
How to Measure the Control-flow
Complexity of Web Processes and

Workflows

Jorge Cardoso, Department of Mathematics and Engineering,

University of Madeira, Portugal

SUMMARY
Several Web process and workflow specification languages and systems
have been developed to ease the task of modeling and supporting business
processes. In a competitive e-commerce and e-business market,
organizations want Web processes and workflows to be simple, modular,
easy to understand, easy to maintain and easy to re-engineer.
To achieve these objectives, one can calculate the complexity of processes.
The complexity of processes is intuitively connected to effects such as
readability, understandability, effort, testability, reliability and
maintainability. While these characteristics are fundamental in the context
of processes, no methods exist that quantitatively evaluate the complexity
of processes.
The major goal of this chapter is to describe a measurement to analyze the
control-flow complexity of Web processes and workflows. The measurement
is to be used at design-time to evaluate the complexity of a process design
before implementation.

INTRODUCTION
The emergence of e-commerce has changed the foundations of business,
forcing managers to rethink their strategies. Organizations are increasingly
faced with the challenge of managing e-business systems, Web services,
Web processes, and workflows.
Web Services and Web processes promise to ease several current
infrastructure challenges, such as data, application, and process
integration. With the emergence of Web services, a workflow management
system become essential to support, manage, and enact Web processes,
both between enterprises and within the enterprise (Sheth, Aalst, &
Arpinar, 1999).
The effective management of any process requires modeling, measurement,
and quantification. Process measurement is concerned with deriving a
numeric value for attributes of processes. Measures, such as Quality of
Service measures (Cardoso, Miller, Sheth, Arnold, & Kochut, 2004), can be
used to improve processes productivity and quality.
To achieve an effective management, one fundamental area of research that
needs to be explored is the complexity analysis of processes. Process
complexity can be viewed as a component of a QoS model for processes,
since complex processes are more prone to errors. For example, in software

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

2

engineering it has been found that program modules with high complexity
indices have a higher frequency of failures (Lanning & Khoshgoftaar, 1994).
Surprisingly, in spite of the fact that there is a vast literature on software
measurement of complexity, Zuse (Zuse, 1997) has found hundreds of
different software metrics proposed and described, while no research on
process complexity measurement has yet been carried out.
A Web process is composed of a set of Web services put together to achieve
a final goal. As the complexity of a process increases, it can lead to poor
quality and be difficult to reengineer. High complexity in a process may
result in limited understandability and more errors, defects, and exceptions
leading processes to need more time to develop, test and maintain.
Therefore, excessive complexity should be avoided. For instance, critical
processes, in which failure can result in the loss of human life, requires a
unique approach to development, implementation and management. For
this type of processes, typically found in healthcare applications (Anyanwu,
Sheth, Cardoso, Miller, & Kochut, 2003), the consequences of failure are
terrible. The ability to produce processes of higher quality and less
complexity is a matter of endurance.
Our work borrows some techniques from the branch of software
engineering known as software metrics, namely McCabe’s cyclomatic
complexity (MCC) (McCabe, 1976). A judicious adaptation and usage of this
metric during development and maintenance of Web process applications
can result in a better quality and maintainability. Based on MCC, we
propose a control-flow complexity metric to be used during the design of
processes. Web process control-flow complexity is a design-time metric. It
can be used to evaluate the difficulty of producing a Web process before its
implementation. When control-flow complexity analysis becomes part of the
process development cycle, it has a considerable influence in the design
phase of development, leading to further optimized processes. This control-
flow complexity analysis can also be used in deciding whether to maintain
or redesign a process.
Throughout this chapter, we will use the term “process” to refer to a Web
process or a workflow and we will use the term “activity” to refer to a Web
service or a workflow task.

CHAPTER STRUTURE
This chapter is structured as follows. The first section presents the related
work. We will see that while a significant amount of work in the software
engineering field has been developed to quantify the complexity of
programs, the literature and work on complexity analysis for Web processes
and workflow are inexistent. In the next section, we discuss the analysis of
processes’ complexity. We start by giving a definition for Web processes’
complexity. We then enumerate a set of properties that are highly desirable
for a model and theory to calculate the complexity of processes. In this
section, we also motivate the reader towards a greater understanding of the
importance and use of complexity metrics for processes. The next section

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

3

gives an overview of McCabe’s cyclomatic complexity. This overview is
important since our approach borrows some of McCabe’s ideas to evaluate
complexity. Subsequently, we discuss process control-flow complexity. We
initiate this section giving the semantics of processes’ structure and
representation. Once the main elements of a process are identified and
understood, we show how control-flow complexity can be calculated for
processes. Finally, the last section presents our conclusions and future
work.

RELATED WORK
While a significant amount of research on the complexity of software
programs has been done in the area of software engineering, the work
found in the literature on complexity analysis for Web processes and
workflows is inexistent. Since the research on process complexity is
inexistent, in this section we will discuss the progress made in the area of
software complexity.
The last 30 years has seen a large amount of research aimed at
determining measurable properties to capture the notions of complexity of
software. The earliest measures were based on analysis of software code,
the most fundamental being a basic count of the number of Lines of Code
(LOC). Despite being widely criticized as a measure of complexity, it
continues to have widespread popularity mainly due to its simplicity
(Azuma & Mole, 1994).
An early measure, proposed by McCabe (McCabe, 1976), viewed program
complexity related to the number of control paths through a program
module. This measure provides a single number that can be compared to
the complexity of other programs. It is also one of the more widely accepted
software metrics. It is intended to be independent of language and language
format.
The search for theoretically based software measures with predictive
capability was pioneered by Halstead (Halstead, 1977). Complexity
measurement was developed to measure a program module's complexity
directly from source code, with emphasis on computational complexity. The
measures were developed as a means of determining a quantitative
measure of complexity based on a program comprehension as a function of
program operands (variables and constants) and operators (arithmetic
operators and keywords which alter program control flow).
Henry and Kafura (Henry & Kafura, 1981) proposed a metric based on the
impact of the information flow in a program’ structure. The technique
suggests identifying the number of calls to a module (i.e. the flows of local
information entering: fan-in) and identifying the number of calls from a
module (i.e. the flows of local information leaving: fan-out). The measure is
sensitive to the decomposition of the program into procedures and
functions, on the size and the flow of information into procedures and out
of procedures.

http://www.sei.cmu.edu/str/indexes/glossary/complexity.html

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

4

A recent area of research involving Web processes, workflows, and Quality
of Service can also be considered related to the work in this chapter.
Organizations operating in modern markets, such as e-commerce activities
and distributed Web services interactions, require QoS management.
Appropriate quality control leads to the creation of quality products and
services; these, in turn, fulfill customer expectations and achieve customer
satisfaction. Quality of service can be characterized according to various
dimensions. For example, Cardoso et al. (Cardoso, Sheth, & Miller, 2002)
have constructed a QoS model for processes composed of three dimensions:
time, cost, and reliability. Another dimension that could be considered
relevant under the QoS umbrella is the complexity of processes. Therefore,
the complexity dimension could be added and integrated to the QoS model
already developed (Cardoso, Miller et al., 2004).

PROCESS COMPLEXITY ANALYSIS
The overall goal of process complexity analysis is to improve the
comprehensibility of processes. The graphical representation of most
process specification languages provides the user with the capability to
recognize complex areas of processes. Thus, it is important to develop
methods and measurements to automatically identify complex processes
and complex areas of processes. Afterwards, these processes can be
reengineered to reduce the complexity of related activities. One key to the
reengineering is the availability of a metric that characterizes complexity
and provides guidance for restructuring processes.

Definition of Process Complexity
Several definitions have been given to describe the meaning of software
complexity. For example, Curtis (Curtis, 1980) states that complexity is a
characteristic of the software interface which influences the resources
another system will expend or commit while interacting with the software.
Card and Agresti (Card & Agresti, 1988) define relative system complexity
as the sum of structural complexity and data complexity divided by the
number of modules changed. Fenton (Fenton, 1991) defines complexity as
the amount of resources required for a problem’s solution.
After analyzing the characteristics and specific aspects of Web processes
and workflows, we believe that the definition that is better suited to
describe processes complexity can be derived from (IEEE, 1992). Therefore,
we define process complexity as the degree to which a process is difficult to
analyze, understand or explain. It may be characterized by the number and
intricacy of activity interfaces, transitions, conditional and parallel branches,
the existence of loops, roles, activity categories, the types of data structures,
and other process characteristics.

Process Complexity Measurement Requirements
The development of a model and theory to calculate the complexity
associated with a Web process or workflow need to conform to a set of basic
but important properties. The metric should be easy to learn, computable,

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

5

consistent and objective. Additionally, the following properties are also
highly desirable (Tsai, Lopex, Rodriguez, & Volovik., 1986; Zuse, 1990):

• Simplicity. The metric should be easily understood by its end users,
i.e., process analysts and designers.

• Consistency. The metric should always yield the same value when
two independent users apply the measurement to the same process,
i.e. they should arrive at the same result.

• Automation. It must be possible to automate the measurement of
processes.

• Measures must be additive. If two independent structures are put
into sequence then the total complexity of the combined structures
is at least the sum of the complexities of the independent
structures.

• Measures must be interoperable. Due to the large number of
existing specification languages, both in academia and industry, the
measurements should be independent of the process specification
language. A particular complexity value should mean the same
thing whether it was calculated from a process written in BPEL
(BPEL4WS, 2002), WSFL (Leymann, 2001), BPML (BPML, 2004),
YAWL (Aalst & Hofstede, 2003), or some other specification
language. The objective is to be able to set complexity standards and
interpret the resultant numbers uniformly across specification
languages.

These properties will be taken into account in the next sections when we
introduce our model to compute the complexity of processes.

Uses of Complexity
Analyzing the complexity at all stages of process design and development
helps avoid the drawbacks associated with high complexity processes.
Currently, organizations have not implemented complexity limits as part of
their business process management projects. As a result, it may happen
that simple processes come to be designed in a complex way. For example,
important questions that can be made relative to the process illustrated in
Figure 2 (Anyanwu et al., 2003) are: “can the Eligibility Referral workflow be
designed in a simpler way?”, “what is the complexity of the workflow?” and
“what areas or regions of the workflow are more complex and therefore
more prone to errors?”

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

6

Figure 1. Eligibility Referral Workflow

The use of complexity analysis will aid in constructing and deploying Web
processes and workflows that are more simple, reliable and robust. The
following benefits can be obtained from the use of complexity analysis:

• Quality assessment. Processes quality is most effectively measured
by objective and quantifiable metrics. Complexity analysis allows
calculating insightful metrics and thereby identifying complex and
error prone processes.

• Maintenance analysis. The complexity of processes tends to increase
as they are maintained and over a period of time (Figure 2). By
measuring the complexity before and after a proposed change, we
can minimize the risk of the change.

• Reengineering. Complexity analysis provides knowledge of the
structure of processes. Reengineering can benefit from the proper
application of complexity analysis by reducing the complexity of
processes.

• Dynamic behavior. Processes are not static applications. They are
constantly undergoing revision, adaptation, change, and
modification to meet end users needs. The complexity of these
processes and their continuous evolution makes it very difficult to
assure their stability and reliability. In-depth analysis is required for
fixing defects in portions of processes of high complexity (Figure 2).

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

7

Process Complexity Analysis and Process
Reengineering

0

10

20

30

40

50

60

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29Time

C
om

pl
ex

ity

Complexity Analysis and Process Reengineering

Process Adaptation and Modification

Figure 2. Process Complexity Analysis and Process Reengineering

OVERVIEW OF MCCABE’S CYCLOMATIC COMPLEXITY
Since our work to evaluate processes’ complexity borrows some ideas from
McCabe’s cyclomatic complexity (MCC) (McCabe, 1976) to analyze software
complexity, we start by describing the importance of MCC and illustrates
its usage. This metric was chosen for its reliability as a complexity indicator
and its suitability for our research.
Since its development, McCabe’s cyclomatic complexity has been one of the
most widely accepted software metrics and has been applied to tens of
millions of lines of code in both the Department of Defense (DoD) and
commercial applications. The resulting base of empirical knowledge has
allowed software developers to calibrate measurements of their own
software and arrive at some understanding of its complexity.
Software metrics are often used to give a quantitative indication of a
program’s complexity. However, it is not to be confused with algorithmic
complexity measures (e.g. Big-Oh “O”-Notation), whose aim is to compare
the performance of algorithms. Software metrics have been found to be
useful in reducing software maintenance costs by assigning a numeric
value to reflect the ease or difficulty with which a program module may be
understood.
McCabe’s cyclomatic complexity is a measure of the number of linearly
independent paths in a program. It is intended to be independent of
language and language format (McCabe & Watson, 1994). MCC is an
indication of a program module’s control flow complexity. Derived from a
module’s control graph representation, MCC has been found to be a reliable
indicator of complexity in large software projects (Ward, 1989). This metric
is based on the assumption that a program’s complexity is related to the
number of control paths through the program. For example, a 10-line
program with 10 assignment statements is easier to understand than a 10-
line program with 10 if-then statements.

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

8

MCC is defined for each module to be e - n + 2, where e and n are the
number of edges and nodes in the control flow graph, respectively. Control
flow graphs describe the logic structure of software modules. The nodes
represent computational statements or expressions, and the edges
represent transfer of control between nodes. Each possible execution path
of a software module has a corresponding path from the entry to the exit
node of the module’s control flow graph. For example, in Figure 3, the MCC
of the control flow graph for the Java code described is 14-11+2=5.

Figure 3. Example of a Java program and its corresponding
flowgraph

Our major objective is to develop a metric that could be used in the same
way as the MCC metric but to evaluate processes’ complexity. One of the
first important observations that can be made from MCC control flow
graph, shown in Figure 3, is that this graph is extremely similar to Web
processes and workflows. One major difference is that the nodes of a MCC
control flow graph have identical semantics, while process nodes (i.e., Web
services or workflow tasks) can have different semantics (e.g., AND-splits,
XOR-splits, OR-joins, etc). Our approach will tackle this major difference.

PROCESS CONTROL-FLOW COMPLEXITY
Complexity metrics provide valuable information concerning the status and
quality of process development projects. Access to this information is vital
for accurately assessing overall process quality, identifying areas that need
improvement, and focusing on development and testing efforts. In this
section, we describe the structure and representation of Web processes and
discuss how control-flow complexity is defined and computed for a Web
process.

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

9

PROCESS STRUCTURE AND REPRESENTATION
Control flow graphs can be used to describe the logic structure of Web
processes. A Web process is composed of Web services and transitions. Web
services are represented using circles and transitions are represented using
arrows. Transitions express dependencies between Web services. A Web
service with more than one outgoing transition can be classified as an AND-
split, OR-split or XOR-split. AND-split Web services enable all their
outgoing transitions after completing their execution. OR-split Web services
enable one or more outgoing transition after completing their execution.
XOR-split Web services enable only one outgoing transition after completing
their execution. AND-split Web services are represented with a ‘•’, OR-split
are represented with a ‘O’ and XOR-split Web services are represented with
a ‘⊕’. A Web service with more than one incoming transition can be
classified as an AND-join, OR-join or XOR-join. AND-join Web services start
their execution when all their incoming transitions are enabled. OR-join
services start their execution when a subset of their incoming transitions is
enabled. XOR-join Web services are executed as soon as one of the
incoming transitions is enabled. As with AND-split, OR-split and XOR-split
Web services, AND-join, OR-join and XOR-join Web services are
represented with the symbols ‘•’, ‘O’ and ‘⊕’, respectively.
An example of a Web process is shown in Figure 4. The process has been
developed by the Fungal Genome Resource (FGR) laboratory in an effort to
improve the efficiency of their processes (Cardoso, Miller et al., 2004). One
of the reengineered processes was the DNA sequencing workflow, since it
was considered to be beneficial for the laboratory’s daily activities.

Figure 4. The DNA Sequencing Workflow.

Semantics of Processes
The complexity of a Web process or workflow can be analyzed according to
different perspectives. In our work we are interested in evaluating the
complexity of processes from a control-flow perspective. In a Web process
and workflow the control-flow logic is captured in a process model and
function logic is captured in the applications, data, and people the model
invokes. A process model includes basic constructs such as transitions,
roles, Web services or tasks, XOR-splits, OR-splits, AND-splits, XOR-joins,
OR-joins, AND-joins and networks (sub-processes.)

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

10

Our approach uses the idea introduced by McCabe. Numerous studies and
experience in software projects have shown that the MCC measure
correlates very closely with errors in software modules. The more complex a
module is, the more likely it is to contain errors. Our goal is to adapt
McCabe’s cyclomatic complexity to be applied to processes.
As stated previously, one interesting remark is that all the nodes of MCC
flowgraphs have identical semantics. Each node represents one statement
in a source code program. On the other hand, the nodes in Web processes
and workflows can assume different semantics. Thus, we consider three
constructs with distinct semantics presents in process models: XOR-split,
OR- split, and AND-split. The three constructs have the following
semantics:

• XOR-split. A point in the process where, based on a decision or
process control data, one of several transitions is chosen. It is
assumed that only one of the alternatives is selected and executed,
i.e. it corresponds to a logic exclusive OR.

• OR-split. A point in the process where, based on a decision or
process control data, one or more transitions are chosen. Multiple
alternatives are chosen from a given set of alternatives. It is
assumed that one or more of the alternatives is selected and
executed, i.e. it corresponds to a logic OR.

• AND-split. This construct is required when two or more activities
are needed to be executed in parallel. During the execution of a
process, when an AND-split is reached the single thread of control
splits into multiple treads of control which are executed in parallel,
thus allowing activities to be executed at the same time or in any
order. It is assumed that all the alternatives are selected and
executed, i.e. it corresponds to a logic AND.

Definition and Measurement of Control-flow Complexity
The control-flow behavior of a process is affected by constructs such as
splits and joins. Splits allow defining the possible control paths that exist
through the process. Joins have a different role; they express the type of
synchronization that should be made at a specific point in the process.
Since we are interested in calculating the complexity of processes’ control-
flow, the formulae that we will present evaluate the complexity of XOR-split,
OR-split, and AND-split constructs. We call this measurement of
complexity, Control-flow Complexity (CFC). Each formula computes the
number of states that can be reached from one of the three split constructs.
The measure is based on the relationships between mental discriminations
needed to understand a split construct and its effects. This type of
complexity has been referred to as psychological complexity. Therefore, the
more possible states follow a split, the more difficulty the designer or
business process engineer has to understand the section of a processes and
thus the process itself.

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

11

In processes, the McCabe’s Cyclomatic complexity cannot be used
successfully since the metric ignores the semantics associated with nodes
of the graph. While the nodes (i.e. activities) of processes have distinct
semantics associated, the nodes of a program’s flowgraph are
undifferentiated.
We now introduce several definitions that will constitute the basis for CFC
measurement.

Definition 1 (Process measurement). Process measurement is concerned
with deriving a numeric value for an attribute of a process.
Examples of attributes can include process complexity, duration (time),
cost, and reliability (Cardoso, Miller et al., 2004).

Definition 2 (Process metric). Any type of measurement related to a process.
Process metrics allows attributes of processes to be quantified.

Definition 3 (Activity fan-out). Fan-out is the number of transitions going
out of an activity. The fan-out is computed using function fan-out(a), where
a is n activity.

Definition 4 (Control-flow induced mental state). A mental state is a state
that has to be considered when a designer is developing a process. Splits
introduce the notion of mental states in processes. When a split (XOR, OR,
or AND) is introduced in a process, the business process designer has to
mentally create a map or structure that accounts for the number of states
that can be reached from the split.
The notion of mental state is important since there are certain theories
(Miller, 1956) that prove complexity beyond a certain point defeats the
human mind’s ability to perform accurate symbolic manipulations, and
hence results in error.

Definition 5 (XOR-split Control-flow Complexity). XOR-split control-flow
complexity is determined by the number of mental states that are
introduced with this type of split. The function CFCXOR-split(a), where a is a
activity, computes the control-flow complexity of the XOR-split a. For XOR-
splits, the control-flow complexity is simply the fan-out of the split.

CFCXOR-split(a)= fan-out(a)

In this particular case, the complexity is directly proportional to the
number of activities that follow a XOR-split and that a process designer
needs to consider, analyze, and assimilate. The idea is to associate the
complexity of an XOR-split with the number of states (Web services or

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

12

workflow tasks) that follow the split. This rationale is illustrated in Figure
5. Please note that in this first case the computation and result bear a
strong similarity to the McCabe’s cyclomatic complexity.

Figure 5. XOR-split control-flow complexity

Definition 6 (OR-split Control-flow Complexity). OR-split control-flow
complexity is also determined by the number of mental states that are
introduced with the split. For OR-splits, the control-flow complexity is 2n-1,
where n is the fan-out of the split.

CFCOR-split(a)= 2fan-out(a)-1

This means that when a designer is constructing a process he needs to
consider and analyze 2n-1 states that may arise from the execution of an
OR-split construct.

Figure 6. OR-split control-flow complexity

Mathematically, it would appear more obvious that 2n states can be
reached after the execution of an OR-split. But since a process that has
started its execution has to finish, it cannot be the case where after the
execution of an OR-split no transition is activated, i.e. no Web service or
workflow task is executed. Therefore, this situation or state cannot happen.

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

13

Definition 7 (AND-split Control-flow Complexity). For an AND-split, the
complexity is simply 1.

CFCAND-split(a)= 1

The designer constructing a process needs only to consider and analyze one
state that may arise from the execution of an AND-split construct since it is
assumed that all the outgoing transitions are selected and followed.

Figure 7. AND-split control-flow complexity

The higher the value of CFCXOR-split(a), CFCOR-split(a), and CFCAND-split(a), the
more complex is a process’s design, since developers have to handle all the
states between control-flow constructs (splits) and their associated outgoing
transitions and activities. Each formula to calculate the complexity of a
split construct is based on the number of states that follow the construct.

CONTROL-FLOW COMPLEXITY OF PROCESSES
Mathematically, control-flow complexity metric is additive. Thus, it is very
easy to calculate the complexity of a process, by simply adding the CFC of
all split constructs. The control-flow complexity is calculated as follows,
where p is a Web process or workflow.

∑∑∑
∈−∈

−
∈−∈

−
∈−∈

− ++=
}{}{}{

)()()()(
psplitsandws

splitAND
psplitsorws

splitOR
psplitsxorws

splitXOR wsCFCwsCFCwsCFCpCFC

The greater the value of the CFC, the greater the overall architectural
complexity of a process. CFC analysis seeks to evaluate complexity without
direct execution of processes.

Example of CFC Calculation
As an example, let us take the Web process shown in Figure 8 and
calculate its CFC. The process has been developed by a bank that has
adopted a workflow management system (WfMS) to support its business
processes. Since the bank supplies several services to its customers, the
adoption of a WfMS has enabled the logic of bank processes to be captured
in Web processes schema. As a result, all the services available to
customers are stored and executed under the supervision of the workflow
system. One of the services supplied by the bank is the loan application

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

14

process depicted in Figure 8. The Web process is composed 21 Web
services, 29 transitions, three XOR-splits (Check Loan Type, Check Home
Loan, Check Car Loan), one OR-split (Archive Application) and one AND-
split (Check Education Loan).

Figure 8. The Loan Application Process

It was decided that before placing the Web process in a production
environment, a process complexity analysis was required to evaluate the
risk involved with the reengineering effort. The results of the control-flow
complexity analysis carried out are shown in
Table 1.

Table 1. CFC metrics for the Web process from Figure 8

Split CFC

CFCXOR-split(Check Loan Type) 3

CFCXOR-split(Check Home Loan) 3

CFCXOR-split(Check Car Loan) 2

CFCOR-split(Archive Application) 23-1

CFCAND-split(Check Education Loan) 1

CFC(Loan Application) =16

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

15

From these values the control-flow complexity can be easily calculated. It is
sufficient to mathematically add the CFC of each split. Thus, the resulting
CFC value is 16 (i.e., 3+3+2+23-1+1).
Since the results of the CFC analysis gave a value considered to be low, it
was determined that the Web process has a low complexity and therefore
its implementation presented a low risk for the bank. Therefore, the Web
process was deployed and implemented in a production environment. The
CFC is a good indicator of the complexity of a process. As further research
is conducted in this area it will become clear that in many cases it is
necessary to limit CFC of Web process applications. Overly complex
processes are more prone to errors and are harder to understand, test, and
adapt.
One important question that needs to be investigated and answered is what
is both the meaning of a given metric (for example, what is the significance
of the CFC of 16 obtained in our example) and the precise number to use as
a CFC limit in a process development. This answer will be given from
empirical results only when organizations have successfully implemented
complexity limits as part of their process development projects. For
example, when using McCabe complexity metrics, the original limit of 10
indicates a simple program, without much risk, a complexity metric
between 11 and 20 designates a more complex program with moderate risk,
a metric between 21 and 50 denote a complex program with high risk.
Finally, a complexity metric greater than 50 denotes an untestable program
with a very high risk. We expect that limits for CFC will be obtained and set
in the same way, using empirical and practical results from research and
from real world implementation.

Verification
To test the validity of our metric, we have designed a small set of processes.
A group of students has rated each process according to their perceived
complexity. The students had previously received a 15-hour course on
process design and implementation. We have then used our CFC
measurement to calculate the complexity of each process design.
Preliminary data analysis performed on the collected data led to some
interesting results. A correlation was found between the perceived
complexity and the control-flow complexity measure.
Based on these preliminarily interesting results, we are now starting a
project that will have as an objective the development of a large set of
empirical experiments involving process designs. The purpose is to find the
degree of correlation between the perceived complexity that designers and
business engineers have when studying and designing a process and the
results obtained from applying our control-flow complexity measure.

CONCLUSIONS AND FUTURE WORK
Business Process Management Systems (BPMS)(Smith & Fingar, 2003)
provide a fundamental infrastructure to define and manage business
processes, Web processes and workflows. BPMS, such as Workflow

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

16

Management Systems (Cardoso, Bostrom, & Sheth, 2004) become a serious
competitive factor for many organizations.
Our work presents an approach to carry out process complexity analysis.
We have delineated the first steps towards using a complexity measurement
to provide concrete Web process and workflow design guidance. The
approach and the ideas introduced are worth exploring further since Web
processes are becoming a reality in e-commerce and e-business activities.
In this chapter we propose a control-flow complexity measurement to be
used during the design of processes. Process control-flow complexity is a
design-time measurement. It can be used to evaluate the difficulty of
producing a Web process design before implementation. When control-flow
complexity analysis becomes part of the process development cycle, it has a
considerable influence in the design phase of development, leading to
further optimized processes. The control-flow complexity analysis can also
be used in deciding whether to maintain or redesign a process. As known
from software engineering, it is a fact that it is cost-effective to fix a defect
earlier in the design lifecycle than later. To enable this, we introduce the
first steps to carry out process complexity analysis.
Future directions of this work are to validate the complexity measurement
to ensure that clear and confident conclusions can be drawn from its use.
In addition to this, although the validity of the proposed complexity
measurement was tested using a few empirical studies that formed the
basis for its development, further work is required to validate its usability
in contexts other than the ones in which the method was developed. In
order to achieve these goals, it is necessary to evaluate a variety of
processes and produce automated tools for measuring complexity features.

REFERENCES
Aalst, W. M. P. v. d., & Hofstede, A. H. M. t. (2003). YAWL: Yet Another
Workflow Language (Revised Version). (QUT Technical report FIT-TR-2003-
04). Brisbane: Queensland University of Technology2003.
Anyanwu, K., Sheth, A., Cardoso, J., Miller, J. A., & Kochut, K. J. (2003).
Healthcare Enterprise Process Development and Integration. Journal of
Research and Practice in Information Technology, Special Issue in Health
Knowledge Management, 35(2), 83-98.
Azuma, M., & Mole, D. (1994). Software Management Practice and Metrics
in the European Community and Japan: Some Results of a Survey. Journal
of Systems and Software, 26(1), 5-18.
BPEL4WS. (2002). Web Services. IBM. Retrieved, from the World Wide Web:
http://www-106.ibm.com/developerworks/webservices/
BPML. (2004). Business Process Modeling Language. Retrieved, 2004, from
the World Wide Web: http://www.bpmi.org/
Card, D., & Agresti, W. (1988). Measuring Software Design Complexity.
Journal of Systems and Software, 8, 185-197.

http://www-106.ibm.com/developerworks/webservices/
http://www.bpmi.org/

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

17

Cardoso, J., Bostrom, R. P., & Sheth, A. (2004). Workflow Management
Systems and ERP Systems: Differences, Commonalities, and Applications.
Information Technology and Management Journal. Special issue on Workflow
and E-Business (Kluwer Academic Publishers), 5(3-4), 319-338.
Cardoso, J., Miller, J., Sheth, A., Arnold, J., & Kochut, K. (2004). Quality of
service for workflows and web service processes. Web Semantics: Science,
Services and Agents on the World Wide Web Journal, 1(3), 281-308.
Cardoso, J., Sheth, A., & Miller, J. (2002). Workflow Quality of Service.
Paper presented at the International Conference on Enterprise Integration
and Modeling Technology and International Enterprise Modeling
Conference (ICEIMT/IEMC’02), Valencia, Spain.
Curtis, B. (1980). Measurement and Experimentation in Software
Engineering. Proceedings of the IEEE, 68(9), 1144-1157.
Fenton, N. (1991). Software Metrics: A Rigorous Approach. London:
Chapman & Hall.
Halstead, M. H. (1977). Elements of Software Science, Operating, and
Programming Systems Series (Vol. 7). New York, NY: Elsevier.
Henry, S., & Kafura, D. (1981). Software Structure Metrics Based On
Information-Flow. IEEE Transactions On Software Engineering, 7(5), 510-
518.
IEEE. (1992). IEEE 610, Standard Glossary of Software Engineering
Terminology. New York: Institute of Electrical and Electronic Engineers.
Lanning, D. L., & Khoshgoftaar, T. M. (1994). Modeling the Relationship
Between Source Code Complexity and Maintenance Difficulty. Computer,
27(9), 35-41.
Leymann, F. (2001). Web Services Flow Language (WSFL 1.0). IBM
Corporation. Retrieved, from the World Wide Web: http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
McCabe, T. (1976). A Complexity Measure. IEEE Transactions of Software
Engineering, SE-2(4), 308-320.
McCabe, T. J., & Watson, A. H. (1994). Software Complexity. Crosstalk,
Journal of Defense Software Engineering, 7(12), 5-9.
Miller, G. (1956). The Magical Number Seven, Plus or Minus Two: Some
Limits on Our Capacity for Processing Information. The Psychological
Review.
Sheth, A. P., Aalst, W. v. d., & Arpinar, I. B. (1999). Processes Driving the
Networked Economy. IEEE Concurrency, 7(3), 18-31.
Smith, H., & Fingar, P. (2003). Business Process Management (BPM): The
Third Wave: Meghan-Kiffer Press.
Tsai, W. T., Lopex, M. A., Rodriguez, V., & Volovik., D. (1986). An approach
measuring data structure complexity. Paper presented at the COMPSAC 86.
Ward, W. (1989). Software Defect Prevention Using McCabe’s Complexity
Metric. Hewlett Packard Journal, 40(2), 64-69.

http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf
http://www-4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf

HOW TO MEASURE THE CONTROL-FLOW COMPLEXITY OF WEB PROCESSES AND
WORKFLOWS

18

Zuse, H. (1990). Software Complexity Measures and Models. New York, NY:
de Gruyter & Co.
Zuse, H. (1997). A Framework of Software Measurement. Berlin: Walter de
Gruyter Inc.

INDEX
complexity, 2
complexity of processes, 1
control-flow complexity, 1
process complexity analysis, 4

Web process, 1
Web service, 2
workflow, 1

	How to Measure the Control-flow Complexity of Web Processes and Workflows
	Summary
	Introduction
	Chapter Struture
	Related Work
	Process Complexity Analysis
	Definition of Process Complexity
	Process Complexity Measurement Requirements
	Uses of Complexity

	Overview of McCabe’s Cyclomatic Complexity
	Process Control-flow Complexity
	Process Structure and Representation
	Semantics of Processes
	Definition and Measurement of Control-flow Complexity

	Control-flow Complexity of Processes
	Example of CFC Calculation
	Verification

	Conclusions and Future Work
	References
	Index

