
Chapter 14

PROGRAMMING THE SEMANTIC WEB

Jorge Cardoso
1Department of Mathematics and Engineering,University of Madeira, 9000-390, Funchal,
Portugal – jcardoso@uma.pt

1. INTRODUCTION

Many researchers believe that a new Web will emerge in the next
few years based on the large-scale ongoing research and developments
in the semantic Web. Nevertheless, the industry and its main players
are adopting a “wait-and-see” approach to see how real-world
applications can benefit from semantic Web technologies (Cardoso,
Miller et al. 2005). The success of the semantic Web vision (Berners-
Lee, Hendler et al. 2001) is dependant on the development of practical
and useful semantic Web-based applications.

While the semantic Web has reached considerable stability from
the technological point of view with the development of languages to
represent knowledge (such as OWL (OWL 2004)), to query
knowledge bases (RQL (Karvounarakis, Alexaki et al. 2002) and
RDQL (RDQL 2005)), and to describe business rules (such as SWRL
(Ian Horrocks, Peter F. Patel-Schneider et al. 2003)), the industry is
still skeptical about its potential. For the semantic Web to gain
considerable acceptance from the industry it is indispensable to
develop real-world semantic Web-based applications to validate and
explore the full potential of the semantic Web (Lassila and
McGuinness 2001). The success of the semantic Web depends on its
capability of supporting applications in commercial settings (Cardoso,
Miller et al. 2005).

Semantic Web Services, Processes and Applications

2

In several fields, the technologies associated with the semantic
Web have been implemented with considerable success. Examples
include semantic Web services (OWL-S 2004), tourism information
systems (Cardoso 2004), semantic digital libraries, (Shum, Motta et al.
2000), semantic Grid (Roure, Jennings et al. 2001), semantic Web
search (Swoogle 2005), and bioinformatics (Kumar and Smith 2004).

To increase the development of semantic Web systems and
solutions, in this chapter we will show how semantic Web
applications can be developed using the Jena framework.

2. THE SEMANTIC WEB STACK

The semantic Web identifies a set of technologies, tools, and
standards which form the basic building blocks of an infrastructure to
support the vision of the Web associated with meaning. The semantic
Web architecture is composed of a series of standards organized into a
certain structure that is an expression of their interrelationships. This
architecture is often represented using a diagram first proposed by
Tim Berners-Lee (Berners-Lee, Hendler et al. 2001). Figure 14-1
illustrates the different parts of the semantic Web architecture. It starts
with the foundation of URIs and Unicode. On top of that we can find
the syntactic interoperability layer in the form of XML, which in turn
underlies RDF and RDF Schema (RDFS). Web ontology languages
are built on top of RDF(S). The three last layers are the logic, proof,
and trust, which have not been significantly explored. Some of the
layers rely on the digital signature component to ensure security.

Unicode URI

XML + NS+ xmlschema

RDF + rdfschema

Ontology vocabulary

Logic

Proof

Trust

D
ig

ita
l

Si
gn

at
ur

e

Our focus in
this chapter

Figure 14-1. Semantic Web stack (Berners-Lee, Hendler et al. 2001)

Programming the Semantic Web

3

In the following sections we will briefly describe these layers.
While the notions presented have been simplified, they provide a
reasonable conceptualization of the various components of the
semantic Web.

URI and Unicode. A Universal Resource Identifier (URI) is a

formatted string that serves as a means of identifying abstract or
physical resource. A URI can be further classified as a Uniform
Resource Locator (URL) or a Uniform Resource Name (URN). A
URL identifies resources via a representation of their primary access
mechanism. A URN remains globally unique and persistent even
when the resource ceases to exist or becomes unavailable.

Unicode provides a unique number for every character,
independently of the underlying platform or program. Before the
creation of unicode, there were various different encoding systems
making the manipulation of data complex and required computers to
support many different encodings.

XML. XML is accepted as a standard for data interchange on the

Web allowing the structuring of data but without communicating the
meaning of the data. It is a language for semi-structured data and has
been proposed as a solution for data integration problems, because it
allows a flexible coding and display of data, by using metadata to
describe the structure of data. While XML has gained much of the
world’s attention it is important to recognize that XML is simply a
way of standardizing data formats. But from the point of view of
semantic interoperability, XML has limitations. One significant aspect
is that there is no way to recognize the semantics of a particular
domain because XML aims at document structure and imposes no
common interpretation of the data (Decker, Melnik et al. 2000). Even
though XML is simply a data-format standard, it is part of the set of
technologies that constitute the foundations of the semantic Web.

RDF. At the top of XML, the World Wide Web Consortium

(W3C) has developed the Resource Description Framework (RDF)
(RDF 2002) language to standardize the definition and use of
metadata. RDF uses XML and it is at the base of the semantic Web, so
that all the other languages corresponding to the upper layers are built
on top of it. RDF is a simple general-purpose metadata language for
representing information in the Web and provides a model for
describing and creating relationships between resources. RDF defines

Semantic Web Services, Processes and Applications

4

a resource as any object that is uniquely identifiable by a URI.
Resources have properties associated with them. Properties are
identified by property-types, and property-types have corresponding
values. Property-types express the relationships of values associated
with resources. The basic structure of RDF is very simple and
basically uses RDF triples in the form of (subject, predicate, object).
RDF has a very limited set of syntactic constructs and no other
constructs except for triples is allowed.

RDF Schema. The RDF Schema (RDFS 2004) provides a type

system for RDF. Briefly, the RDF Schema (RDFS) allows users to
define resources (rdfs:Resource) with classes, properties, and values.
The concept of RDFS class (rdfs:Class) is similar to the concept of
class in object-oriented programming languages such as Java and
C++. A class is a structure of similar things and inheritance is allowed.
This allows resources to be defined as instances of classes. An RDFS
property (rdf:Property) can be viewed as an attribute of a class. RDFS
properties may inherit from other properties (rdfs:subPropertyOf), and
domain (rdfs:domain) and range (rdfs:range) constraints can be
applied to focus their use. For example, a domain constraint is used to
limit what class or classes a specific property may have and a range
constraint is used to limit its possible values. With these extensions,
RDFS comes closer to existing ontology languages.

Ontologies. An ontology is an agreed vocabulary that provides a

set of well-founded constructs to build meaningful higher level
knowledge for specifying the semantics of terminology systems in a
well defined and unambiguous manner. Ontologies can be used to
assist in communication between humans, to achieve interoperability
and communication among software systems, and to improve the
design and the quality of software systems (Jasper and Uschold 1999).

In the previous sections, we have established that RDF and RDFS
were the base models and syntax for the semantic Web. On the top of
the RDF/S layer it is possible to define more powerful languages to
describe semantics. The most prominent markup language for
publishing and sharing data using ontologies on the Internet is the
Web Ontology Language (OWL 2004). OWL adds a layer of
expressive power to RDF/S, providing powerful mechanisms for
defining complex conceptual structures, and formally describes the
semantics of classes and properties used in Web resources using, most

http://www.xml.com/pub/a/2002/05/01/damlref.html?page=2#rdf:Property#rdf:Property�

Programming the Semantic Web

5

commonly, a logical formalism known as Description Logic (DL
2005).

Logic, Proof, and Trust. The purpose of this layer is to provide

similar features to the ones that can be found in First Order Logic
(FOL). The idea is to state any logical principle and allow the
computer to reason by inference using these principles. For example, a
university may decide that if a student has a GPA higher than 3.8, then
he will receive a merit scholarship. A logic program can use this rule
to make a simple deduction: “David has a GPA of 3.9, therefore he
will be a recipient of a merit scholarship.”

The use of inference engines in the semantic Web allows
applications to inquire why a particular conclusion has been reached
(inference engines, also called reasoners, are software applications
that derive new facts or associations from existing information.).
Semantic applications can give proof of their conclusions. Proof traces
or explains the steps involved in logical reasoning.

Trust is the top layer of the Semantic Web architecture. This layer
provides authentication of identity and evidence of the trustworthiness
of data and services. While the other layers of the semantic Web stack
have received a fair amount of attention, no significant research has
been carried out in the context of this layer.

3. SEMANTIC WEB DEVELOPMENT
ENVIRONMENTS

Several frameworks supporting OWL ontologies are available. We
will briefly discuss the ones that are used the most by the developer
community, namely the Jena framework, Protégé-OWL API and the
WonderWeb OWL API, which are all available for Java language.
These three APIs are open-source and thus interested people can carry
out an in-depth study of their architecture. This is very important for
the current stage of semantic Web development since it is difficult to
know what the application’s scope of the semantic Web will be in the
near future. Therefore, open frameworks will allow for an easier
integration of semantic Web components into new projects.

Jena (Jena 2002; Jena 2005) is a Java framework for building
semantic Web applications developed by the HP Labs Semantic Web
Programme. It provides a programmatic environment for RDF, RDFS
and OWL, including a rule-based inference engine and a query

Semantic Web Services, Processes and Applications

6

language for RDF called RDQL (RDQL 2005). Since we are mostly
interested in ontology support, in subsequent sections we will discuss
the Jena 2 Ontology API included in the Jena toolkit. This API
supports several ontology description languages such as DAML,
DAML+OIL and OWL. However building ontologies in OWL W3C’s
language is strongly recommended because DAML and DAML+OIL
support may be removed in future releases of Jena. Because Jena 2
Ontology API is language-neutral, it should be easy to update existing
projects using Jena and other ontology languages to support OWL.
Jena OWL API supports all three OWL sublanguages, namely OWL
Lite, OWL DL and OWL Full. Specifying an URI to an OWL
ontology, Jena parses the ontology and creates a model for it. With
this model it is possible to manipulate the ontology, create new OWL
classes, properties or individuals (instances). The parsing of OWL
documents can be highly resource consuming, especially for
documents describing large ontologies. To address this particularity,
Jena provides a persistence mechanism to store and retrieve ontology
models from databases efficiently. As stated before, Jena includes an
inference engine which gives reasoning capabilities. Jena provides
three different reasoners that can be attached to an ontology model,
each of them providing a different degree of reasoning capability.
More capable reasoners require substantially more time to answer
queries. Therefore, developers should be very careful when choosing a
reasoner. Of course, it is possible to create a model with no reasoner
defined. An interesting aspect of Jena is that its inference engine is
written in a very generic way so that it allows developers to write their
own inference rules to better address their needs. This generic
implementation also allows for attaching any reasoner that is
compliant with the DIG interface, which is a standard providing
access to reasoners, such as Racer, FaCT, and Pellet. Another
important aspect is that it is very easy to find documentation and
practical programming examples for Jena.

Protégé (Protégé 2005) is a free, open-source platform that
provides a growing user community with a suite of tools to construct
domain models and knowledge-based applications with ontologies. It
was developed by the Stanford Medical Informatics Labs of the
Stanford School of Medicine. The Protégé-OWL API is an open-
source Java library for OWL and RDF(S). The API provides classes
and methods to load and store OWL files, to query and manipulate
OWL data models, and to perform reasoning (Protégé-API 2006).
This API, which is part of the Protégé-OWL plug-in, extends the

Programming the Semantic Web

7

Protégé Core System based on frames so that it can support OWL
ontologies and allows users to develop OWL plug-ins for Protégé or
even to create standalone applications. Protégé-OWL API uses Jena
framework for the parsing and reasoning over OWL ontologies and
provides additional support for programming graphical user interfaces
based on Java Swing library. The Protégé-OWL API architecture
follows the model-view pattern, enabling users to write GUIs (the
“view”) to manipulate the internal representation of ontologies (the
“model”). This architecture, together with the event mechanism also
provided, allows programmers to build interactive user interfaces in an
efficient and clean way. A community even stronger than Jena’s one
has grown around Protégé, making it very easy to find good
documentation, examples and support for this API.

WonderWeb OWL API (OWLAPI 2006) is another API providing
programmatic services to manipulate OWL ontologies. It can also
infer new knowledge once a reasoner is attached to the ontology
model. Pellet is one of the reasoners that is currently supported. One
should note that the current release of this API is still in working
progress. Consequently, there are some issues that need to be
corrected. Nevertheless, WonderWeb OWL API was successfully
used in several projects such as Swoop (SWOOP 2006) and Smore
(SMORE 2006), respectively, an ontology editor and a semantic
annotation tool, from the MIND LAB at the University of Maryland
Institute for Advanced Computer Studies. This demonstrates that this
API is mature enough to be considered when developing semantic
Web applications. One major drawback of the WonderWeb OWL API
is lack of documentation. Currently, Javadoc documentation and some
open-source applications that use this API, is what can be found about
it. It is very difficult to find practical examples. This fact may lead
developers to choose to discard this API.

4. OUR RUNNING ONTOLOGY

Our recent work has involved the development of a Semantic
Course Management System (S-CMS). Course management systems
(CMS) are becoming increasingly popular. Well-known CMSs include
Blackboard.com and WebCT.com whose focus has centered on
distance education opportunities. Typically, a CMS include a variety
of functionalities, such as class project management, registration tool
for students, examinations, enrolment management, test

Semantic Web Services, Processes and Applications

8

administration, assessment tools, and online discussion boards
(Meinel, Sack et al. 2002).

The S-CMS system that we have developed is part of the
Strawberry project 1 and explores the use of semantic Web
technologies to develop an innovative CMS. The S-CMS provides a
complete information and management solution for students and
faculty members. Our focus and main objective was to automate the
different procedures involved when students enroll or register for class
projects. Managing a large course and its class projects is a complex
undertaking. Many factors may contribute to this complexity, such as
a large number of students, the variety of rules that allow students to
register for a particular project, students’ background, and student’s
grades.

The development of a semantic Web application typically starts
with the creation of one or more ontology schema. For simplicity
reasons, in this chapter we will only present one ontology, the
University ontology. This ontology will be used in all the
programming examples that we will show. As with any ontology, our
ontology contains the definition of the various classes, attributes, and
relationships that encapsulate the business objects that model a
university domain. The class hierarchy of our simple ontology is
shown in Figure 14-1 using the OWL Viz Protégé plug-in (OWLViz
2006).

Figure 14-2. Class hierarchy

Some of the properties of our ontology are shown in Figure 14-2
using Protégé (Protégé 2005).

1 http://dme.uma.pt/jcardoso/Research/Projects/Strawberry/

Programming the Semantic Web

9

Figure 14-3. Classes and properties

5. USING JENA

Jena is a framework for building Semantic Web applications. It
provides a programmatic environment for RDF, RDFS and OWL. It
also includes a rule-based inference engine. Jena is open source and is
a development effort of the HP Labs Semantic Web Research
program. HP Labs have made considerable investments in Semantic
Web research since 2000 which lead to the development of standards
(such as RDF and OWL) and semantic applications (such as Jena).

The Jena toolbox includes a Java programming API that gives a
framework to program semantic Web applications. The API is divided
into five sets of functions that deal with the processing of ontologies,
namely:

• Processing and manipulation of RDF data models
• Processing and manipulation of ontologies
• SPARQL query support

Properties

Class hierarchy

Semantic Web Services, Processes and Applications

10

• Inference on OWL and RDFS data models
• Persistence of ontologies to databases

In this chapter we will focus primarily on the API responsible for

the processing and manipulation of OWL ontologies.

5.1 Installing Jena

To install Jena the first step is to download Jena API from
http://jena.sourceforge.net. The version used for the examples shown
in this chapter was Jena 2.3. Once you have downloaded Jena (in our
case the package was named Jena 2.3.zip), you need to extract the
zip file.

You will find in the /lib directory all the libraries needed to use the
Jena API. To develop semantic applications with Java you will need to
update your CLASSPATH to include the following libraries:

• antlr-2.7.5.jar
• arq.jar
• commons-logging.jar
• concurrent.jar
• icu4j_3_4.jar
• jakarta-oro-2.0.8.jar
• jena.jar
• jenatest.jar
• junit.jar
• log4j-1.2.12.jar
• stax-1.1.1-dev.jar
• stax-api-1.0.jar
• xercesImpl.jar
• xml-apis.jar

5.2 Creating an Ontology Model

The main Java class that represents an ontology in memory is the
OntModel.

OntModel model;

Programming the Semantic Web

11

In Jena, ontology models are created using the ModelFactory
class. A model can be dynamically created by calling the
createOntologyModel() method.

OntModel m = ModelFactory.createOntologyModel();

When creating an ontology it is possible to describe its

characteristics, such as the ontology language used to model the
ontology, the storage scheme and the reasoner.

To describe specific characteristics of an ontology, the method
createOntologyModel(OntModelSpec o) needs to be called and
accepts a parameter of the type OntModelSpec. For example,
OntModelSpec.OWL_DL_MEM determines that the ontology to be
created will have an OWL DL model and will be stored in memory
with no support for reasoning. Various other values are available.
Table 14-1 illustrates some of the possibilities.

Table 14-1. Types of ontology models with Jena
Field Description
DAML_MEM A simple DAML model stored in memory with

no support for reasoning
DAML_MEM_RDFS_INF A DAML model stored in memory with support

for RDFS inference
OWL_LITE_MEM A simple OWL Lite model stored in memory

with no support for reasoning
OWL_MEM_RULE_INF A OWL Lite model stored in memory with

support for OWL rules inference
RDFS_MEM A simple OWL Lite model stored in memory

with no support for reasoning

More than 20 different ontology models can be created. The

following segment of code illustrates how to create an OWL ontology
model, stored in memory, with no support for reasoning.

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;

import com.hp.hpl.jena.rdf.model.ModelFactory;

public class CreateModel

 public static void main(String[] args) {

 OntModel model = ModelFactory.createOntologyModel(

 OntModelSpec.OWL_MEM);

 }

http://jena.sourceforge.net/javadoc/com/hp/hpl/jena/rdf/model/ModelFactory.html�

Semantic Web Services, Processes and Applications

12

}

5.3 Reading an Ontology Model

Once we have an ontology model, we can load an ontology.
Ontologies can be loaded using the read method which can read an
ontology from an URL or directly from an input stream.

read(String url)

read(InputStream reader, String base)

In the following example, we show a segment of code that creates

an OWL ontology model in memory and loads the University
ontology from the URL

http://dme.uma.pt/jcardoso/owl/University.owl.

OntModel model = ModelFactory.createOntologyModel(

 OntModelSpec.OWL_MEM);

model.read("http://dme.uma.pt/jcardoso/owl/University.owl");

For performance reasons, it is possible to cache ontology models

locally. To cache a model, it is necessary to use a helper class that
manages documents (OntDocumentManager), allowing subsequent
accesses to an ontology to be made locally. The following example
illustrates how to add an entry for an alternative copy of an OWL file
with the given OWL URI. An alternative copy can be added by calling
the method addAltEntry.

import com.hp.hpl.jena.ontology.OntDocumentManager;

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;

import com.hp.hpl.jena.rdf.model.ModelFactory;

public class CacheOntology {

 public static void main(String[] args) {

 OntModel m = ModelFactory.createOntologyModel(

 OntModelSpec.OWL_MEM);

 OntDocumentManager dm = m.getDocumentManager();

 dm.addAltEntry(

 "http://dme.uma.pt/jcardoso/owl/University.owl",

 "file:///c:/University.OWL");

Programming the Semantic Web

13

 m.read("http://dme.uma.pt/jcardoso/owl/University.owl");

 }

}

Since we specify that a local copy of our University ontology

exists in file:///c:/University.OWL, Jena can load the
ontology from the local copy instead of loading it from the URL.

5.4 Manipulating Classes

OWL ontology classes are described using the OntClass Java
class. To retrieve a particular class from an ontology we can simply
use the method getOntClass(URI) from the OntModel or,
alternatively, it is possible to use the listClasses() method to
obtain a list of all the classes of an ontology. The class OntClass
allows us to retrieve all the subclasses of a class using the method
listSubClasses(). For example, the following segment of code
allows listing of all the subclasses of the class #Person of our
University ontology.

String baseURI=

 "http://dme.uma.pt/jcardoso/owl/University.owl#";

OntModel model = ModelFactory.createOntologyModel(

 OntModelSpec.OWL_MEM);

model.read(“http://dme.uma.pt/jcardoso/owl/University.owl");

OntClass p = model.getOntClass(baseURI+"Person");

for(ExtendedIterator i=p.listSubClasses(); i.hasNext();)

{

 OntClass Class=(OntClass)i.next();

 System.out.println(Class.getURI());

}

In our scenario the output of this example is:

http://dme.uma.pt/jcardoso/owl/University.owl#Student

http://dme.uma.pt/jcardoso/owl/University.owl#Teacher

Semantic Web Services, Processes and Applications

14

The createClass method can be used to create a new class. For
example we can create the new class #Researcher and set as
superclass the class #Person from the previous example,

OntClass p = model.getOntClass(baseURI+"Person");

OntClass r = model.createClass(baseURI+"Researcher");

r.addSuperClass(p)

The class OntClass has several methods available to check the
characteristics of a class. All these methods return a Boolean
parameter. Some of these methods are illustrated in table 14-2.

Table 14-2. Methods to check the characteristics of an OntClass object
isIntersectionClass() isComplementClass()

isRestriction() hasSuperClass()

5.5 Manipulating Properties

With Jena, properties are represented using the class
OntProperty. Two types of OWL properties exist:

• Datatype Properties are attributes of a class. These types of

properties link individuals to data values and can be used to restrict
an individual member of a class to RDF literals and XML Schema
datatypes.

• Object Properties are relationships between classes. They link
individuals to individuals. They relate an instance of one class to
an instance of another class.

It is possible to dynamically create new properties. The OntModel

class includes the method createXXX() to create properties (and
classes as we have already seen previously). As an example, the
following code creates a new class named #Project and an
ObjectProperty named #ProjectOwner. Using the setRange
and setDomain methods of the class ObjectProperty we set the
domain of the new property to #Project and its range to #Person.

...

OntClass p=model.createClass(BaseUri +"#Project");

ObjectProperty po=

Programming the Semantic Web

15

 model.createObjectProperty(BaseUri+"#ProjectOwner");

po.setRange(model.getResource(BaseUri+"#Person"));

po.setDomain(p);

...

A DatatypeProperty can be created in the same way, but using the

createDatatypeProperty method, i.e.

DatatypeProperty p=

 model.createDatatypeProperty(BaseUri+"#ProjectDate");

The class OntProperty has several methods available to check

the characteristics of a Property. All these methods return a Boolean
parameter. For example,

Table 14-3. Methods to check the characteristics of an OntProperty object
isTransitiveProperty() isSymmetricProperty()

isDatatypeProperty() isObjectProperty()

The following segment of code can be used to list the properties of

a class. Basically the listDeclaredProperties() from the class
OntClass needs to be called.

import com.hp.hpl.jena.ontology.OntClass;

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.util.iterator.ExtendedIterator;

public class ListProperties {

 public static void main(String[] args) {

 String baseURI=

 "http://dme.uma.pt/jcardoso/owl/University.owl#";

 OntModel model = ModelFactory.createOntologyModel(

 OntModelSpec.OWL_MEM);

 model.read(

 “http://dme.uma.pt/jcardoso/owl/University.owl");

 OntClass cls = model.getOntClass(baseURI+"Person");

Semantic Web Services, Processes and Applications

16

 System.out.println("Class:");

 System.out.println(" "+cls.getURI());

 System.out.println("Properties:");

 for(ExtendedIterator j=cls.listDeclaredProperties();

 .hasNext();)

 {

 System.out.println(" "+(OntProperty)j.next());

 }

 }

}

The output of executing this example is:

Class:

 http://dme.uma.pt/jcardoso/owl/University.owl#Person

Properties:

 http://dme.uma.pt/jcardoso/owl/University.owl#Age

 http://dme.uma.pt/jcardoso/owl/University.owl#Address

 http://dme.uma.pt/jcardoso/owl/University.owl#Email

 http://dme.uma.pt/jcardoso/owl/University.owl#Name

#Age, #Address, #Email, and #Name are properties of the class

#Person.

5.6 Manipulating Instances

Instances, also known as individuals of classes, are represented
through the class Instance. Having a class OntClass it is possible
to list all its instances using the method listInstances(). A
similar method exists in the class OntModel but is named
listIndividuals(). For example, the following segment of code
lists all the individuals of the University ontology,

import com.hp.hpl.jena.ontology.Individual;

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.util.iterator.ExtendedIterator;

public class ListInstances {

 public static void main(String[] args) {

Programming the Semantic Web

17

 OntModel model = ModelFactory.createOntologyModel(

 OntModelSpec.OWL_MEM);

 model.read(

 “http://dme.uma.pt/jcardoso/owl/University.owl");

 for(ExtendedIterator i= model.listIndividuals();

 .hasNext();)

 {

 System.out.println(((Individual)i.next()).toString());

 }

 }

}

The output of executing this example is:

http://dme.uma.pt/jcardoso/owl/University.owl#Adelia

http://dme.uma.pt/jcardoso/owl/University.owl#Fatima

http://dme.uma.pt/jcardoso/owl/University.owl#Carolina

http://dme.uma.pt/jcardoso/owl/University.owl#ASP

http://dme.uma.pt/jcardoso/owl/University.owl#SD

http://dme.uma.pt/jcardoso/owl/University.owl#CF

http://dme.uma.pt/jcardoso/owl/University.owl#Grade_1

http://dme.uma.pt/jcardoso/owl/University.owl#Grade_3

http://dme.uma.pt/jcardoso/owl/University.owl#Grade_2

http://dme.uma.pt/jcardoso/owl/University.owl#IC

http://dme.uma.pt/jcardoso/owl/University.owl#JC

http://dme.uma.pt/jcardoso/owl/University.owl#RF

To list all the individuals of the class #Student, we can add the

following lines of code to the previous example:

OntClass Student = model.getOntClass(

 “http://dme.uma.pt/jcardoso/owl/University.owl#Student”);

for(ExtendedIterator i= Student.listInstances();i.hasNext();)

{

 System.out.println(((Individual)i.next()).toString());

}

Now we can create instances dynamically. The following example

creates an instance #Jorge of type #Teacher and set the name and

Semantic Web Services, Processes and Applications

18

e-mail of the instance #Jorge to “Jorge Cardoso” and
jcardoso@uma.pt, respectively.

Resource tClass=model.getResource(baseURI+"#Teacher");

Individual teacher=

 model.createIndividual(baseURI+"#Jorge",tClass);

DatatypeProperty name =

 model.getDatatypeProperty(baseURI+"#Name");

teacher.addProperty(name,"Jorge Cardoso");

DatatypeProperty email =

 model.getDatatypeProperty(baseURI+"#Email");

teacher.addProperty(email,"jcardoso@uma.pt");

5.7 Queries with Jena
One task that is particularly useful once an ontology is available, is

to query its data. An OWL knowledge base can be queried using API
function calls or using RDQL (RDF Data Query Language). Jena’s
built-in query language is RDQL, a query language for RDF. While
not yet a formally established standard, (it was submitted in January
2004), RDQL is commonly used by many RDF applications. RDQL
has been designed to execute queries in RDF models, but it can be
used to query OWL models since their underlying representation is
RDF. It is a very effective way of retrieving data from an RDF model.

5.7.1 RDQL Syntax

RDQL’s syntax is very similar to SQL’s syntax. Some of their
concepts are comparable and will be well-known to people that have
previously worked with relational database queries. A simple example
of a RDQL query structure is,

SELECT variables

WHERE conditions

Variables are represented with a question mark followed by the

variable name (for example: ?a, ?b). Conditions are written as triples
(Subject Property Value) and delimited with “<” and ”>”. RDQL
allows us to search within a RDF graph to find subgraphs that match
some patterns of RDF node triples.

Programming the Semantic Web

19

Using our University ontology, we can inquire about the direct
subclasses of the class #Person. This can be achieved with the
following RDQL query:

SELECT ?x WHERE (?x <rdfs:subClassOf> <univ:Person>)

USING rdfs FOR <http://www.w3.org/2000/01/rdf-schema#>

 univ FOR

 http://dme.uma.pt/jcardoso/owl/University.owl#>

The ?x in this query is a variable representing something that we

want of the query. The query engine will try to substitute a URI value
for ?x when it finds a subclass of #Person. The “rdfs” and “univ”
prefixes make the URIs in the query shorter and more understandable.
Executing the above query to the University ontology illustrated in
Figure 14-1 we expected to retrieve two URIs. One corresponding to
the #Student concept and the other to the concept #Teacher, i.e.

<http://dme.uma.pt/jcardoso/owl/University.owl#Student>

<http://dme.uma.pt/jcardoso/owl/University.owl#Teacher>

RDQL allows complex queries to be expressed succinctly, with a

query engine performing the hard work of accessing the data model.
Sometimes, not every part of the ontology structure is known. For
example, if we wish to inquire about the list of courses that a student
has enrolled for. Since we do not know all the URIs, we have to use
variables to represent the unknown items in the query. For instance,
“Show me all Y where Y is a “Course”, X is a “Student”, X is named
“Adelia Gouveia”, and X studies Y.” The response will list all the
possible values for Y that would match the desired properties. The
query for this question would be,

SELECT ?y

WHERE (?x <univ:Name> "Adelia Gouveia"^^xsd:string),

 (?x <univ:Studies> ?y)

USING univ FOR

 <http://dme.uma.pt/jcardoso/owl/University.owl#>

We can also ask for all the students that have passed courses with a

grade higher than 12,

SELECT ?x,?c

Semantic Web Services, Processes and Applications

20

WHERE (?x <univ:HasGrade> ?y),

 (?x <univ:Studies> ?c),

 (?y <univ:Value> ?z) AND ?z>12

USING univ FOR

 <http://dme.uma.pt/jcardoso/owl/University.owl#>

5.7.2 RDQL and Jena

Jena’s com.hp.hpl.jena.rdql package contains all of the
classes and interfaces needed to use RDQL in a Java application.

import com.hp.hpl.jena.rdql;

Jena’s RDQL is implemented as an object called Query. To create

a query it is sufficient to put the RDQL query in a String object, and
pass it to the constructor of Query,

String queryString =”...”;

Query query = new Query(queryString);

The method setSource of the object Query must be called to

explicitly set the ontology model to be used as the source for the query
(the model can alternatively be specified with a FROM clause in the
RDQL query.)

query.setSource(model);

Once a Query is prepared, a QueryEngine must be created and

the query can be executed using the exec() method. The Query
needs to be passed to the QueryEngine object, i.e.

QueryEngine qe = new QueryEngine(query);

The results of a query are stored in a QueryResult object.

QueryResults results = qe.exec();

Once we have the results of a RDQL query, a practical object that

can be used to display the results in a convenient way is to use the
QueryResultsFormatter object.

Programming the Semantic Web

21

QueryResultsFormatter formatter =

 new QueryResultsFormatter((QueryResults) results);

formatter.printAll(new PrintWriter(System.out));

An alternative to using the QueryResultsFormatter object is to

iterate through the data retrieved using an iterator. For example,

QueryResults result = new QueryEngine(query).exec();

for (Iterator i = result; i.hasNext();) {

 System.out.println(i.next());

}

With RDQL it is possible to inquire about the values that satisfy a

triple with a specific subject and property. To run this query in Jena,
the University ontology is loaded into memory. The query is executed
using the static exec method of Jena’s Query class and the results are
processed. For example, the following segment of code retrieves all
the RDF triples of an ontology.

import java.util.Iterator;

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.rdql.Query;

import com.hp.hpl.jena.rdql.QueryEngine;

import com.hp.hpl.jena.rdql.QueryResults;

public class RDQL {

 public static void main(String[] args) {

 OntModel model = ModelFactory.createOntologyModel(

 OntModelSpec.OWL_MEM);

 model.read(

 "http://dme.uma.pt/jcardoso/owl/University.owl");

 String sql= "SELECT ?x,?y,?z WHERE (?x ?y ?z)";

 Query query=new Query(sql);

 query.setSource(model);

 QueryResults result = new QueryEngine(query).exec();

 for (Iterator i = result; i.hasNext();) {

 System.out.println(i.next());

Semantic Web Services, Processes and Applications

22

 }

 }

};

5.8 Inference and Reasoning
Inference engines, also called reasoners, are software applications

that derive new facts or associations from existing information.
Inference and inference rules allow for deriving new data from data
that is already known. Thus, new pieces of knowledge can be added
based on previous ones. By creating a model of the information and
relationships, we enable reasoners to draw logical conclusions based
on the model. For example, with OWL it is possible to make
inferences based on the associations represented in the models, which
primarily means inferring transitive relationships. Nowadays, many
inference engines are available.

• Jena reasoner – Jena includes a generic rule based inference

engine together with configured rule sets for RDFS and for
OWL.

• Jess – Using Jess (Gandon and Sadeh 2003) it is possible to
build Java software that has the capacity to “reason” using
knowledge supplied in the form of declarative rules. Jess has a
small footprint and it is one of the fastest rule engines
available. It was developed at Carnegie Melon University.

• SWI-Prolog Semantic Web Library – Prolog is a natural
language for working with RDF and OWL. The developers of
SWI-Prolog have created a toolkit for creating and editing
RDF and OWL applications, as well as a reasoning package
(Wielemaker 2005).

• FaCT++ – This system is a Description Logic reasoner, which
is a re-implementation of the FaCT reasoner. It allows
reasoning with the OWL language (FaCT 2005).

In the following sections we will concentrate our attention on using

the Jena rule based inference engine programmatically.

5.8.1 Jena Reasoners
The Jena architecture is designed to allow several inference

engines to be used with Jena. The current version of Jena includes five
predefined reasoners that can be invoked, namely:

Programming the Semantic Web

23

• Transitive reasoner: A very simple reasoner which implements
only the transitive and symmetric properties of
rdfs:subPropertyOf and rdfs:subClassOf.

• DAML micro reasoner: A DAML reasoner which provides an
engine to legacy applications that use the DAML language.

• RDFS rule reasoner: A RDFS reasoner that supports most of the
RDFS language.

• Generic rule reasoner: A generic reasoner that is the basis for the
RDFS and OWL reasoners.

• OWL reasoners: OWL rule reasoners are an extension of the
RDFS reasoner. They exploit a rule-based engine for reasoning.
OWL reasoners supports OWL Lite plus some of the constructs of
OWL Full.

In this section we will study how to develop Java applications

using the OWL reasoning engines since OWL is becoming the most
popular language on the semantic Web compared to DAML and
RDFS.

5.8.2 Jena OWL Reasoners
Jena provides three internal reasoners of different complexity:

OWL, OWL Mini, and OWL Micro reasoners. They range from the
simple Micro reasoner with only domain-range and subclass
inference, to a complete OWL Lite reasoner.

The current version of Jena (version 2.3) does not fully support
OWL yet. It can understand all the syntax of OWL, but cannot reason
in OWL Full. Jena supports OWL Lite plus some constructs of OWL
DL and OWL Full, such as owl:hasValue. Some of the important
constructs that are not supported in Jena include owl:complementOf
and owl:oneOf. Table 14-4 illustrates the OWL constructs supported
by the reasoning engines available.

Table 14-4. Jena reasoning support
OWL Construct Reasoner
rdfs:subClassOf, rdfs:subPropertyOf, rdf:type all
rdfs:domain, rdfs:range all
owl:intersectionOf all
owl:unionOf all
owl:equivalentClass all
owl:disjointWith full, mini
owl:sameAs, owl:differentFrom, owl:distinctMembers full, mini

Semantic Web Services, Processes and Applications

24

owl:Thing all
owl:equivalentProperty, owl:inverseOf all
owl:FunctionalProperty, owl:InverseFunctionalProperty all
owl:SymmeticProperty, owl:TransitiveProperty all
owl:someValuesFrom full, (mini)
owl:allValuesFrom full, mini
owl:minCardinality, owl:maxCardinality, owl:cardinality full, (mini)
owl:hasValue all
owl:complementOf none
owl:oneOf none

For a complete OWL DL reasoning it is necessary to use an

external DL reasoner. The Jena DIG interface makes it easy to connect
to any reasoner that supports the DIG standard. By communicating
with other ontology processing systems, such as RACER or FAcT,
Jena can enhance its ability for reasoning in large and complex
ontologies.

5.8.3 Programming Jena reasoners
Given an ontology model, Jena’s reasoning engine can derive

additional statements that the model does not express explicitly.
Inference and inference rules allow for deriving new data from data
that is already known. Thus, new pieces of knowledge can be added
based on previous ones. By creating a model of the information and
relationships, we enable reasoners to draw logical conclusions based
on the model.

As we have already done previously, the first step to develop a
semantic Web application with support for reasoning is to create an
ontology model,

String baseURI=

 "http://dme.uma.pt/jcardoso/owl/University.owl#";

OntModel model = ModelFactory.createOntologyModel(

 OntModelSpec.OWL_MEM);

model.read(“http://dme.uma.pt/jcardoso/owl/University.owl");

The main class to carry our reasoning is the class Reasoner. This

class allows us to extract knowledge from an ontology. Jena provides
several reasoners to work with different types of ontology. Since in

Programming the Semantic Web

25

our example we want to use our OWL University ontology, we need
to obtain an OWL reasoner. This reasoner can be accessed using the
ReasonerRegistery.getOWLReasoner() method call, i.e.,

Reasoner reasoner = ReasonerRegistry.getOWLReasoner();

Other reasoners can be instantiated with a call to the methods

getOWLMicroReasoner(), getOWLMiniReasoner(),
getRDFSReasoner(), and getTransitiveReasoner().

Once we have a reasoner, we need to bind it to the ontology model
we have created. This is achieved with a call to the method
bindSchema, i.e.,

reasoner = reasoner.bindSchema(model);

This invocation returns a reasoner which can infer new knowledge

from the ontology’s rules. The next step is to use the bound reasoner
to create an InfModel from the University model,

InfModel infmodel=ModelFactory.createInfModel(reasoner,model);

Since several Java packages are needed to execute and run the

examples that we have given, the following segment shows all the
Java code needed to instantiate a reasoner.

import com.hp.hpl.jena.ontology.OntModel;

import com.hp.hpl.jena.ontology.OntModelSpec;

import com.hp.hpl.jena.rdf.model.InfModel;

import com.hp.hpl.jena.rdf.model.ModelFactory;

import com.hp.hpl.jena.reasoner.Reasoner;

import com.hp.hpl.jena.reasoner.ReasonerRegistry;

public class InstanciateReasoner {

 public static void main(String[] args) {

 OntModel model = ModelFactory.createOntologyModel(

 OntModelSpec.OWL_MEM);

 String BaseUri=

 "http://dme.uma.pt/jcardoso/owl/University.owl";

 model.read(BaseUri);

Semantic Web Services, Processes and Applications

26

 Reasoner reasoner = ReasonerRegistry.getOWLReasoner();

 reasoner=reasoner.bindSchema(model);

 InfModel infmodel

 = ModelFactory.createInfModel(reasoner,model);

 }

}

Once a reasoner is instantiated, one of the first tasks that we can

execute is to check for inconsistencies within the ontology data by
using the validate() method, i.e.,

ValidityReport vr = infmodel.validate();

if (vr.isValid()){

 System.out.println("Valid OWL");

}

else {

 System.out.println("Not a valid OWL!");

 for (Iterator i = vr.getReports(); i.hasNext();){

 System.out.println(i.next());

 }

}

This example prints a report if the ontology data is found to be

inconsistent. The following output shows the example of a report
generated when trying to validate an inconsistent ontology,

Not a valid OWL

 - Error ("range check"): "Incorrectly typed literal due to

range (prop, value)"

Culprit=

 http://dme.uma.pt/jcardoso/owl/University.owl#Carolina

Implicated node:

 http://dme.uma.pt/jcardoso/owl/University.owl#Email

Implicated node: 'carolina@uma.pt'

The report indicates that the email address (#Email) of the
individual #Carolina has an incorrect type.

One other interesting operation that we can carry out is to obtain
information from the ontology. For example, we can retrieve all the

Programming the Semantic Web

27

pairs (property, resource) associated with the resource describing the
course CS8050, which is defined with ID #CS8050.

String BaseUri=

 "http://dme.uma.pt/jcardoso/owl/University.owl";

. . .

Resource res = infmodel.getResource(BaseUri+"#CS");

System.out.println("CS8050 *:");

for (StmtIterator i =

 infmodel.listStatements(res,(Property)null,(Resource)null);

 i.hasNext();)

{

 Statement stmt = i.nextStatement();

 System.out.println(PrintUtil.print(stmt));

}

The output of running the previous example is shown below. To
make the output more readable we have replaced the URI
http://dme.uma.pt/jcardoso/owl/University.owl with the
symbol @ and the URI http://www.w3.org/2001/XMLSchema
with the symbol §.

CS8050 *:

(@#CS8050 rdf:type @#Course)

(@#CS8050 @#IsStudiedBy @#Adelia)

(@#CS8050 @#CourseName 'Semantic Web'^^§#string)
(@#CS8050 @#IsStudiedBy @#Carolina)

(@#CS8050 @#IsTeachedBy @#IsabelCardoso)

(@#CS8050 rdf:type owl:Thing)

(@#CS8050 rdf:type rdfs:Resource)

. . .

(@#CS8050 owl:sameAs @#CS8050)

Instance recognition is another important operation in inference.
Instance recognition tests if a particular individual belongs to a class.
For example, in our University ontology, #Adelia is known to be an
individual of the class #Student and the class #Student is a
subclass of the class #Person. One question that can be asked is if
#Adelia is recognized to be an instance or individual of the class

Semantic Web Services, Processes and Applications

28

#Person, in other words is Adelia a person? This can be asked of the
inference model using the contains method, i.e.,

Resource r1 = infmodel.getResource(BaseUri+"#Adelia");

Resource r2 = infmodel.getResource(BaseUri+"#Person");

if (infmodel.contains(r1, RDF.type, r2)) {

 System.out.println("Adelia is a Person");

} else {

 System.out.println("Adelia is not a Person");

}

Other interesting examples of inference include the use of the
transitivity, union, functional, and intersection properties.

5.9 Persistence
As we have seen above, Jena provides a set of methods to load

ontologies from files containing information models and instances.
Jena can also store and load ontologies from relational databases.
Depending on the database management system used, it is possible to
distribute stored metadata. While Jena itself is not distributed, by
using a distributed database back end, an application may be
distributed. Currently, Jena only supports MySQL, Oracle and
PostgreSQL. To create a persistent model in a database we can use the
ModelFactory object and invoke the createModelRDBMaker
method. This method accepts a DBConnection connection object to
the database. An object ModelMaker will be created and can
subsequently be used to create the model in the database.

For example, to store an existing ontology model in a database we
can execute the following segment of code,

Class.forName("com.mysql.jdbc.Driver");

String BaseURI=

 "http://dme.uma.pt/jcardoso/owl/University.owl";

DBConnection conn = new DBConnection(

 "jdbc:mysql://localhost/UnivDB",

 "mylogin",

 "mypassword",

 "MySQL");

ModelMaker maker=ModelFactory.createModelRDBMaker(conn);

Model db=maker.createModel(BaseURI,false);

Programming the Semantic Web

29

db.begin();

db.read(BaseURI);

db.commit();

And to read a model from a database we can use the following

program,

Class.forName("com.mysql.jdbc.Driver");

String BaseURI=

 "http://dme.uma.pt/jcardoso/owl/University.owl";

DBConnection conn = new DBConnection(

 "jdbc:mysql://localhost/UnivDB",

 "mylogin", "mypassword", "MySQL");

ModelMaker maker=ModelFactory.createModelRDBMaker(conn);

Model base=maker.createModel(BaseURI, false);

model=ModelFactory.createOntologyModel(

 OntModelSpec.OWL_MEM,base);

6. QUESTIONS FOR DISCUSSION

Beginner:
1. Identify the main differences between XML and RDF.
2. Install Jena in your computer and create programmatically an

OWL ontology describing painters and their paintings. The
ontology should be able to represent the following statements:
“Painter X has painted the painting Y”, “Painter X was born in
W”, and “Painting Y was painted in year Z”.

3. Create several individuals for the Painters ontology. For example:
Paul Cezanne, born 1839, Aix-en-Provence, France, painted “Le
paysan” and “Le Vase Bleu”; Leonardo da Vinci, born 1452,
Vinci, Florence, painted “Mona Lisa” and “The Last Supper”;
Michelangelo Buonaroti, born 1475, Florence, painted “Sybille de
Cummes” and “Delphes Sylphide”.

Intermediate:
1. Identify the main differences between RDFS and OWL.
2. Write down an RDQL query which retrieves the names of all the

painters born in Florence using the ontology created in the previous
exercise.

Semantic Web Services, Processes and Applications

30

3. Use Jena to execute the previous RDQL query and write down the
results of executing the query on the ontology.

4. Make your ontology persistent in a database.

Advanced:
1. Write down and execute an RDQL query which retrieves the

paintings Michelangelo Buonaroti painted in 1512 (note: The
“Sybille de Cummes” was painted 1512).

2. Validate your model using Jena’s inference engine.
3. Why is inference a time consuming operation?

7. SUGGESTED ADDITIONAL READING

• Jena
Documentation, http://jena.sourceforge.net/documentation.html.
This is a fundamental source of information to start programming
with the Jena Framework.

• Antoniou, G. and van Harmelen, F. A semantic Web primer.
Cambridge, MA: MIT Press, 2004. 238 pp.: This book is a good
introduction to Semantic Web languages.

• H. Peter Alesso and Craig F. Smith, Developing Semantic Web
Services, AK Peters, Ltd, October, 2004, 445 pp.: The book
presents a good overview of Semantic Tools in chapter thirteen.

8. REFERENCES

Berners-Lee, T., J. Hendler, et al. (2001). The Semantic Web. Scientific American.
May 2001.

Berners-Lee, T., J. Hendler, et al. (2001). The Semantic Web: A new form of Web
content that is meaningful to computers will unleash a revolution of new
possibilities. Scientific American.

Cardoso, J. (2004). Issues of Dynamic Travel Packaging using Web Process
Technology. International Conference e-Commerce 2004, Lisbon, Portugal.

Cardoso, J., J. Miller, et al. (2005). Academic and Industrial Research: Do their
Approaches Differ in Adding Semantics to Web Services. Semantic Web
Process: powering next generation of processes with Semantics and Web
services. J. Cardoso and S. A. Heidelberg, Germany, Springer-Verlag.
3387: 14-21.

Decker, S., S. Melnik, et al. (2000). "The Semantic Web: The Roles of XML and
RDF." Internet Computing 4(5): 63-74.

http://jena.sourceforge.net/documentation.html�
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=H.%20Peter%20Alesso&rank=-relevance%2C%2Bavailability%2C-daterank/102-6963144-0996151�
http://www.amazon.com/exec/obidos/search-handle-url/index=books&field-author-exact=Craig%20F.%20Smith&rank=-relevance%2C%2Bavailability%2C-daterank/102-6963144-0996151�

Programming the Semantic Web

31

DL (2005). Description Logics, http://www.dl.kr.org/.
FaCT (2005). FaCT++, http://owl.man.ac.uk/factplusplus/.
Gandon, F. L. and N. M. Sadeh (2003). OWL inference engine using XSLT and

JESS, http://www-
2.cs.cmu.edu/~sadeh/MyCampusMirror/OWLEngine.html.

Ian Horrocks, Peter F. Patel-Schneider, et al. (2003). SWRL: A Semantic Web Rule
Language Combining OWL and
RuleML, http://www.daml.org/2003/11/swrl/.

Jasper, R. and M. Uschold (1999). A framework for understanding and classifying
ontology applications

Jena (2002). The jena semantic web toolkit,

. IJCAI99 Workshop on Ontologies and Problem-
Solving Methods.

http://www.hpl.hp.com/semweb/jena-
top.html, Hewlett-Packard Company.

Jena (2005). Jena - A Semantic Web Framework for
Java, http://jena.sourceforge.net/,.

Karvounarakis, G., S. Alexaki, et al. (2002). RQL: a declarative query language for
RDF. Eleventh International World Wide Web Conference, Honolulu,
Hawaii, USA.

Kumar, A. and B. Smith (2004). On Controlled Vocabularies in Bioinformatics: A
Case Study in Gene Ontology. Drug Discovery Today: BIOSILICO. 2: 246-
252.

Lassila, O. and D. McGuinness (2001). "The Role of Frame-Based Representation on
the Semantic Web." Linköping Electronic Articles in Computer and
Information Science 6(5).

Meinel, C., H. Sack, et al. (2002). Course management in the twinkle of an eye -
LCMS: a professional course management system

OWL (2004). OWL Web Ontology Language Reference, W3C Recommendation,
World Wide Web Consortium,

. Proceedings of the 30th
annual ACM SIGUCCS conference on User services, Providence, Rhode
Island, USA, ACM Press.

http://www.w3.org/TR/owl-ref/. 2004.
OWLAPI (2006). "The WonderWeb OLW

API, http://sourceforge.net/projects/owlapi."
OWL-S (2004). OWL-based Web Service Ontology. 2004.
OWLViz (2006). OWL Viz. [Online] Available at http://www.co-

ode.org/downloads/owlviz/.
Protégé (2005). Protégé, Stanford Medical Informatics. 2005.
Protégé-API (2006). The Protégé-OWL API - Programmer's

Guide, http://protege.stanford.edu/plugins/owl/api/guide.html.
RDF (2002). Resource Description Framework (RDF), http://www.w3.org/RDF/.
RDFS (2004). RDF Vocabulary Description Language 1.0: RDF Schema,

W3C, http://www.w3.org/TR/rdf-schema/.
RDQL (2005). Jena RDQL, http://jena.sourceforge.net/RDQL/.

http://www.dl.kr.org/�
http://owl.man.ac.uk/factplusplus/�
http://www-2.cs.cmu.edu/~sadeh/MyCampusMirror/OWLEngine.html�
http://www-2.cs.cmu.edu/~sadeh/MyCampusMirror/OWLEngine.html�
http://www.daml.org/2003/11/swrl/�
http://www.hpl.hp.com/semweb/jena-top.html�
http://www.hpl.hp.com/semweb/jena-top.html�
http://jena.sourceforge.net/,�
http://www.w3.org/TR/owl-ref/�
http://sourceforge.net/projects/owlapi.�
http://www.co-ode.org/downloads/owlviz/�
http://www.co-ode.org/downloads/owlviz/�
http://protege.stanford.edu/plugins/owl/api/guide.html�
http://www.w3.org/RDF/�
http://www.w3.org/TR/rdf-schema/�
http://jena.sourceforge.net/RDQL/�

Semantic Web Services, Processes and Applications

32

Roure, D., N. Jennings, et al. (2001). Research Agenda for the Future Semantic Grid:
A Future e-Science
Infrastructure http://www.semanticgrid.org/v1.9/semgrid.pdf.

Shum, S. B., E. Motta, et al. (2000). "ScholOnto: an ontology-based digital library
server for research documents and discourse." International Journal on
Digital Libraries

SMORE (2006). "SMORE - Create OWL Markup for HTML Web
Pages,

 3(3): 237-248.

http://www.mindswap.org/2005/SMORE/."
Swoogle (2005). Search and Metadata for the Semantic Web -

 http://swoogle.umbc.edu/.
SWOOP (2006). "SWOOP - A Hypermedia-based Featherweight OWL Ontology

Editor, www.mindswap.org/2004/SWOOP/."
Wielemaker, J. (2005). SWI-Prolog Semantic Web Library, http://www.swi-

prolog.org/packages/semweb.html.

http://www.semanticgrid.org/v1.9/semgrid.pdf�
http://www.mindswap.org/2005/SMORE/�
http://swoogle.umbc.edu/�
http://www.mindswap.org/2004/SWOOP/�
http://www.swi-prolog.org/packages/semweb.html�
http://www.swi-prolog.org/packages/semweb.html�

	Introduction
	The Semantic Web Stack
	Semantic Web Development Environments
	Our running Ontology
	Using Jena
	Installing Jena
	Creating an Ontology Model
	Reading an Ontology Model
	Manipulating Classes
	Manipulating Properties
	Manipulating Instances
	Queries with Jena
	RDQL Syntax
	RDQL and Jena

	Inference and Reasoning
	Jena Reasoners
	Jena OWL Reasoners
	Programming Jena reasoners

	Persistence

	Questions for discussioN
	Suggested ADDITIONAL READING
	References

