawberry project on which a grading Ontology is used
to enable grading of the students that attend a course. The plug-in

Developing Course Management Systems Using Semantic Web
Technologies

17

enables the user to define a grading policy on which the final grade
will be calculated. It allows teachers to create new evaluation items
such as exams and calculate students’ final grades based on user
defined evaluation items weights. The use of ontologies in modelling
a grading domain certainly adds a new degree of flexibility and reuse.
The way the ontology can be plugged with exiting ones makes it
easier to migrate it to adapt to different Universities or Schools.

Any teacher has its own way to grade students. Different forms of
evaluation exist even within one course. This implies that an
automatic tool which calculates the grades is difficult to make,
because there is no single way to calculate the final grade. For
example, if a student does not make assignment nº1 than the final
grade will be the grade of the exam, otherwise the final grade will de
60% of the exam and 40% of assignment nº1. A vast number of
formulas for calculating grade can be applied. Generally rules are in
the form of “if … then ... else …”.

To tackle this problem, a semantic Web approach is a reasonable
approach. The versatility of domain modeling and the reuse of
existing domains (such as one describing a university) could make it
easy to integrate a generalist grading ontology that could be easily link
with existing ones describing a school.

The most interesting aspect of using the semantic Web is using its
reasoning capabilities on which a grading model could be defined
using rules that could be used to calculate final grade.

Reasoning support in OWL with SWRL is very flexible and would
solve the problem of representing and calculating grades. However,
SWRL is not easily understood by humans and the final user of the
grading plug-in would not be able to understand the rules in order to
create new ones and change existing ones. Another problem
associated with SWRL is its limited support. There are not many
inference engines that could interpret SWRL. Other languages, such
as Buchingae (used in Bossom), exist and have full implementation
and are even more easily understood by humans. However, they do
not guarantee continued support.

To solve the main problem of the complexity of SWRL language,
graphical editors for SWRL could be used such as the one used in
Protégé. An editor is helpful in integrating SWRL with existing
ontologies. Additionally, it makes use of a logical form for
representing SWRL which is then mapped into SWRL itself. This is
obviously a generic editor and the user would still need to know how
SWRL works. Another alternative would be to use a simple

The Semantic Web and its Applications

18

mathematical language, such as the one used in Microsoft Excel. This
approach would make sense for heavy mathematical data, which is our
case. However, it would be very difficult to make an interpreter to
convert between SWRL and a mathematical language.

The Grading Ontology has been developed to represent the domain
of an evaluation. It has been made simple so that it could be easily
plugged into existing ontology (in our case it has been adapted for our
RUD). The first class of the ontology is the evaluation. It represents
the domain of the course evaluation. This means that there is one and
only one for each course. An evaluation does not need to be connected
specifically to a course; it can be adapted so it can use other domain
which can be evaluated. The evaluation consists of evaluation items.
These represent specific forms of evaluation within an evaluation
domain, such as exams and projects for instance. The evaluation items
are sub-classed into specify items, there is only one with the grading
ontology – SimpleEvaluation. Other items can be used from the
existing university ontology. In this case we are using Project as an
evaluation item. For each combination of item and student there is one
grade which represents the grade that student had in that evaluation
item for that course. The structure of the Grading Ontology is
illustrated in Figure 2.

Grading Ontology

-EvaluationName : string
Evaluation

-EvaluationPercentage : decimal
-ItemName : string

EvaluationItem

SimpleEvaluation

-GradeValue : decimal
Grade

from_Course

evaluation_Items

grade_Evaluation

from_Student

from_Item

SubClassof

Course
<<from RUD>>

Student
<<from RUD>>

SubClassof

Project
<<from Strawberry>>

Figure 10-6. The grading Ontology

A simple way to look of the problem of the complexity of editing
rules is to look at the problems domains. That is to say to look at
specific cases that could be useful to teacher and developing a simple
editor to achieve an editor for it. One way to do it is to take part of the

Developing Course Management Systems Using Semantic Web
Technologies

19

idea of a graphical editor for rules and a mathematical language and
joining them. The matching strategy is based in developing a simple
editor that generates rules based on a well defined mapping between a
set of simple logical conditions and a rule. These logical conditions
are based on a triple: (Evaluation Item, Boolean Expressing, Value).
For example, the triple (Assignment1, >, 0). Matches contain many of
these conditions that if validated the final grade will be calculated
based on the weights defined for each item on that match. The can be
many matches, one for each evaluation possibility. Figure 4 shows one
specific rule that states that …

Rulebase CalculateGrade
{
rule Case1 is
Grading:from_Course(?Evaluation,RUD:SemWeb)
 and Grading:grade_Evaluation(?Grade,?Evaluation)
 and Grading:from_Student(?Grade,?Student)
 and
Grading:grade_Value(Grading:Assignment1,?Value)
 and [?Value>0]
 then
 FinalGrade(?Student,RUD:SemWeb,
 Grading:grade_Value(Grading:Project)*0,1+
 Grading:grade_Value(Grading:Exam)*0,9)

rule Case2 is ….
}

Retrieve the Evaluation structure from RUD:SemWeb. Retrieve

the Grade from the Evaluation structure corresponding to a Student.
Retrieve the value (grade) of Assignment1. Check if the value is
greater than one, then the final grade is 10% project and 90% exam.

3. EVALUATION

To validate S-CMS we have carried out a benchmark in order to
assess the scalability and performance of our architecture under
system load. The application was installed at the Department of
Mathematics and Engineering, University of Madeira. Our empirical
experimentation has involved two machines: a server managing SQL

The Semantic Web and its Applications

20

Server 2000 and a client running S-CMS. Both machines had the same
configuration. They were each equipped with Intel P4 3.0 GHz
processors, 512 MB main memory, 40GB 7,800 RPM IDE disks, and
Microsoft Windows XP home. The computers were connected by a
100Mbit/s Ethernet LAN.

The server was managing the University database that had a size of
123 Mbytes with 200 tables and 600 views. The database included the
description of approximately 13 000 students.

The client was running our S-CMS application. Loading the
ontologies from the databases toke approximately 7 minutes and 32
seconds. The number of instances created was equal to the number of
students in the database, i.e., approximately 13 000 instances. The
ontology had a small footprint since we only need to import a subset
of the data present in the database. (+-6 mega)

The results obtained are encouraging since loading an ontology
from a database is inherently a heavy task. The system performance
benchmarking exercise revealed that the proposed solution was able to
scale to meet desired throughput and latency requirements.

4. RELATED WORK

There are many tools dealing with course management which have
been introduced into universities to redesign teaching in many aspects.
These tools include support for teachers (e.g. course delivery and
administration) and students (e.g. submissions and involvement). One
limitation of the tools available is that they were not developed around
the concepts and technologies associated with the semantic Web. As a
result, they tend to be static repositories of information for which
semantic querying and inferencing on students’ data is not possible.
Furthermore, they do not tackle the problem of integrating disparate
university data sources. For example, MIT OpenCourseWare (OCW)
(OCW 2006), WebCT (one of the most widespread commercial course
management systems) (WebCT 2006), AIMS (AIMS 2006), Moodle
(MOODLE 2006), and BSCW (Basic Support for Collaborative
Work) (Klöckner 2000) are educational resource addressing faculty
and students. They offer courseware such as syllabi, readings, and
quizzes. The information available is mainly static and does not
provide features to support querying, inferecing, and data source
integration.

Developing Course Management Systems Using Semantic Web
Technologies

21

Semantics and ontologies have been employed as a common basis
for information integration. Ontologies allow for the modeling of the
semantic structure of individual information sources, as well
describing models of a domain that are independent of any particular
information source. Several systems have been developed using this
approach. Projects include Carnot (Woelk, Cannata et al. 1993),
InfoSleuth (Bayardo, Bohrer et al. 1997), OBSERVER (Mena,
Kashyap et al. 1996; Kashyap and Sheth 1998), and COIN (Bressan,
Fynn et al. 1997). These projects differ from our work since they do
not target a specific domain (i.e. University modeling) and they do not
provide solutions to carry out inference on the ontologies created.

5. CONCLUSION

The development of the semantic Web has the potential to
revolutionize the World Wide Web and its use. One fundamental
aspect that will have a significant impact on the success of the
semantic Web will be the ability of the research community to
demonstrate the added value of using semantic Web technologies to
develop better systems and applications. For the time being, the
industry has adopted a “wait-and-see” approach to see how real-world
applications can benefit from the semantic Web.

As a contribution to increasing the widespread use of these new
technologies, we have developed a real-world application, a Semantic
Course Management System (S-CMS), based entirely on semantic
Web technologies. S-CMS can semantically integrate and extract
heterogeneous data describing university resources, courses, degrees,
and students, answer to complex semantic queries, and it is able to
carry out reasoning using explicit semantic rules. The system supplies
an integrated environment where teachers and students can easily
manage class projects. The application presented has been employed
successfully to manage student enrolment to class projects at the
University of Madeira. Since S-CMS deals with heavily on semantics,
the system was used to manage projects from the “Semantic Web”
course taught at the Department of Mathematics and Engineering. We
believe that S-CMS is also appropriate to support course projects from
other departments and that it represents a good step towards the
development of real-world semantic applications.

The Semantic Web and its Applications

22

6. QUESTIONS FOR DISCUSSION

Beginner:
1. What typical data sources need to be integrated when developing a

CMS?
2. .What is a RUD?
3. .What is a SUD?

Intermediate:
1. What types of information heterogeneity may arise when

integrating data sources?
2. What difficulties have been found when in creating and populating

the ontology described in this chapter?

Advanced:
1. Make an ontology for representing people of your business or

organizations.
2. Build a Buchingae rule that states that only staff members that

work on internal and external projects are eligible for travel
funding.

3. Write an RDQL that selects the staff members that work in the
research department.

7. SUGGESTED ADDITIONAL READING

• Antoniou, G. and van Harmelen, F. A semantic Web primer.
Cambridge, MA: MIT Press, 2004. 238 pp.: This book is a good
introduction to Semantic Web languages.

• Davies, J., Studer, R., and Warren, P. Semantic Web Technologies:
Trends and Research in Ontology-based Systems. John Wiley &
Sons, 2006, 326 pp.: This book provides a comprehensive
overview of key semantic technologies. It includes the description
of concepts such as knowledge management, ontology generation,
and metadata extraction.

• Berners-Lee. T., Fensel, D., Hendler, J., Lieberman, H., Wahlster,
W. Spinning the Semantic Web: Bringing the World Wide Web to
Its Full Potential. The MIT Press, 2005. 503 pp.: This book covers
topics such as software agents, markup languages, and knowledge
systems that enable machines to read Web pages and determine
their reliability.

Developing Course Management Systems Using Semantic Web
Technologies

23

8. REFERENCES

AIMS (2006). AIMS: Adaptive Information System for Management of Learning
Content. http://www.win.tue.nl/~laroyo/AIMS/.

Bayardo, R. J., W. Bohrer, et al. (1997). InfoSleuth: Agent-Based Semantic
Integration of Information in Open and Dynamic Environments.
Proceedings of the ACM SIGMOD International Conference on
Management of Data, ACM Press, New York.

Berners-Lee, T., J. Hendler, et al. (2001). The Semantic Web. Scientific American

Bossom (2005). Bossom engine for the semantic Web,

.
May 2001.

http://projects.semwebcentral.org/projects/bossam/.
Bressan, S., K. Fynn, et al. (1997). The COntext INterchange Mediator Prototype.

ACM SIGMOD International Conference on Management of Data, Tucson,
Arizona.

Cardoso, J. (2004). Issues of Dynamic Travel Packaging using Web Process
Technology. International Conference e-Commerce 2004, Lisbon, Portugal.

Cardoso, J., J. Miller, et al. (2005). Academic and Industrial Research: Do their
Approaches Differ in Adding Semantics to Web Services. Semantic Web
Process: powering next generation of processes with Semantics and Web
services

Eclipse (2005). Eclipse open source community,

. J. Cardoso and S. Amit. Heidelberg, Germany, Springer-Verlag.
3387: 14-21.

http://www.eclipse.org/.
FOP (2005). FOP (Formatting Objects Processor), http://xmlgraphics.apache.org/fop/.

2005.
Ian Horrocks, Peter F. Patel-Schneider, et al. (2003). SWRL: A Semantic Web Rule

Language Combining OWL and RuleML,
http://www.daml.org/2003/11/swrl/.

Jasper, R. and M. Uschold (1999). A framework for understanding and classifying
ontology applications

Jena (2005). Jena - A Semantic Web Framework for Java,

. IJCAI99 Workshop on Ontologies and Problem-
Solving Methods.

http://jena.sourceforge.net/,.
Karvounarakis, G., S. Alexaki, et al. (2002). RQL: a declarative query language for

RDF. Eleventh International World Wide Web Conference, Honolulu,
Hawaii, USA.

Kashyap, V. and A. Sheth (1998). Semantic Heterogeneity in Global Information
Systems: The Role of Metadata, Context and Ontologies, Academic Press.

Klöckner, K. (2000). BSCW - Educational Servers and Services on the WWW,
Adelaide.

Knublauch, H., R. W. Fergerson, et al. (2004). The Protégé OWL Plugin: An Open
Development Environment for Semantic Web Applications. Third
International Semantic Web Conference (ISWC 2004), Hiroshima, Japan.

Kumar, A. and B. Smith (2004). On Controlled Vocabularies in Bioinformatics: A
Case Study in Gene Ontology. Drug Discovery Today: BIOSILICO. 2: 246-
252.

Lassila, O. and D. McGuinness (2001). "The Role of Frame-Based Representation on
the Semantic Web." Linköping Electronic Articles in Computer and
Information Science 6(5).

http://www.win.tue.nl/~laroyo/AIMS/�
http://projects.semwebcentral.org/projects/bossam/�
http://www.eclipse.org/�
http://xmlgraphics.apache.org/fop/�
http://www.daml.org/2003/11/swrl/�
http://jena.sourceforge.net/,�

The Semantic Web and its Applications

24

Lawrence, R. and K. Barker (2001). Integrating Data Sources Using a Standardized
Global Dictionary. Knowledge Discovery for Business Information
Systems. J. M. Zurada, Kluwer Academic Publishers: 153-172.

Mandal, C., V. L. Sinha, et al. (2004). "Web-based Course management and Web
Services." Electronic Journal of e-Learning 2(1): 135-144.

Meinel, C., H. Sack, et al. (2002). Course management in the twinkle of an eye -
LCMS: a professional course management system. Proceedings of the 30th
annual ACM SIGUCCS conference on User services, Providence, Rhode
Island, USA, ACM Press.

Mena, E., V. Kashyap, et al. (1996). OBSERVER: An Approach for Query Processing
in Global Information Systems based on Interoperation across Pre-existing
Ontologies

MOODLE (2006). Modular Object-Oriented Dynamic Learning Environment
(moodle),

. Conference on Cooperative Information Systems, Brussels,
Belgium, IEEE Computer Society Press.

http://moodle.org/.
OCW (2006). OpenCourseWare. http://ocw.mit.edu/index.html, MIT.
Ouskel, A. M. and A. Sheth (1999). "Semantic Interoperability in Global Information

Systems. A brief Introduction to the Research Area and the Special
Section." SIGMOD Record

OWL (2004). OWL Web Ontology Language Reference, W3C Recommendation,
World Wide Web Consortium,

 28(1): 5-12.

http://www.w3.org/TR/owl-ref/. 2004.
OWL-S (2004). OWL-based Web Service Ontology. 2004.
RDQL (2005). Jena RDQL, http://jena.sourceforge.net/RDQL/.
Roure, D., N. Jennings, et al. (2001). Research Agenda for the Future Semantic Grid:

A Future e-Science Infrastructure
http://www.semanticgrid.org/v1.9/semgrid.pdf.

RSS (2005). RSS 2.0 Specification, http://blogs.law.harvard.edu/tech/rss.
Sheth, A. (1998). Changing Focus on Interoperability in Information Systems: From

System, Syntax, Structure to Semantics. Interoperating Geographic
Information Systems. M. F. Goodchild, M. J. Egenhofer, R. Fegeas and C.
A. Kottman, Kluwer, Academic Publishers: 5-30.

Sheth, A. P. (1999). Changing Focus on Interoperability in Information Systems:
From System, Syntax, Structure to Semantics. Interoperating Geographic
Information Systems. C. A. Kottman, Kluwer Academic Publisher: 5-29.

Shum, S. B., E. Motta, et al. (2000). "ScholOnto: an ontology-based digital library
server for research documents and discourse." International Journal on
Digital Libraries

Swoogle (2005). Search and Metadata for the Semantic Web -
 3(3): 237-248.

http://swoogle.umbc.edu/.
WebCT (2006). http://www.webct.com/.
Woelk, D., P. Cannata, et al. (1993). Using Carnot for enterprise information

integration. Second International Conference on Parallel and Distributed
Information Systems.

http://moodle.org/�
http://ocw.mit.edu/index.html�
http://www.w3.org/TR/owl-ref/�
http://jena.sourceforge.net/RDQL/�
http://www.semanticgrid.org/v1.9/semgrid.pdf�
http://blogs.law.harvard.edu/tech/rss�
http://swoogle.umbc.edu/�
http://www.webct.com/�

	IntroductioN
	S-CMS Architecture
	Source layer
	Connection layer
	Instance layer
	Ontology Creation
	Ontology population
	Difficulties in creating and populating the ontology

	Query layer
	Inference layer
	Application layer

	Evaluation
	Related Work
	Conclusion
	Questions for discussioN
	Suggested ADDITIONAL READING
	References

