
134

Chapter VII
Introduction to Web Services

Cary Pennington
University of Georgia, USA

Jorge Cardoso
University of Madeira, Portugal

John A. Miller
University of Georgia, USA

Richard Scott Patterson
University of Georgia, USA

Ivan Vasquez
University of Georgia, USA

Copyright © 2007, IGI Global, distributing in print or electronic forms without written permission of IGI Group is prohibited.

AbstrAct

This chapter introduces the theory and design principles behind Web Service technology. It explains
the models, specifications, and uses of this technology as a means to allow heterogeneous systems to
work together to achieve a task. Furthermore, the authors hope that this chapter will provide sufficient
background information along with information about current areas of research in the area of Web Ser-
vices that readers will come away with an understanding of how this technology works and ways that
it could be implemented and used.

IntroductIon

As the World-Wide Web (WWW) exploded into
the lives of the public in the 1990s, people sud-
denly had vast amounts of information placed
at their fingertips. The system was developed to

allow information sharing within internationally
dispersed working groups. The original WWW
consisted of documents (i.e., Web pages) and
links between documents. The initial idea of the
WWW was to develop a universal information
database to publish information that could be ac-

 ���

Introduction to Web Services

solutions. EAI platforms were used for integrat-
ing incompatible and distributed systems such
as ERP (enterprise resource planning), CRM
(customer relationship management), SCM (sup-
ply chain management), databases, data sources,
data warehouses, and other important internal
systems across the corporate enterprise. While
useful, most EAI frameworks required costly
and proprietary protocols and formats, which
presented many technical difficulties when it was
needed to integrate internal systems with external
systems running on partners’ computers.

The limitations of EAI solutions made most
organizations realize that integrating internal
systems with external systems to business supply
chain members was a key to staying competitive,
since the majority of business processes spanned
across several organizations. Internal and external
systems needed to communicate over networks to
allow businesses to complete a transaction or part
of a transaction. To achieve this level of integra-
tion, business-to-business (B2B) solutions were
developed. B2B infrastructures were directed to
help organizations to streamline their processes
so they could carry out business transactions more
efficiently with their business partners (such as
resellers and suppliers). To reach a higher level
of integration, most B2B solutions have relied on
the use of XML as the language to represent data.
XML allows one to model data at any level of
complexity since it is extensible with the addition
of new tags. Data can be published in multiple

cessed in a reliable and simple way by consumers.
The information would not only be accessible to
users around the world, but information would
be linked so that it could be easily browsed and
quickly found by users. Organizations soon real-
ized the importance of this technology to manage,
organize, and distribute their internal data and
information to customers and partners.

As organizations started to implement busi-
ness-to-customer and e-commerce solutions, they
realized that the initial technologies associated
with the WWW were not sufficient to sell products
over the Internet. Additional functionality was
required to guarantee that transactions were con-
ducted in a secure way. To this end, SSL (Secure
Sockets Layer), a protocol defined by Netscape,
was developed for transmitting private documents
via the Internet. Using SSL, organizations were
able to implement a solution to obtain confidential
user information, such as credit card numbers.

With globalization, organizations were pro-
gressively undertaking mergers and acquisitions.
This has created organizations with an IT envi-
ronment composed of disparate legacy systems,
applications, processes, and data sources. In order
to meet increasing customer and business partner
expectations for real-time information, organiza-
tions were required to link their heterogeneous,
autonomous and distributed systems to improve
productivity and efficiency. This important
requirement led to the development and deploy-
ment of EAI (enterprise application integration)

Figure 1. The evolution of business usage on the WWW

��6

Introduction to Web Services

formats. In contrast to the proprietary protocols
used by EAI platforms, XML is vendor and plat-
form independent allowing standard commercial
software to process any conforming document.

Many organizations have already seen and
experience the advantages in using XML to rep-
resent data for Web-based information exchanges
(such as B2B communications). Nevertheless,
organizations realized that their B2B strategies
have lead the development of architectural solu-
tions that often exhibited a tight-coupling among
interacting software applications which limited
the flexibility and dynamic adaptation of IT sys-
tems. As a result and to overcome these limita-
tions, the concept of service-oriented architecture
(SOA) was introduced and defined a method of
designing, developing, deploying and managing
discrete pieces of computer logic (i.e., services)
within the WWW. The SOA goals are to achieve
structuring, loose coupling, and standardization
of business functionality among interacting
software applications. Applications invoke a
series of discrete services in order to perform a
certain task. A service is carried out by a service
provider in response to the request of a service
consumer. The most prominent implementation
of the SOA principle uses XML and Web services
as its technological backbone.

Web services are based on distributed com-
puting technology and provide a standard means
of interoperating between different software
applications across, and within, organizational
boundaries, using XML protocols and formats.
Web Services comply with several WWW stan-
dards, such as Web Services Definition Language
(WSDL) and Simple Object Access Protocol
(SOAP). These standards enable interoperability
by using XML-based communications protocols
and service definitions. The use of standard XML
protocols makes Web services platform, language,
and vendor independent, and an ideal candidate
for use in SOA implementations.

This chapter will introduce SOA, Web service
technology and its standards. It begins in the
second section, with a brief history of distributed
computing, which serves as the backdrop for the

development of today’s Web service technology.
The guiding principle behind the development of
Web service technology is SOA which is described
in the third section. The fourth section gives an
overview of the role of Web services in the context
of SOA. This section gives a description of today’s
standards and technologies for Web services. The
fifth section introduces the second-generation of
Web Services Protocols. It looks in detail at the
threats and standards relevant to the Web Services
Security landscape and examines problems and
solutions in reliability and transactions of Web
Services. Clearly, these areas must be addressed
before Web service technology will be widely
adopted. The sixth section explains how to develop
Web services starting from the initial design and
continuing until deployment and publication. A
summary and conclusions can be found in the
last section of this chapter.

a briEf history of
distributEd coMPutinG

Once networking became widespread across
academia and industry, it became necessary to
share data and resources. In the early years of dis-
tributed computing, message passing (e.g., using
for example sockets developed in the early 1980s)
was the prevailing method for communication.
This involved encoding the data into a message
format (i.e., how a structured piece of information
is encoded prior to transmission) and sending the
encoded data over the wire. The socket interface
allowed message passing using send and receive
primitives on transmission control protocol (TCP)
or user datagram protocol (UDP) transport proto-
cols for low-level messaging over Internet protocol
(IP) networks. Applications communicated by
sending and receiving text messages. In most
cases, the messages exchanged conformed to an
application-level protocol defined by program-
mers. This worked well but was cumbersome in
the fact that the data had to be coded and then
decoded. Using this approach, two programmers
developing a distributed application must have

 ���

Introduction to Web Services

knowledge of what the other is doing to the data.
Programmers had to spend a significant amount
of time specifying a messaging protocol and
mapping the various data structures to and from
the common transmission format.

As the development of distributed comput-
ing applications increased, new mechanisms
and approaches became necessary to facilitate
the construction of distributed applications. The
first distributed computing technology to gain
widespread use was remote procedure call (RPC).
RPC technology was made popular in the 1980s
by Sun Microsystems. RPC uses the client/server
model and extends the capabilities of traditional
procedure calls across a network. Remote proce-
dure calls are designed to be similar to making
local procedure calls. While in a traditional local
procedure call paradigm the code segments of
an application and the procedure it calls are in
the same address space, in a remote procedure
call the called procedure runs in another process
and address space across the network on another
processor.

RPC (Birrell, 1995) proved to be an adequate
solution for the development of two-tier client/
server architectures. As distributed computing
became more widespread, the need to develop, for
example, N-tier applications emerged and RPC
could not provide the flexibility and functional-
ity required.

With such applications, multiple machines may
need to operate simultaneously on the same set of
data. Therefore, the state of that data became of
great concern. Research in the area of distributed
objects allowed overcoming this problem with the
specification of two competing technologies: com-
mon object request broker architecture (CORBA)
and distributed common object model (DCOM).
Later, Java remote method invocation (RMI) was
developed and also became a competitor.

The CORBA [4, 5] standard was developed by
the Object Management Group (OMG) starting in
the 1990’s and defines an architecture that specifies
interoperability between distributed objects on a
network. With CORBA, distributed objects can
communicate regardless of the operating system

they are running on (for example, Linux, Solaris,
Microsoft Windows, or MacOS). Another primary
feature of CORBA is its interoperability between
various programming languages. Distributed
objects can be written in various languages (such
as Java, C++, C, Ada, etc.). The main component
of CORBA is the ORB (object request broker).
Objects residing in a client make remote requests
using an interface to the ORB running on the lo-
cal machine. The local ORB sends the request to
the remote ORB, which locates the appropriate
object residing in a server and passes back an
object reference to the requester. An object resid-
ing in a client can then make the remote method
invocation of a remote object. When this happens
the ORB marshals the arguments and sends the
invocation over the network to the remote object’s
ORB which invokes the method locally and sends
the results back to the client.

DCOM (Brown & Kindel, 1996) is a protocol,
developed by Microsoft, which enables commu-
nication between two applications running on
distributed computers in a reliable, secure, and
efficient manner. DCOM is an extension of the
Component Object Model (COM). COM is an
object-based programming model and defines
how components and their clients interact. COM
allows the development of software components
using a variety of languages and platforms to be
easily deployed and integrated. The distributed
COM protocol extends the programming model
introduced by COM to work across the network
by using proxies and stubs. Proxies and stubs
allow remote objects to appear to be in the same
address space as the requesting object. When a
client instantiates a component that resides out-
side its address space, DCOM creates a proxy to
marshal methods calls and route them across the
network. On the server-side, DCOM creates a
stub, which unmarshals method calls and routes
them to an instance of the component.

Java RMI (Dwoning, 1998) is a package for
writing and executing distributed Java programs
by facilitating object method calls between dif-
ferent Java Virtual Machines (JVM) across a
network. Java RMI hides most of the aspects of the

���

Introduction to Web Services

distribution and provides a conceptually uniform
way by which local and distributed objects can
be accessed. An RMI application consists of a
server interface, a server implementation, a server
skeleton, a client stub, and a client implementa-
tion. The server implementation creates remote
objects that conform to the server interface. These
objects are available for method invocation to
clients. When a client wishes to make a remote
method invocation it invokes a method on the
local stub, which is responsible for carrying out
the method call on the remote object. The stub
acts as a local proxy. A server skeleton exists for
each remote object and is responsible to handle
incoming invocations from clients.

CORBA, DCOM, and Java RMI enjoyed
considerable success, but they present a set of
shortcoming and limitations when used in Web
environments. For example, they tend to create
tightly-coupled distributed systems, some are
vendor and platform specific (e.g., COM/DCOM
only runs on Windows), the distributed systems
developed run on closely administered environ-
ment, some use complex and proprietary pro-
tocols, and specific message formats and data
representation. With the growth of the Web, the
search soon started for a Web compliant replace-

ment for this technology. In the next sections, we
will see that Web services are currently the most
natural solution to develop distributed systems
in the Web.

sErvicE-oriEntEd
architEcturE

As we have seen, in the 1980s distributed com-
puting was introduced. This research led to the
development of distributed objects architectures
through the 1990’s. The distributed platforms
developed, such as Java RMI and DCOM, had
several restrictions. For example, RMI was limited
to Java, while DCOM was limited to Microsoft
platforms. Moreover, distributed applications
developed using different platforms were difficult
to integrate. Integration was and is still one of the
major concerns for Chief Information Officers.
Figure 2 gives us a very good indication that ap-
plication integration tops the priority list of high
ranking business people.

To cope with the restrictions of more traditional
distributed objects architectures, in the early
2000’s, the concept of service-oriented architec-
ture (SOA) was introduced (or reintroduced, since

Top strategic softw are platform projects

��%

��%

�0%

��%

��%

��%

�9%

�6%

��%

��%

��%

��%

�%

�%

�%

�%

�%

0% �% �0% ��% �0% ��% �0% ��% �0%

Application Integration

e-business

CRM

SCM/Logistics

HR

Database upgrade

Intranet Improvements

Financial (Accounting)

Marketing apps on Web site

Commerce Server

e-procurement Web site

Sys. Mgmt infrastructure

Building Internet Company

Engineering softw are

Manufacturing softw are

Other

Deregulation

% of respondents

Figure 2. Priority list of CIOs (Channabasavaiah & Tuggle, 2003)

 ��9

Introduction to Web Services

in reality, the concept SOA was defined by Sun
in the late 1990’s to describe Jini (Waldo, 1999)).
SOA describes an approach which facilitates the
development and composition of modular services
that can be easily integrated and reused to create
distributed applications. It promises the develop-
ment of truly flexible and adaptable IT infrastruc-
tures. According to the W3C, a Service-Oriented
Architecture is a set of components which can be
invoked, and whose interface descriptions can
be published and discovered. Components are
made available as independent services that are
accessed in a standardized way.

In order for SOA to enjoy greater success than
it predecessors, it should consider the following
attributes:

• Scalable: The past solutions were not de-
signed with the scale of the Web in mind.
SOA should work in a variety of settings,
such as within an organization, between
business partners and across the world.

• Loosely-coupled: SOA is an evolution from
tightly coupled systems to loosely coupled
ones. Senders and receivers of a SOA should
be independent of each other; the source can
send the message independently of the target.
Tight coupling is not suitable for SOA since
it leads to monolithic and brittle distributed
applications. Even trivial changes in one
component lead to catastrophic breaks in
function. Small changes in one application
require matching changes in partner applica-
tions (Channabasavaiah & Tuggle, 2003).

• Interoperability: One party should be able
to communicate with another party regard-
less of the machine they are running on.

• Discovery: One party should be able to
communicate with a second party selected
from a set of competent candidates. Services
need to be dynamically discoverable. This
is accomplished through services such as a
directory of service descriptions.

• Abstraction: A SOA abstracts the underly-
ing technology. Developers can concentrate

on building services for business users rather
than connecting systems and applications.

• Standards: Interaction protocols must be
standardized to ensure the widest interoper-
ability among unrelated institutions. Con-
tracts should also be standardized. Explicit
contracts define what may be changed in an
application without breaking the interaction.
Furthermore, standards are the basis of
interoperable contract selection and execu-
tion.

When comparing SOA with previous ap-
proaches we can find the following major differ-
ences. Traditional Middleware, such as distributed
object systems, are based on the client-server
paradigm, have heavily asymmetric interaction
model, are biased towards synchronous protocols,
assign public interfaces to network accessible
objects, and support “name-oriented” object
discovery. On the other hand, service-oriented
Middleware are based on a peer-to-peer para-
digm, have symmetric interaction models, mixes
synchronous and asynchronous protocols, assigns
public contracts to network accessible objects,
and supports capability based service discovery
(Cardoso, Curbera, Sheth, 2004).

service oriented architecture and
Web services

Most distributed computing technologies have the
concept of services and are defined by interfaces.
While there are many different possibilities for
developing an SOA (e.g., Web services, Java RMI,
DCOM, and CORBA), Web services is currently
the most desirable solution since it eliminates
many of the interoperability problems between
applications and services. Web services provide
many of the necessary standards that are crucial
for making a distributed system work. It should
be noticed that using Web services does not
necessarily mean that there is an SOA. Also, it is
possible to have a service-oriented architecture
without Web services.

��0

Introduction to Web Services

There are three common actions associated
with a service in SOA—discovery, request, and
response. Discovery is the process of finding
the service that provides the functionality that
is required. A request provides the input to the
service. The response yields the output from the
service. It follows easily that this architecture must
have three primary actors: requestor, provider,
and registry.

The beginning of this figure (step 1) shows the
process that two participants would become aware
of one another. This is accomplished as the service
provider publishes the Web Service Description
(WSD) and Semantics (Sem.) to a registry after
which the service requestor would discover that
service. In step 2, the semantics and description
are agreed upon so that there will be no misun-
derstanding about the data that is being exchanged
during this communication. Once the WSD and
semantics are accepted by and loaded into both
the participants (step 3) then they can interact to
carry out the operation that was needed.

A service provider may develop and deploy one
or more Web services. Each service must contain
at least one operation. Operations are also referred

to as endpoints because they are the part of the
service that actually does the processing.

What are Web services?

Web services are modular, self-describing, self-
contained applications that are accessible over
the Internet (Curbera & Nagy, 2001). They are
the most popular realization of the service-ori-
ented architecture. A Web service is a software
component invokable over the Web via an XML
(XML, 2005) message that follows the SOAP
(SOAP, 2003) standard. The component pro-
vides one or more operations for performing
useful actions on behalf of the invoking client.
These operations and the formats of the input
and output messages are described using WSDL
(Christensen & Curbera, 2001). Being based on
these Web standards makes Web services both
implementation language and platform inde-
pendent. Description of services in a language
neutral manner is vital for the widespread use
of Web services. For general usability, a service
must be described and advertised. WSDL takes

Figure 3. Process of discovery (Booth, 2004)

 ���

Introduction to Web Services

care of the description by providing a language
to describe a service in enough detail to invoke
any of its operations. Service providers describe
their Web services and advertise them in a uni-
versal registry called UDDI (UDDI, 2002). This
enables service requestors to search the registry
and find services, which match their requirements.
UDDI allows for the creation of registries that
are accessible over the Web. A registry contains
content from the WSDL descriptions as well as
additional information such as data about the
provider. Clients may use one or more registries
to discover relevant services.

To describe Web services further, let us look
at an example scenario. A company called Moon
Company is a product distributor. They keep
track of their clients, goods, and orders through a
system that they have in-house. They do not want
to provide unlimited access to this system to their
customers, but they would like their customers to
be able to place orders easier. Using Web services,
the Moon Company can create an interface to their
interior system so that a customer can be looked
up, and once authenticated, order products. With
these services in place, Moon needs only provide
the WSDL definitions of the services to their
clients and the clients will be able to compose
any system on their side to handle ordering in
any way they see fit. Since Moon does not know

what type of system their customers are using,
other remote technologies would be more difficult
to implement.

soa and Web service standards

The use of standard protocols is one of the aspects
that allow SOA to deploy technically compatible
services. Currently, Web service standards are the
preferred solution to develop SOA-based products.
Web services technology has gained a suitable
degree of maturity and is being used to easily
publish business functions to an intranet or the
Internet for remote execution. Business functions
can reside in popular applications such as ERP
(enterprise resource planning), CRM (customer
relationship management), and SCM (supply chain
management) systems.

Some of the standards associated with Web
services are indispensable to developing SOA-
based solutions as illustrated in Figure 4.

The most well-known protocols will be pre-
sented and discussed in this section, while the
second-generation Web services standards, such
as WS-Security, WS-Coordination, WS-Transac-
tion, and WS-Policy will be discussed in the next
section.

Figure 4. Web Services and list standards (Cardoso, Curbera, & Sheth, 2004)

���

Introduction to Web Services

basic Web service standards

XML, SOAP, WSDL and UDDI (Graham &
Simenov, 2002) are the fundamental elements to
deploy SOA infrastructures based on Web services
(see Figure 5). XML is the standard for data rep-
resentation; SOAP specifies the transport layer to
send messages between consumers and providers;
WSDL describes Web services; and UDDI is used
to register and lookup for Web services.

XML, the emerging standard for data repre-
sentation, has been chosen as the language for
describing Web services. XML is accepted as a
standard for data interchange on the Web allowing

the structuring of data on the Web. It is a language
for semi-structured data and has been proposed as
a solution for data integration problems, because
it allows a flexible coding and display of data,
by using metadata to describe the structure of
data (using DTD or XSD). A well-formed XML
document creates a balanced tree of nested sets of
open and closed tags, each of which can include
several attribute-value pairs.

Simple object access protocol (SOAP). This
standard defines the types and formats of XML
messages that may be exchanged between peers
in a decentralized, distributed environment.
One of the main objectives of SOAP is to be
a communication protocol that can be used by
distinct applications developed using different
programming languages, operating systems, and
platforms. Many software vendors are producing
an implementation of SOAP into their systems.
Examples of major vendors include Sun, Micro-
soft, and IBM. The latest version of the standard
is SOAP 1.2 (http://www.w3.org/TR/soap). SOAP
specification is not completed yet and as it goes
through the W3C standardization process some
minor changes will certainly occur.

The current specification defines a skeleton
that looks like the listing below. The envelope
defines the namespace of the SOAP specification
and the encoding style that was used to create
this message. The Header section is optional and
contains additional information about the mes-

Figure 5. The relationship between XML/SOAP/
WSDL/UDDI

<?xml version=”�.0”?>
<soap:Envelope
xmlns:soap=”http://www.w�.org/�00�/��/soap-envelope”
soap:encodingStyle=”http://www.w�.org/�00�/��/soap-encoding”>
<soap:Header>
 ...
</soap:Header>
<soap:Body>
 ...
 <soap:Fault>
 ...
 </soap:Fault>
</soap:Body>
</soap:Envelope>

Figure 6. SOAP skeleton listing (SOAP, 2002)

 ���

Introduction to Web Services

sage. The Body section contains the data that is
being transferred.

Web Service Description Language (WSDL).
WSDL is the major language that provides a
model and an XML format to describe the syn-
tactical information about Web services. It is a
W3C standard XML language for specifying the
interface of a Web service. This standard enables
the separation of the description of the abstract
functionality offered by a service from concrete
details of a service implementation by defining the
interface that Web services provide to requesters.
The definition of the interface (called a port type
in version 1.x and called interface in version 2.0)
gives the signatures for all the operations provided
including operation name, inputs, outputs and
faults. Beyond the interface, information about the
service itself and allowed bindings is included in
WSDL documents. The latest version of the stan-

<wsdl:definitions
targetNamespace=”mooncompany”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/” xmlns:wsdlsoap=”http://schemas.xmlsoap.org/
wsdl/soap/” xmlns:xsd=”http://www.w�.org/�00�/XMLSchema”>
<wsdl:message name=”SearchCustomerResponseMessage”>
 <wsdl:part element=”impl:SearchCustomerResponse”
 name=”SearchCustomerResponse”/>
 </wsdl:message>
 <wsdl:portType name=”SearchCustomer”>
 <wsdl:operation name=”search”>
 <wsdl:input message=”impl:SearchCustomerRequestMessage”/>
 <wsdl:output message=”impl:SearchCustomerResponseMessage”/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name=”CRMServiceSoapBinding”
 type=”impl: SearchCustomer “>
 <wsdlsoap:binding style=”document”
 transport=”http://schemas.xmlsoap.org/soap/http”/>
 <wsdl:operation name=”search”>
 <wsdlsoap:operation soapAction=”search”/>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name=”CRMService”>
 <wsdl:port binding=”impl:CRMServiceSoapBinding” name=”CRMService”>
 <wsdlsoap:address
 location=”http://���.���.6�.���/moon/services/CRMService”/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Figure 7. Partial WSDL listing (Semantic Web Services Challenge, 2006)

dard is WSDL 1.1 (http://www.w3.org/TR/wsdl),
although WSDL 2.0 has become a candidate rec-
ommendation (http://www.w3.org/TR/wsdl20).
WSDL 1.1 uses XML Schema Definition (XSD)
which provides constructs for creating complex
types (http://www.w3.org/XML/Schema).

The following is brief and incomplete copy of
a WSDL file. Notice how it defines the type of
data to be used, the operations that exist in the
service and the type of inputs and outputs that
those operations require. With this information,
a call to invoke any operation in this service can
be made and carried out successfully.

UDDI (universal description, discovery, and
integration). Currently, the industry standards
available to register and discover Web services are
based on the UDDI specification (UDDI, 2002).
Once a Web service is developed, it has to be ad-
vertised to enable discovery. The UDDI registry is

���

Introduction to Web Services

supposed to open doors for the success of service
oriented computing, leveraging the power of the
Internet. Hence the discovery mechanism sup-
ported should be scaled to the magnitude of the
Web by efficiently discovering relevant services
among tens and thousands (or millions according
to industry expectations) of Web services. UDDI
standard defines a SOAP-based Web service for
locating WSDL descriptions of Web services.
This standard defines the information content and
the type of access provided by service registries.
These registries provide the advertisement of the
services that can be invoked by a client. UDDI
can store descriptions about internal Web services
across an organization and public Web services
located in the Internet.

othEr WEb sErvicEs
standards and Protocols:
Ws-*

Besides the core standards discussed in section 4,
there are several other standards needed for Web
services to be used in practice. This section gives
a quick tour of some of these standards.

Web service Policy

In the process of discovering a service, there is
an inherent problem. We might write a query
that yields ten services that match our keyword,
or meet our input and output specifications. Yet,
at this point, we do not know what these services
require of the messages that will be exchanged.
Policy in Web services adds this information to the
description. It allows the provider of the service
to give all the information they see fit about the
service; requirements, capabilities, and quality.
With this information, the best service can be cho-
sen from the discovered services based on much
more complete information than just functional
requirements and keywords. (Verma, Akkiraju,
& Goodwin, 2005).

WS-Policy

WS-Policy is a specification of a framework for
defining the requirements and capabilities of a
service. In this since, a policy is nothing more
that a set of assertions that express the capabilities
and requirements of a service. The specification
WS-Policy (http://www-128.ibm.com/developer-
works/library/specification/ws-polfram/) defines
terms that can be used to organize a policy. Once
a provider has a policy defined in XML, then he
must publish that information by referencing it
in the description of the service.

WS-PolicyAttachment

This defines the method for attaching a policy
to a WSDL file so that it can be published to the
UDDI and thus used in deciding on services.
There are several mechanisms defined for ac-
complishing this task. The simplest method is
to write the policy directly into the WSDL file.
A more complex, and more powerful method is
to construct the policy as a stand alone file that
is referenced in the WSDL file as a URI. These
references can exist at any element of the WSDL.
WS-Policy and WS-PolicyAttachment together
give us hierarchy based on to which element the
policy is attached and direction for merging poli-
cies together to create an effective policy for an
element (WS-PolicyAttachment, 2005).

Both WS-Policy and WS-PolicyAttachment
have recently been submitted to W3C for stan-
dardization.

Web service security

In this section, we examine some of the concepts,
theories, and practices in securing Web services
at an introductory level. Our aim is for you to be-
come familiar with these as well as the terms used.
Security is a constantly changing arena driven by
the changes in associated technologies.

The World Wide Web, or Web, has in some
way touched the lives of most people living in an

 ���

Introduction to Web Services

economically developed country. Unfortunately,
it has not always been in a positive way. This is
because once a computer is connected to the Web;
it becomes part of a system that was not designed
with security and privacy in mind. Computers hold
information, sometimes sensitive information, for
much longer than most users realize. Even during
the simple event of entering information into a
Web browser, information is stored onto disk. This
may take place in a temporary file. Although once
the information is sent to a Web server and the file
is deleted, the information is still present on the
disk; even though the file reference is gone. Many
unsavory characters have learned how to glean
this information off of remote systems through
vulnerabilities of the operating system.

A basic definition of security can be thought
of as “keeping unauthorized access minimal.”
This is true not only on the Web but also in our
daily lives. We lock our doors when we leave our
houses in an effort to keep unauthorized visitors
out. This definition is simple, but it is clear. A
more complete definition may become too con-
voluted. Let us consider a definition for privacy,
“not making public what may be considered
personal.” Not a fancy definition, rather straight
to the point. We all have different ideas of what
is personal to us, and what being made public
means. However, I think we can all agree that
having our Social Security Number and checking
account information sold to the highest bidder is
a violation of our privacy.

Now that security and privacy are defined, let
us consider how this fits into the Web. Suppose
you would like to purchase a book online. Once
you have found the book and placed it in your
“Cart” it is time to checkout. In order to checkout
you must pass through some security. Typically,
you will be asked for your credit card informa-
tion and billing address. This is the first security
checkpoint and this information is verified with
your bank; as well as making sure the card has
not been reported stolen. The next checkpoint is
physical possession of the card, which is verified
by a security code on the back of your card. So,
you the consumer trust this Web site to send the

book, or you would not have placed the order,
and the Web site trusts you for payment since it
has verified all your information. Trust is a key
component of security and privacy as we shall see.
As a consumer using sensitive personal informa-
tion to make a purchase, have you considered
privacy of your information? Somewhere in the
information exchange between you and the Web
site an agreement has been made; whereas, the
Web site has promised not to sell your personal
information. However, how well is it protected?
Your credit card information, billing address,
and security code are now stored in two places,
the Web sites server and on your PC. More than
likely one of those unsavory characters will not
spend the time and effort to get one credit card
number off a PC when with a little more work
they could have access to thousands of entries.
So this brings us back to security. This time that
of the Web site server. As you can see, security
and privacy go hand and hand, with mutual trust
holding them together.

The above scenario is a simple client-server
process, much like those that currently encom-
passes the Web. However, Web services extend
the client-server model and are distributed as
discussed in earlier sections. Although this com-
bination is what gives Web services such promises
in the SOA, it is also an area of concern for secu-
rity and privacy. The more doors and windows a
home has, the more opportunities a thief has, the
more vigilant the home owner must be. This can
be applied to Web services as well. Web services
increases the number of access points to data
and ultimately machines. Furthermore, because
the access to data is increased, the sharing of
information is increased. This in itself is opens
the possibility of privacy invasion.

Now that the stage has been set, let us look at
the specific security and privacy considerations.
Web services are a distributed cross-domain en-
vironment. Therefore, it is difficult to determine
the identity of the actors; in this case who is the
service requester and who is the service provider.
Message level security and privacy is important
since these invocations may cross un-trusted

��6

Introduction to Web Services

intermediaries. It is necessary for the requester
and provider to have a protocol for discovering
each others policies and negotiating constraints at
run-time, prior to interaction. Privacy rights and
agreements should be explicitly described and
agreed upon. We will look more closely at these
considerations in the following paragraphs.

Message level security involves securing all
aspects of the SOAP message. Encryption plays
a large role in providing integrity of messages
between the requester and the provider while tra-
versing intermediaries. In addition, the requester
and the provider can not always be trusted.

Man-In-The-Middle attack is when an attacker
is able to compromise a SOAP message in tran-
sit. An attacker may gain access to confidential
information contained in the message or may
alter the message.

Unauthorized Access attack takes place when
an attacker is able to gain access to a Web service
which they do not have permissions to use. This can
happen through brute-force or by compromising
a SOAP message thereby gaining a username and
token. An attacker may also pose as a legitimate
Web service in order to gain an authentication
mechanism, this is known as Spoofing.

The above threats can be alleviated using
proper authentication and encryption techniques.
However, there are other attacks that can only be
alleviated through good programming habits and
proper verification of parameters.

SQL injection attack is the insertion of mali-
cious SQL statements. This requires preprocessing
of any parameters passed to an operation which
queries a SQL database to alleviate this threat.
Command injection attacks are similar to SQL
injection attacks in that malicious system com-
mands are injected into the SOAP in an effort to
exploit the systems vulnerabilities. This threat can
be alleviated by proper configuration permissions
and preprocessing.

Proper authentication and encryption schemes
can alleviate threats which compromise message
integrity. Point-to-Point schemes which are imple-
mented at the transport layer, such as VPN, SSL,
or IPSec, provide a “secure tunnel” for data to

flow, however, they can not guarantee the integrity
of the message. End-to-End schemes, which are
implemented at the application layer, can guar-
antee the confidential integrity of the message
and that the message has not been altered. This
is because the message is encrypted and digitally
signed with a key. End-to-End schemes also of-
fer the granularity necessary for Web services
such that sections of the SOAP message may be
encrypted while other sections are not.

WS-Security Framework

The WS-Security specification provides a frame-
work and vocabulary for requesters and providers
to secure messaging as well as communicate
information regarding security and privacy.
There are other security related specifications
worth mentioning. XML-Encryption specifies
the process of encrypting data and messages.
XML-Signature provides a mechanism for mes-
sages integrity and authentication, and signer
authentication. XACML is an XML representa-
tion of the Role-Based Access Control standard
(RBAC). XACML will likely play an important
function in Web services authorization. Security
Assertion Markup Language, or SAML, is an
OASIS framework for conveying user authenti-
cation and attribute information through XML
assertions. There are many specifications and
standards for Web services security. We would
like to encourage you to investigate these on your
own as an exercise.

WS-SecurityPolicy

Policies for Web services that describe the access
permissions as well as actions which a requester
or provider are required to perform. For example,
a policy may indicate that requesters must have
an active account with the service and that mes-
sages be encrypted using a PKI scheme from a
trusted certificate authority. A requester may
also have a policy indicating which encryption
schemes it accepts.

 ���

Introduction to Web Services

WS-Trust

Before two parties are going to exchange sensitive
information, they must establish a secure com-
munication. This can be done by the exchange
of security credentials. However, one problem
remains, how one party can trust the credentials of
the other. The Web Service Trust Language (WS-
Trust) was developed to deal with this problem. It
offers extensions to the WS-Security elements to
exchange security tokens and establishing trust
relationships (WS-Trust, 2005).

WS-SecureConversation

The Web services protocol stack is designed to be
a series of building blocks. WS-Secure Conversa-
tion is one of those blocks. WS-Security provides
message level authentication, but is vulnerable to
some types of attacks. WS-SecureConversation
uses SOAP extensions to define key exchange
and key derivation from security context so that
a secure communication can be ensured (WS-
SecureConversation, 2005).

Ws-authorization

Authorization for Web services still remains an
area of research at the time of this publication. The
difficulty of authorization is the inability to dy-
namically determine authorization for a requester
whom a Web service has just been introduced.
Some authorization frameworks being suggested
include assertion based, role based, context based
and a hybrid approach.

Assertion based authorization uses assertions
about the requester to decided on the level of au-
thorization. In a role based approach, requesters
are given “user” labels and these labels are associ-
ated with roles, which in turn have permissions
assigned to them. Context based authorization
examines the context in which a requester is act-
ing. For instance: proximity to the resource, on
behalf of a partnership, or even the time of day.
Obviously a hybrid approach is some combination
of two or more approaches.

WS-Privacy

Privacy is in the context of data and can be as-
sociated with the requester or the provider. The
requester may be concerned that the information
given to a provider will be propagated to other
entities. Such information could be a credit card
number, address, or phone number. A provider
may be concerned with the proliferation of in-
formation which they have sold to a requester.
In this case the provider does not want the re-
quester to resell this information without proper
compensation.

transaction Processing

The perceived success of composite applica-
tions in a service-oriented architecture depends
on the reliability of participants that are often
beyond corporate boundaries. In addition to al-
ready frequent errors and glitches in application
code, distributed applications must cope with
external factors such as network connectivity,
unavailability of participants and even mistakes
in service configuration. Web services transac-
tion management enables participating services
to have a greater degree of confidence in that the
actions among them will progress successfully,
and that in the worst case, such transactions can
be cancelled or compensated as necessary.

WS-Transaction

To date, probably the most comprehensive effort to
define transaction context management resides in
the WS-Coordination (WS-C) (Microsoft, BEA,
IBM,̀ Web Service Coodination’, 2005), WS-
AtomicTransaction (WS-AT) (Microsoft, BEA,
IBM, `Web Service Atomic Transaction’, 2005)
and WS-BusinessActivity (WS-BA) (Microsoft,
BEA, IBM,̀ Web Service Business Activity’,
2005) specifications. WS-C defines a coordina-
tion context, which represents an instance of
coordinated effort, allowing participant services
to share a common view. WS-AT targets existing

���

Introduction to Web Services

transactional systems with short interactions and
full ACID properties. WS-BA, on the other hand,
is intended for applications involved in business
processes of long duration, whose relaxed proper-
ties increase concurrency and suit a wider range
of applications.

Neither the Web services architecture nor
any specifications prescribe explicit ways to
implement transactional capabilities, although
it is clear that delivering such features should
minimally impact existing applications. Some
propose approaching the problem of transaction
monitoring and support by means of intermedi-
ary (proxy) services (Mikalsen, 2002), while
others by providing a lightweight programming
interface requiring minimal application code
changes (Vasquez, Miller, Verma, & Sheth, 2005).
Whichever the case, protocol-specific messages
should also be embedded in exchanged messages
and propagated though all participants.

WS-Composite Application Framework

Reliability and management are aspects highly
dependent on particular Web service implementa-
tions and therefore no specification mandates or
comments on them. However, just like the J2EE
Enterprise JavaBeans (EBJ) technology has made
available container-managed transactions (CMT)
for some time, a way to procure increased Web
service reliability could be through their deploy-
ment in managed environments, in which the
hosting application server becomes responsible
for support activities such as event logging and
system recovery. These additional guarantees
could potentially improve many aspects of Web
services reliability, taking part of the burden
away from their creators with regards to secu-
rity, auditing, reliable messaging, transactional
logging and fault-tolerance, to cite just a few.
Some implementations leading this direction
are already available from enterprise software
companies such as Arjuna Transaction Service
(Arjuna Transaction Service, 2005), IBM Trans-
actional Attitudes (IBM Transactional Attitudes,
2005), and from open source projects like Apache

Kandula (Apache Kandula Project, 2005) and the
academic community (Trainotti, Pistore, Pistore,
et al., 2005; Vasquez et al., 2005).

Messaging

WS-ReliableMessaging

Communication over a public network such as
the Internet imposes physical limitations to the
reliability of exchanged messages. Even though
failures are inevitable and unpredictable, certain
techniques increase message reliability and trace-
ability even in the worst cases.

At a minimum, senders are interested in de-
termining whether the message has been received
by the partner, that it was received exactly once
and in the correct order. Additionally, it may be
necessary to determine the validity of the received
message: Has the message been altered on its
way to the receiver? Does it conform to standard
formats? Does it agree with the business rules
expected by the receiver?

WS-Reliability and WS-ReliableMessaging
have rules that dictate how and when services
must respond to other services concerning the
receipt of a message and its validity.

WS-Eventing

Web services eventing (WS-Eventing) is a
specification that defines a list of operations that
should be in a Web service interface to allow for
asynchronous messaging. WS-Eventing is based
on WS-Notification that was submitted to OASIS
for standardization.

WS-Notification

Web service notification (WS-Notification) is
a family of specifications that provide several
capabilities.

• Standard message exchanges for clients
• Standard message exchanges for a notifica-

tion broker service provider

 ��9

Introduction to Web Services

• Required operations for services that wish
to participate in notifications

• An XML model that describes topics.

WS-Notification is a top layer for the following
specifications: WS-BaseNotification, WS-Bro-
keredNotification, and WS-Topics.

WS-BaseNotification defines the operations
and message exchanges that must take place be-
tween the two parties. WS-BrokeredNotification
defines messages and operations required of a
Notification Broker Service and those that wish
to use it. WS-Topics define the “topics” that are
used to organize the elements in a notification
message. It also defines XML to describe the
metadata associated with different topics.

dEvEloPinG WEb sErvicEs

The starting point of using Web service tech-
nology is to create Web services. Although it is
similar to developing other software, there are
some differences in that early focus on interfaces
and tool support is of even greater importance.
One can start by creating a WSDL specification,
or alternatively, by creating, for example, a Java
interface or abstract class. Since tools such as Axis
(Apache Axis Documentation, 2006) or Radiant
(2005) can convert one form to the other, it is a
matter of preference where to start. In this chapter
we will give a guide to developing Web services
starting by designing the Java classes.

We will do this by following fundamental
software engineering techniques to create the
Web services. Start by creating a UML Class
Diagram to define the requirements of the system.
To illustrate the ideas in this section, we will use
an example from the Semantic Web Services
Challenge 2006 (Semantic Web Services Chal-
lenge, 2006). The Challenge scenario is to create
a process to create a purchase order. The first step
in this process is to confirm that a given business
is a customer of the fictitious “Moon Company.”
Our example implements this service. Below are
the eight steps to create this service:

1. Create a UML Class Diagram: Following
software engineering practices, the initial
step is to create a UML Class Diagram to
define the classes that will be needed for the
service. UML provides a succinct represen-
tation of modeling classes. The following is
an example of a UML class diagram for a
service that will take as input the name of a
business and search a database to return the
profile for this business if they are a partner
of the Moon Company.

2. Generate Java Code: Using a UML tool
such as Poseidon, the UML Class Diagram
can easily converted into a Java class skel-
eton. It is important to note that while you
are developing objects to be used for Web
services that you must follow the Java bean
programming conventions, for example,
implementing “getters” and “setters” for
every member variable. Fortunately, this is
exactly the code that will be generated thanks
to the UML tool based on the diagram that
we have created in step one. For simplicity,
we have generated our Web service as an
abstract class.

3. Adding in Web Services Annotations: Java
6 includes annotations so that the compiler
will know that the program code is a Web
service. A partial list of available annota-
tions is as follows:

• javax.jws.WebService
• javax.jws.WebMethod
• javax.jws.WebParam
• javax.jws.WebResult
• javax.jws.HandlerChain
• javax.jws.soap.SOAPBinding

Figure 9 illustrates an example of a Java ser-
vice which has been annotated. Note that in the
example the @WebService and @WebMethod
are the annotations. The complier will recognize
these tags and create the WSDL document.

��0

Introduction to Web Services

Figure 8. UML class diagram

import javax.jws.WebService;
import javax.soap.SOAPinding;

@WebService
public class SearchCustomer
{

 @WebMethod
 public SearchCustomerResponce search (SearchCustomerRequest)
 //call to backend to verify Customer
 if(! verifyCustomer(SearchCustomerRequest))
 {
 return err;
 }

EarchCustomerResponce SCR = new SearchCustomerResponce;
SCR. setcustomerID(CustomerInfo.getcustomerID(SearchCustomerRequest)
SCR. setroleCode(CustomerInfor. getcustomerRole(SearchCustomerRequest)
...
...
...

 return SCR;
 }//WebMethod
}//SearchCustomer

Figure 9. Annotated Java example

 ���

Introduction to Web Services

Refer to the following link to see more in-
formation on annotations (https://mustang.dev.
java.net/).

4. Generate WSDL: The annotations from
the previous step indicate to the Annotation
Processing Tool or the Java compiler that a
WSDL is to be generated at compile-time.
This description of the service is used in
two ways. One, the description acts as an
advertisement when it is published on the
Web. The information gleaned from the
WSDL file is published in UDDI registries
so that queries can be executed to discover
the service that is needed. Second, it pro-
vides all the information needed to invoke
this service remotely.

5. Implement Methods: At this point in devel-
opment, we want to create an implementation
class that extends our abstract class. The
difference that the developer must deal with
is writing the code to the proper conventions.
Any class that is created must have getters
and setters for all member variables. These
are used during invocation by the SOAP
engine to serialize and deserialize the data
that is in the SOAP messages into Java
objects and back to SOAP.

6. Deploy Service: Deploying a service is ac-
complished using a Web application server

and a SOAP engine, like Tomcat and Axis2
respectively. If using Axis2, deploying a
service is as simple as dropping the .aar
files, which are .jar files with a different
extension, into the \WEB-INF\services di-
rectory. Directions on deployment in Axis2
can be found on the Web at http://ws.apache.
org/axis2 .

7. Test Service: A simple Java program can be
sufficient to test a service. In others it may
require a more complex client. Either way
the fundamentals for writing a client are
the End Point Reference, which is a URL
to the service, a call setting the target, and
setting the transport information. All of this
information is put into a call object that exists
in the org.apace.soap package. The setup of
this object is in Figure 10.

This code creates a call to a service named
“CMRService” with an operation name “search”.
This operation takes a SearchCustomerType as in-
put, thus you see an instance of this class is created
and added as a parameter to the call object.

Response resp = call.invoke(url, “”);

This calls the invoke method on the call object
to execute the operation in the service. The results
of the service are put into the Response object and
can be accessed from there.

Call call = new Call();
call.setSOAPMappingRegistry(smr); call.setTargetObjectURI(“http://���.���.6�.���/moon/ser-
vices/CRMService”);
call.setMethodName(“search”);
call.setEncodingStyleURI(Constants.NS_URI_SOAP_ENC);
Vector params = new Vector();
SearchCustomerType sct = new SearchCustomerType();
sct.setSearchString(name);
params.addElement(new Parameter(“request”, SearchCustomerType.class, sct, null));
call.setParams(params);

Figure 10. Partial listing of Web service client

���

Introduction to Web Services

8. Publish Service: Publishing a service re-
quires the use of UDDI registries. Setting up
a registry varies based on which registry is
chosen. For our example, we used the jUDDI
registry on a Tomcat server. The action of
publishing a service is similar to advertising
a business. After deployment and testing,
the service is open to the world and ready to
accept request, but until it is published, it is
unlikely that anyone will know about your
service. Tools that simplify this process are
Radiant and Lumina (Li, 2005), both from
the METEOR-S tool suite.

conclusion

The service oriented architecture (SOA) is cur-
rently a “hot” topic. It is an evolution of the
distributed systems technology of the 1990s,
such as DCOM, CORBA, and Java RMI. This
type of architecture requires the existence of
main components and concepts such as services,
service descriptions, service security parameters
and constraints, advertising and discovery, and
service contracts in order to implement distributed
systems. In contrast to the Event-Driven Archi-
tecture, in which the services are independent,
the SOA-based approach requires services to be
loosely coupled.

SOA are often associated with Web services
and sometimes, SOA are even confused with
Web services, but, SOA does not specifically
mean Web services. Instead, Web services can
be seen as a specialized SOA implementation that
embodies the core aspects of a service-oriented
approach to architecture. Web service technology
has come a long way toward achieving the goal of
the SOA. With Web services, developers do not
need to know how a remote program works, only
the input that it requires, the output it provides
and how to invoke it for execution. Web services
provide standards and specifications that create
an environment where services can be designed,

executed, and composed into processes to achieve
very complicated tasks.

For some years now, Web services define a set
of standards (such as WSDL, SOAP, and UDDI)
to allow the interoperation and interoperability
of services on the Internet. Recently, security and
transactional stability have become priority areas
of research to make Web services more accepted
in the world of industry. The work done has lead
to the development of a set of new specifications
(such as WS-Security, WS-Policy, WS-Trust, WS-
Privacy, WS-Transaction, etc.) that describe how
Web services can establish secure communica-
tions, define policies services’ interactions, and
define rules of trust between services.

rEfErEncEs

Arjuna Technologies Limited (2005). Arjuna
transaction service suite. Retrieved October 18,
2006, from http://www.arjuna.com/products/ar-
junats/index.html

Axis Development Team (2006) . Webservices
– Axis. Retrieved October 18, 2006, from http://
ws.apache.org/axis/

Bellwood, T. (2002) UDDI Version 2.04 Api
specification. Retrieved February 20, 2007 from
http://uddi.org/pubs/ProgrammersAPI-V2.04-
Published-20020719.htm

Birrell, A.D. & Nelson, B.J. (1984). Implement-
ing remote procedure calls. ACM Transactions
on Computer Systems, 2(1), 39-54.

Booth, D., Hass, H., McCabe, F., Newcomer, E.,
Champion, M., Ferris, C., & Orchard, D. (2004)
Web services architecture, W3C Working Group
Note. Retrieved October 18, 2006, from http://
www.w3.org/TR/ws-arch/

Brewer, D., LSDIS Lab, University of Georgia
(2005). Radiant. Retrieved October 18, 2006,
from http://lsdis.cs.uga.edu/projects/meteor-s/
downloads/index.php?page=1

 ���

Introduction to Web Services

Brown, N., & Kindel. C. (1996). Distributed
component object model protocol, DCOM/1.0.
Redmond, WA: Microsoft Corporation.

Cabrera, L. F., Copeland, G., Feingold, M.,
Freund, T., Johnson, J., & Joyce, S., et al. (2005)
Web services atomic transaction (WS-Atomic
Transaction). retrieved February 20, 2007 from
http://www128.ibm.com/developerworks/library
specification/ws-tx/#atom

Cabrera, L. F., Copeland, G., Feingold, M., Freund
R. W., Freund, T., & Joyce, S., et al. (2005). Web
services business activity framework (WS-Busi-
nessActivity). Retrieved February 20, 2006 from
http://schemas.xmlsoap.org/ws/2004/10/wsba/

Cabrera, L. F., Copeland, G., Feingold, M., Freund,
T., Freund, R. W., Johnson, J. (2005) Web service
coordination (WS-Coordination). Retrieved
February 20, 2006 from http://specs.xmlsoap.
org/ws/2004/10/wscoor/wscoor.pdf

Cardoso, J., Curbera, F., & Sheth, A. (2004, May
17-22). Tutorial: Service oriented architectures
and Semantic Web processes. In Proceedings
of the Thirteenth International World Wide Web
Conference (WWW2004), New York.

Channabasavaiah, K., Holley, K., & Tuggle, E.
(2003) Migrating to a service-oriented architec-
ture, Part 1. Retrieved October 18, 2006, from
http://www128.ibm.com/developerworks/Web-
services/library/ws-migratesoa/

Christensen, E., Curbera, F., Meredith, G., Wee-
rawarana, S. (2001) W3C Web Services Descrip-
tion Language (WSDL). Retrieved October 18,
2006, from http://www.w3.org/TR/wsdl

Curbera, F., Nagy, W., Weerawarana, S. (2001).
Web services: Why and how. Paper presented at
the Workshop on Object-Oriented Web Services
- OOPSLA 2001, Tampa, Florida.

Dwoning, T. (1998). Java RMI. Boston: IDG
Books Worldwide.

Graham, S., Simenov, S., Davis, D., Daniels,
G., Brittenham, P., Nakamura, Y., Fremantle,
P., Koeing, D., & Zentner, C. (2002). Building
Web services with Java: Making sense of XML,
SOAP, WSDL, and UDDI, SAMS. Indianapolis,
Indiana.

IBM, BEA Systems, Microsoft, SAP AG, Sonic
Software, VeriSign (2006).

Web service policy attachment. Retrieved October
18, 2006, from http://www-128.ibm.com/devel-
operworks/library/specification/ws-polatt/index.
html

IBM, BEA Systems, Microsoft, Layer 7 Tech-
nologies, Oblix, VeriSign, Actional, Computer
Associates, OpenNetwork Technologies, Ping
Identity, Reactivity, RSA Security (2005). Web
services trust language. Retrieved October 18,
2006, from http://www-128.ibm.com/developer-
works/library/specification/ws-trust/

IBM, BEA Systems, Microsoft, Computer Associ-
ates, Actional, VeriSign, Layer 7 Technologies,
Oblix, OpenNetwork Technologies, Ping Identity,
Reactivity, RSA Security (2005). Web service
secure conversation language specification. Re-
trieved October 18, 2006 from http://www-128.
ibm.com/developerworks/library/specification/
ws-secon/

Li, K. (2005). Lumina: Using WSDL-S for Web
service discovery. Masters Thesis, University of
Georgia.

Microsoft, BEA & IBM. (2005). Web Services
Atomic Transaction

Microsoft, BEA & IBM. (2005). Web Services
Business Activity

Microsoft, BEA & IBM. (2005). Web Services
Coordination.

Mikalsen, T., Rouvellou, I., & Tai. S. (2003).
Advanced enterprise middleware: Transaction

���

Introduction to Web Services

processing. Retrieved October 18, 2006, from
http://www.research.ibm.com/AEM/txa.html

Mikalsen, T., Tai, S., & Rouvellou, I. (2002).
Transactional attitudes. Reliable composition
of autonomous Web services. Paper presented
at the International Conference on Dependable
Systems and Networks.

Object Management Group. (1995, July). CORBA:
The Common Object Request: Architecture and
Specification, Release 2.0. Retrieved February
20, 2007 from http://www.omg.org/cgi-bin/apps/
doc?formal/99-10-07.pdf

Orfali, R., & Herkey, D. (1998). Client/Server
programming with Java and CORBA (2nd ed.).
Hoboken NJ: John Wiley & Sons.

Semantic Web Services Challenge (2006). Main
page. Retrieved October 18, 2006, from http://
www.sws-challenge.org/

SOAP (2003). Simple object access protocol 1.2.
Retrieved October 18, 2006, from http://www.
w3.org/TR/soap/

Trainotti, M., Pistore, M., Calabrese, G., Zacco,
G., Lucchese, G., Barbon F., Bertoli, P., Traverso
P., & ASTRO. (2005). Supporting composition
and execution of Web services. Paper presented at

the International Conference on Service Oriented
Computing.

UDDI (2002). Universal Description, Discovery,
and Integration.

Vasquez, I., Miller, J., Verma, A., & Sheth, A.
(2005). OpenWS-Transaction: Enabling reliable
Web service transactions. Paper presented at the
International Conference on Service Oriented
Computing.

Verma, K., Akkiraju, R., Goodwin, R. (2005).
Semantic matching of Web service policies. Paper
presented at the Second International Workshop
on Semantic and Dynamic Web Processes (SDWP
2005), Part of the 3rd International Conference
on Web Services (ICWS’05).

Waldo, J. (1999, October). The Jini architecture
for network-centric computing. Communications
of the ACM, 42(10), 76-82.

Weeratunge, D., Weerawarana, S., & Gunarathne,
T. (2004) Kandula - Apache Kandula. Retrieved
October 18, 2006, from http://ws.apache.org/
kandula/

XML (2005). Extensible Markup Language
(XML) 1.0 (3rd ed.). W3C Recommendation 04
February 2004. Retrieved October 18, 2006, from
http://www.w3.org/TR/REC-xml/

