
How to Measure the Control-flow 
Complexity of Web Processes and 

Workflows 

 
Jorge Cardoso, Department of Mathematics and Engineering, 

University of Madeira, Portugal 

SUMMARY 
Several Web process and workflow specification languages and systems 
have been developed to ease the task of modeling and supporting business 
processes. In a competitive e-commerce and e-business market, 
organizations want Web processes and workflows to be simple, modular, 
easy to understand, easy to maintain and easy to re-engineer. 
To achieve these objectives, one can calculate the complexity of processes. 
The complexity of processes is intuitively connected to effects such as 
readability, understandability, effort, testability, reliability and 
maintainability. While these characteristics are fundamental in the context 
of processes, no methods exist that quantitatively evaluate the complexity 
of processes. 
The major goal of this chapter is to describe a measurement to analyze the 
control-flow complexity of Web processes and workflows. The measurement 
is to be used at design-time to evaluate the complexity of a process design 
before implementation. 

INTRODUCTION 
The emergence of e-commerce has changed the foundations of business, 
forcing managers to rethink their strategies. Organizations are increasingly 
faced with the challenge of managing e-business systems, Web services, 
Web processes, and workflows. 
Web Services and Web processes promise to ease several current 
infrastructure challenges, such as data, application, and process 
integration. With the emergence of Web services, a workflow management 
system become essential to support, manage, and enact Web processes, 
both between enterprises and within the enterprise (Sheth, Aalst, & 
Arpinar, 1999).  
The effective management of any process requires modeling, measurement, 
and quantification. Process measurement is concerned with deriving a 
numeric value for attributes of processes. Measures, such as Quality of 
Service measures (Cardoso, Miller, Sheth, Arnold, & Kochut, 2004), can be 
used to improve processes productivity and quality. 
To achieve an effective management, one fundamental area of research that 
needs to be explored is the complexity analysis of processes. Process 
complexity can be viewed as a component of a QoS model for processes, 
since complex processes are more prone to errors. For example, in software 
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engineering it has been found that program modules with high complexity 
indices have a higher frequency of failures (Lanning & Khoshgoftaar, 1994). 
Surprisingly, in spite of the fact that there is a vast literature on software 
measurement of complexity, Zuse (Zuse, 1997) has found hundreds of 
different software metrics proposed and described, while no research on 
process complexity measurement has yet been carried out. 
A Web process is composed of a set of Web services put together to achieve 
a final goal. As the complexity of a process increases, it can lead to poor 
quality and be difficult to reengineer. High complexity in a process may 
result in limited understandability and more errors, defects, and exceptions 
leading processes to need more time to develop, test and maintain. 
Therefore, excessive complexity should be avoided. For instance, critical 
processes, in which failure can result in the loss of human life, requires a 
unique approach to development, implementation and management. For 
this type of processes, typically found in healthcare applications (Anyanwu, 
Sheth, Cardoso, Miller, & Kochut, 2003), the consequences of failure are 
terrible. The ability to produce processes of higher quality and less 
complexity is a matter of endurance.  
Our work borrows some techniques from the branch of software 
engineering known as software metrics, namely McCabe’s cyclomatic 
complexity (MCC) (McCabe, 1976). A judicious adaptation and usage of this 
metric during development and maintenance of Web process applications 
can result in a better quality and maintainability. Based on MCC, we 
propose a control-flow complexity metric to be used during the design of 
processes. Web process control-flow complexity is a design-time metric. It 
can be used to evaluate the difficulty of producing a Web process before its 
implementation. When control-flow complexity analysis becomes part of the 
process development cycle, it has a considerable influence in the design 
phase of development, leading to further optimized processes. This control-
flow complexity analysis can also be used in deciding whether to maintain 
or redesign a process. 
Throughout this chapter, we will use the term “process” to refer to a Web 
process or a workflow and we will use the term “activity” to refer to a Web 
service or a workflow task. 

CHAPTER STRUTURE  
This chapter is structured as follows. The first section presents the related 
work. We will see that while a significant amount of work in the software 
engineering field has been developed to quantify the complexity of 
programs, the literature and work on complexity analysis for Web processes 
and workflow are inexistent. In the next section, we discuss the analysis of 
processes’ complexity. We start by giving a definition for Web processes’ 
complexity. We then enumerate a set of properties that are highly desirable 
for a model and theory to calculate the complexity of processes. In this 
section, we also motivate the reader towards a greater understanding of the 
importance and use of complexity metrics for processes. The next section 
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gives an overview of McCabe’s cyclomatic complexity. This overview is 
important since our approach borrows some of McCabe’s ideas to evaluate 
complexity. Subsequently, we discuss process control-flow complexity. We 
initiate this section giving the semantics of processes’ structure and 
representation. Once the main elements of a process are identified and 
understood, we show how control-flow complexity can be calculated for 
processes. Finally, the last section presents our conclusions and future 
work. 

RELATED WORK 
While a significant amount of research on the complexity of software 
programs has been done in the area of software engineering, the work 
found in the literature on complexity analysis for Web processes and 
workflows is inexistent. Since the research on process complexity is 
inexistent, in this section we will discuss the progress made in the area of 
software complexity. 
The last 30 years has seen a large amount of research aimed at 
determining measurable properties to capture the notions of complexity of 
software. The earliest measures were based on analysis of software code, 
the most fundamental being a basic count of the number of Lines of Code 
(LOC). Despite being widely criticized as a measure of complexity, it 
continues to have widespread popularity mainly due to its simplicity 
(Azuma & Mole, 1994).  
An early measure, proposed by McCabe (McCabe, 1976), viewed program 
complexity related to the number of control paths through a program 
module. This measure provides a single number that can be compared to 
the complexity of other programs. It is also one of the more widely accepted 
software metrics. It is intended to be independent of language and language 
format. 
The search for theoretically based software measures with predictive 
capability was pioneered by Halstead (Halstead, 1977). Complexity 
measurement was developed to measure a program module's complexity 
directly from source code, with emphasis on computational complexity. The 
measures were developed as a means of determining a quantitative 
measure of complexity based on a program comprehension as a function of 
program operands (variables and constants) and operators (arithmetic 
operators and keywords which alter program control flow). 
Henry and Kafura (Henry & Kafura, 1981) proposed a metric based on the 
impact of the information flow in a program’ structure. The technique 
suggests identifying the number of calls to a module (i.e. the flows of local 
information entering: fan-in) and identifying the number of calls from a 
module (i.e. the flows of local information leaving: fan-out). The measure is 
sensitive to the decomposition of the program into procedures and 
functions, on the size and the flow of information into procedures and out 
of procedures. 

http://www.sei.cmu.edu/str/indexes/glossary/complexity.html
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A recent area of research involving Web processes, workflows, and Quality 
of Service can also be considered related to the work in this chapter. 
Organizations operating in modern markets, such as e-commerce activities 
and distributed Web services interactions, require QoS management. 
Appropriate quality control leads to the creation of quality products and 
services; these, in turn, fulfill customer expectations and achieve customer 
satisfaction. Quality of service can be characterized according to various 
dimensions. For example, Cardoso et al. (Cardoso, Sheth, & Miller, 2002) 
have constructed a QoS model for processes composed of three dimensions: 
time, cost, and reliability. Another dimension that could be considered 
relevant under the QoS umbrella is the complexity of processes. Therefore, 
the complexity dimension could be added and integrated to the QoS model 
already developed (Cardoso, Miller et al., 2004).  

PROCESS COMPLEXITY ANALYSIS 
The overall goal of process complexity analysis is to improve the 
comprehensibility of processes. The graphical representation of most 
process specification languages provides the user with the capability to 
recognize complex areas of processes. Thus, it is important to develop 
methods and measurements to automatically identify complex processes 
and complex areas of processes. Afterwards, these processes can be 
reengineered to reduce the complexity of related activities. One key to the 
reengineering is the availability of a metric that characterizes complexity 
and provides guidance for restructuring processes. 

Definition of Process Complexity 
Several definitions have been given to describe the meaning of software 
complexity. For example, Curtis (Curtis, 1980) states that complexity is a 
characteristic of the software interface which influences the resources 
another system will expend or commit while interacting with the software. 
Card and Agresti (Card & Agresti, 1988) define relative system complexity 
as the sum of structural complexity and data complexity divided by the 
number of modules changed. Fenton (Fenton, 1991) defines complexity as 
the amount of resources required for a problem’s solution. 
After analyzing the characteristics and specific aspects of Web processes 
and workflows, we believe that the definition that is better suited to 
describe processes complexity can be derived from (IEEE, 1992). Therefore, 
we define process complexity as the degree to which a process is difficult to 
analyze, understand or explain. It may be characterized by the number and 
intricacy of activity interfaces, transitions, conditional and parallel branches, 
the existence of loops, roles, activity categories, the types of data structures, 
and other process characteristics. 

Process Complexity Measurement Requirements 
The development of a model and theory to calculate the complexity 
associated with a Web process or workflow need to conform to a set of basic 
but important properties. The metric should be easy to learn, computable, 



HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND 
WORKFLOWS 

 

5 

consistent and objective. Additionally, the following properties are also 
highly desirable (Tsai, Lopex, Rodriguez, & Volovik., 1986; Zuse, 1990): 

• Simplicity. The metric should be easily understood by its end users, 
i.e., process analysts and designers. 

• Consistency. The metric should always yield the same value when 
two independent users apply the measurement to the same process, 
i.e. they should arrive at the same result. 

• Automation. It must be possible to automate the measurement of 
processes. 

• Measures must be additive. If two independent structures are put 
into sequence then the total complexity of the combined structures 
is at least the sum of the complexities of the independent 
structures.  

• Measures must be interoperable. Due to the large number of 
existing specification languages, both in academia and industry, the 
measurements should be independent of the process specification 
language. A particular complexity value should mean the same 
thing whether it was calculated from a process written in BPEL 
(BPEL4WS, 2002), WSFL (Leymann, 2001), BPML (BPML, 2004), 
YAWL (Aalst & Hofstede, 2003), or some other specification 
language. The objective is to be able to set complexity standards and 
interpret the resultant numbers uniformly across specification 
languages. 

 
These properties will be taken into account in the next sections when we 
introduce our model to compute the complexity of processes. 

Uses of Complexity 
Analyzing the complexity at all stages of process design and development 
helps avoid the drawbacks associated with high complexity processes. 
Currently, organizations have not implemented complexity limits as part of 
their business process management projects. As a result, it may happen 
that simple processes come to be designed in a complex way. For example, 
important questions that can be made relative to the process illustrated in 
Figure 2 (Anyanwu et al., 2003) are: “can the Eligibility Referral workflow be 
designed in a simpler way?”, “what is the complexity of the workflow?” and 
“what areas or regions of the workflow are more complex and therefore 
more prone to errors?” 
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Figure 1. Eligibility Referral Workflow 
 
The use of complexity analysis will aid in constructing and deploying Web 
processes and workflows that are more simple, reliable and robust. The 
following benefits can be obtained from the use of complexity analysis: 
 

• Quality assessment. Processes quality is most effectively measured 
by objective and quantifiable metrics. Complexity analysis allows 
calculating insightful metrics and thereby identifying complex and 
error prone processes. 

• Maintenance analysis. The complexity of processes tends to increase 
as they are maintained and over a period of time (Figure 2). By 
measuring the complexity before and after a proposed change, we 
can minimize the risk of the change. 

• Reengineering. Complexity analysis provides knowledge of the 
structure of processes. Reengineering can benefit from the proper 
application of complexity analysis by reducing the complexity of 
processes. 

• Dynamic behavior. Processes are not static applications. They are 
constantly undergoing revision, adaptation, change, and 
modification to meet end users needs. The complexity of these 
processes and their continuous evolution makes it very difficult to 
assure their stability and reliability. In-depth analysis is required for 
fixing defects in portions of processes of high complexity (Figure 2). 
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Figure 2. Process Complexity Analysis and Process Reengineering 
 

OVERVIEW OF MCCABE’S CYCLOMATIC COMPLEXITY 
Since our work to evaluate processes’ complexity borrows some ideas from 
McCabe’s cyclomatic complexity (MCC) (McCabe, 1976) to analyze software 
complexity, we start by describing the importance of MCC and illustrates 
its usage. This metric was chosen for its reliability as a complexity indicator 
and its suitability for our research. 
Since its development, McCabe’s cyclomatic complexity has been one of the 
most widely accepted software metrics and has been applied to tens of 
millions of lines of code in both the Department of Defense (DoD) and 
commercial applications. The resulting base of empirical knowledge has 
allowed software developers to calibrate measurements of their own 
software and arrive at some understanding of its complexity. 
Software metrics are often used to give a quantitative indication of a 
program’s complexity. However, it is not to be confused with algorithmic 
complexity measures (e.g. Big-Oh “O”-Notation), whose aim is to compare 
the performance of algorithms. Software metrics have been found to be 
useful in reducing software maintenance costs by assigning a numeric 
value to reflect the ease or difficulty with which a program module may be 
understood. 
McCabe’s cyclomatic complexity is a measure of the number of linearly 
independent paths in a program. It is intended to be independent of 
language and language format (McCabe & Watson, 1994). MCC is an 
indication of a program module’s control flow complexity. Derived from a 
module’s control graph representation, MCC has been found to be a reliable 
indicator of complexity in large software projects (Ward, 1989). This metric 
is based on the assumption that a program’s complexity is related to the 
number of control paths through the program. For example, a 10-line 
program with 10 assignment statements is easier to understand than a 10-
line program with 10 if-then statements. 
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MCC is defined for each module to be e - n + 2, where e and n are the 
number of edges and nodes in the control flow graph, respectively. Control 
flow graphs describe the logic structure of software modules. The nodes 
represent computational statements or expressions, and the edges 
represent transfer of control between nodes. Each possible execution path 
of a software module has a corresponding path from the entry to the exit 
node of the module’s control flow graph. For example, in Figure 3, the MCC 
of the control flow graph for the Java code described is 14-11+2=5. 
 

 
Figure 3. Example of a Java program and its corresponding 
flowgraph 
 
Our major objective is to develop a metric that could be used in the same 
way as the MCC metric but to evaluate processes’ complexity. One of the 
first important observations that can be made from MCC control flow 
graph, shown in Figure 3, is that this graph is extremely similar to Web 
processes and workflows. One major difference is that the nodes of a MCC 
control flow graph have identical semantics, while process nodes (i.e., Web 
services or workflow tasks) can have different semantics (e.g., AND-splits, 
XOR-splits, OR-joins, etc). Our approach will tackle this major difference. 

PROCESS CONTROL-FLOW COMPLEXITY 
Complexity metrics provide valuable information concerning the status and 
quality of process development projects. Access to this information is vital 
for accurately assessing overall process quality, identifying areas that need 
improvement, and focusing on development and testing efforts. In this 
section, we describe the structure and representation of Web processes and 
discuss how control-flow complexity is defined and computed for a Web 
process. 
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PROCESS STRUCTURE AND REPRESENTATION 
Control flow graphs can be used to describe the logic structure of Web 
processes. A Web process is composed of Web services and transitions. Web 
services are represented using circles and transitions are represented using 
arrows. Transitions express dependencies between Web services. A Web 
service with more than one outgoing transition can be classified as an AND-
split, OR-split or XOR-split. AND-split Web services enable all their 
outgoing transitions after completing their execution. OR-split Web services 
enable one or more outgoing transition after completing their execution. 
XOR-split Web services enable only one outgoing transition after completing 
their execution. AND-split Web services are represented with a ‘•’, OR-split 
are represented with a ‘O’ and XOR-split Web services are represented with 
a ‘⊕’. A Web service with more than one incoming transition can be 
classified as an AND-join, OR-join or XOR-join. AND-join Web services start 
their execution when all their incoming transitions are enabled. OR-join 
services start their execution when a subset of their incoming transitions is 
enabled. XOR-join Web services are executed as soon as one of the 
incoming transitions is enabled. As with AND-split, OR-split and XOR-split 
Web services, AND-join, OR-join and XOR-join Web services are 
represented with the symbols ‘•’, ‘O’ and ‘⊕’, respectively. 
An example of a Web process is shown in Figure 4. The process has been 
developed by the Fungal Genome Resource (FGR) laboratory in an effort to 
improve the efficiency of their processes (Cardoso, Miller et al., 2004). One 
of the reengineered processes was the DNA sequencing workflow, since it 
was considered to be beneficial for the laboratory’s daily activities. 
 

 
Figure 4. The DNA Sequencing Workflow. 
 

Semantics of Processes 
The complexity of a Web process or workflow can be analyzed according to 
different perspectives. In our work we are interested in evaluating the 
complexity of processes from a control-flow perspective. In a Web process 
and workflow the control-flow logic is captured in a process model and 
function logic is captured in the applications, data, and people the model 
invokes. A process model includes basic constructs such as transitions, 
roles, Web services or tasks, XOR-splits, OR-splits, AND-splits, XOR-joins, 
OR-joins, AND-joins and networks (sub-processes.) 
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Our approach uses the idea introduced by McCabe. Numerous studies and 
experience in software projects have shown that the MCC measure 
correlates very closely with errors in software modules. The more complex a 
module is, the more likely it is to contain errors. Our goal is to adapt 
McCabe’s cyclomatic complexity to be applied to processes.  
As stated previously, one interesting remark is that all the nodes of MCC 
flowgraphs have identical semantics. Each node represents one statement 
in a source code program. On the other hand, the nodes in Web processes 
and workflows can assume different semantics. Thus, we consider three 
constructs with distinct semantics presents in process models: XOR-split, 
OR- split, and AND-split. The three constructs have the following 
semantics: 

• XOR-split. A point in the process where, based on a decision or 
process control data, one of several transitions is chosen. It is 
assumed that only one of the alternatives is selected and executed, 
i.e. it corresponds to a logic exclusive OR. 

• OR-split. A point in the process where, based on a decision or 
process control data, one or more transitions are chosen. Multiple 
alternatives are chosen from a given set of alternatives. It is 
assumed that one or more of the alternatives is selected and 
executed, i.e. it corresponds to a logic OR. 

• AND-split. This construct is required when two or more activities 
are needed to be executed in parallel. During the execution of a 
process, when an AND-split is reached the single thread of control 
splits into multiple treads of control which are executed in parallel, 
thus allowing activities to be executed at the same time or in any 
order. It is assumed that all the alternatives are selected and 
executed, i.e. it corresponds to a logic AND. 

 

Definition and Measurement of Control-flow Complexity 
The control-flow behavior of a process is affected by constructs such as 
splits and joins. Splits allow defining the possible control paths that exist 
through the process. Joins have a different role; they express the type of 
synchronization that should be made at a specific point in the process. 
Since we are interested in calculating the complexity of processes’ control-
flow, the formulae that we will present evaluate the complexity of XOR-split, 
OR-split, and AND-split constructs. We call this measurement of 
complexity, Control-flow Complexity (CFC). Each formula computes the 
number of states that can be reached from one of the three split constructs. 
The measure is based on the relationships between mental discriminations 
needed to understand a split construct and its effects. This type of 
complexity has been referred to as psychological complexity. Therefore, the 
more possible states follow a split, the more difficulty the designer or 
business process engineer has to understand the section of a processes and 
thus the process itself. 
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In processes, the McCabe’s Cyclomatic complexity cannot be used 
successfully since the metric ignores the semantics associated with nodes 
of the graph. While the nodes (i.e. activities) of processes have distinct 
semantics associated, the nodes of a program’s flowgraph are 
undifferentiated. 
We now introduce several definitions that will constitute the basis for CFC 
measurement. 
 
Definition 1 (Process measurement). Process measurement is concerned 
with deriving a numeric value for an attribute of a process. 
Examples of attributes can include process complexity, duration (time), 
cost, and reliability (Cardoso, Miller et al., 2004).  
 
Definition 2 (Process metric). Any type of measurement related to a process. 
Process metrics allows attributes of processes to be quantified. 
 
Definition 3 (Activity fan-out). Fan-out is the number of transitions going 
out of an activity. The fan-out is computed using function fan-out(a), where 
a is n activity. 
 
Definition 4 (Control-flow induced mental state). A mental state is a state 
that has to be considered when a designer is developing a process. Splits 
introduce the notion of mental states in processes. When a split (XOR, OR, 
or AND) is introduced in a process, the business process designer has to 
mentally create a map or structure that accounts for the number of states 
that can be reached from the split. 
The notion of mental state is important since there are certain theories 
(Miller, 1956) that prove complexity beyond a certain point defeats the 
human mind’s ability to perform accurate symbolic manipulations, and 
hence results in error. 
 
Definition 5 (XOR-split Control-flow Complexity). XOR-split control-flow 
complexity is determined by the number of mental states that are 
introduced with this type of split. The function CFCXOR-split(a), where a is a 
activity, computes the control-flow complexity of the XOR-split a. For XOR-
splits, the control-flow complexity is simply the fan-out of the split. 
 

CFCXOR-split(a)= fan-out(a) 
 
In this particular case, the complexity is directly proportional to the 
number of activities that follow a XOR-split and that a process designer 
needs to consider, analyze, and assimilate. The idea is to associate the 
complexity of an XOR-split with the number of states (Web services or 
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workflow tasks) that follow the split. This rationale is illustrated in Figure 
5. Please note that in this first case the computation and result bear a 
strong similarity to the McCabe’s cyclomatic complexity. 
 

 
Figure 5. XOR-split control-flow complexity 
 
Definition 6 (OR-split Control-flow Complexity). OR-split control-flow 
complexity is also determined by the number of mental states that are 
introduced with the split. For OR-splits, the control-flow complexity is 2n-1, 
where n is the fan-out of the split. 
 

CFCOR-split(a)= 2fan-out(a)-1 
 
This means that when a designer is constructing a process he needs to 
consider and analyze 2n-1 states that may arise from the execution of an 
OR-split construct. 
 

 
Figure 6. OR-split control-flow complexity 
 
Mathematically, it would appear more obvious that 2n states can be 
reached after the execution of an OR-split. But since a process that has 
started its execution has to finish, it cannot be the case where after the 
execution of an OR-split no transition is activated, i.e. no Web service or 
workflow task is executed. Therefore, this situation or state cannot happen. 
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Definition 7 (AND-split Control-flow Complexity). For an AND-split, the 
complexity is simply 1. 
 

CFCAND-split(a)= 1 
 
The designer constructing a process needs only to consider and analyze one 
state that may arise from the execution of an AND-split construct since it is 
assumed that all the outgoing transitions are selected and followed. 
 

 
Figure 7. AND-split control-flow complexity 
 
The higher the value of CFCXOR-split(a), CFCOR-split(a), and CFCAND-split(a), the 
more complex is a process’s design, since developers have to handle all the 
states between control-flow constructs (splits) and their associated outgoing 
transitions and activities. Each formula to calculate the complexity of a 
split construct is based on the number of states that follow the construct. 

CONTROL-FLOW COMPLEXITY OF PROCESSES 
Mathematically, control-flow complexity metric is additive. Thus, it is very 
easy to calculate the complexity of a process, by simply adding the CFC of 
all split constructs. The control-flow complexity is calculated as follows, 
where p is a Web process or workflow.  
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The greater the value of the CFC, the greater the overall architectural 
complexity of a process. CFC analysis seeks to evaluate complexity without 
direct execution of processes. 

Example of CFC Calculation 
As an example, let us take the Web process shown in Figure 8 and 
calculate its CFC. The process has been developed by a bank that has 
adopted a workflow management system (WfMS) to support its business 
processes. Since the bank supplies several services to its customers, the 
adoption of a WfMS has enabled the logic of bank processes to be captured 
in Web processes schema. As a result, all the services available to 
customers are stored and executed under the supervision of the workflow 
system. One of the services supplied by the bank is the loan application 
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process depicted in Figure 8. The Web process is composed 21 Web 
services, 29 transitions, three XOR-splits (Check Loan Type, Check Home 
Loan, Check Car Loan), one OR-split (Archive Application) and one AND-
split (Check Education Loan). 
 

 
Figure 8. The Loan Application Process 
 
It was decided that before placing the Web process in a production 
environment, a process complexity analysis was required to evaluate the 
risk involved with the reengineering effort. The results of the control-flow 
complexity analysis carried out are shown in  
Table 1. 
 
Table 1. CFC metrics for the Web process from Figure 8

Split CFC 

CFCXOR-split(Check Loan Type) 3 

CFCXOR-split(Check Home Loan) 3 

CFCXOR-split(Check Car Loan) 2 

CFCOR-split(Archive Application) 23-1 

CFCAND-split(Check Education Loan) 1 

CFC(Loan Application) =16 

 



HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND 
WORKFLOWS 

 

15 

From these values the control-flow complexity can be easily calculated. It is 
sufficient to mathematically add the CFC of each split. Thus, the resulting 
CFC value is 16 (i.e., 3+3+2+23-1+1). 
Since the results of the CFC analysis gave a value considered to be low, it 
was determined that the Web process has a low complexity and therefore 
its implementation presented a low risk for the bank. Therefore, the Web 
process was deployed and implemented in a production environment. The 
CFC is a good indicator of the complexity of a process. As further research 
is conducted in this area it will become clear that in many cases it is 
necessary to limit CFC of Web process applications. Overly complex 
processes are more prone to errors and are harder to understand, test, and 
adapt. 
One important question that needs to be investigated and answered is what 
is both the meaning of a given metric (for example, what is the significance 
of the CFC of 16 obtained in our example) and the precise number to use as 
a CFC limit in a process development. This answer will be given from 
empirical results only when organizations have successfully implemented 
complexity limits as part of their process development projects. For 
example, when using McCabe complexity metrics, the original limit of 10 
indicates a simple program, without much risk, a complexity metric 
between 11 and 20 designates a more complex program with moderate risk, 
a metric between 21 and 50 denote a complex program with high risk. 
Finally, a complexity metric greater than 50 denotes an untestable program 
with a very high risk. We expect that limits for CFC will be obtained and set 
in the same way, using empirical and practical results from research and 
from real world implementation. 

Verification 
To test the validity of our metric, we have designed a small set of processes. 
A group of students has rated each process according to their perceived 
complexity. The students had previously received a 15-hour course on 
process design and implementation. We have then used our CFC 
measurement to calculate the complexity of each process design. 
Preliminary data analysis performed on the collected data led to some 
interesting results. A correlation was found between the perceived 
complexity and the control-flow complexity measure. 
Based on these preliminarily interesting results, we are now starting a 
project that will have as an objective the development of a large set of 
empirical experiments involving process designs. The purpose is to find the 
degree of correlation between the perceived complexity that designers and 
business engineers have when studying and designing a process and the 
results obtained from applying our control-flow complexity measure. 

CONCLUSIONS AND FUTURE WORK 
Business Process Management Systems (BPMS)(Smith & Fingar, 2003) 
provide a fundamental infrastructure to define and manage business 
processes, Web processes and workflows. BPMS, such as Workflow 



HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND 
WORKFLOWS 

 

16 

Management Systems (Cardoso, Bostrom, & Sheth, 2004) become a serious 
competitive factor for many organizations. 
Our work presents an approach to carry out process complexity analysis. 
We have delineated the first steps towards using a complexity measurement 
to provide concrete Web process and workflow design guidance. The 
approach and the ideas introduced are worth exploring further since Web 
processes are becoming a reality in e-commerce and e-business activities.  
In this chapter we propose a control-flow complexity measurement to be 
used during the design of processes. Process control-flow complexity is a 
design-time measurement. It can be used to evaluate the difficulty of 
producing a Web process design before implementation. When control-flow 
complexity analysis becomes part of the process development cycle, it has a 
considerable influence in the design phase of development, leading to 
further optimized processes. The control-flow complexity analysis can also 
be used in deciding whether to maintain or redesign a process. As known 
from software engineering, it is a fact that it is cost-effective to fix a defect 
earlier in the design lifecycle than later. To enable this, we introduce the 
first steps to carry out process complexity analysis. 
Future directions of this work are to validate the complexity measurement 
to ensure that clear and confident conclusions can be drawn from its use. 
In addition to this, although the validity of the proposed complexity 
measurement was tested using a few empirical studies that formed the 
basis for its development, further work is required to validate its usability 
in contexts other than the ones in which the method was developed. In 
order to achieve these goals, it is necessary to evaluate a variety of 
processes and produce automated tools for measuring complexity features. 
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