
Intelligent Log Analysis

Logs are intended to be read by humans, and, thus, not easily machine-processable. Nonetheless, to apply AI/ML methods, logs need to

be parseable. Structured logs have a structured format which can be readily parsed by a algorithms without needing complex regular

expressions to parse the log message or technique to identify key/value pairs.

Lecture at Technical University of Berlin

Jorge Cardoso

Chief Engineer for Hyperscale AIOps

Munich Research Center

2020.12.23

ULTRA-SCALE AIOPS LAB 1

Intelligent Structured Log Analysis

Description

Background. Application logs were originally introduced to assist developers to debug software systems. Logs enabled to troubleshooting

systems by offering a view into the states that are reached and traversed while systems are in operation.

Problem. In the past, humans have been part of the process of interpreting logs. The contents of logs were specified (often using printf), read and

understood by humans. Technological advances and large-scale system complexity have dramatically increased the volume of logs generated.

This volume compels to adopt AI/ML methods for processing. Unfortunately, existing log formats were designed to be human understandable and

not AI/ML parseable. For example, while a human can easily understand the meaning of the log message: “Apr 25 14:01:12 user Throughput

exceed 20Gbps and 7Mpps in 35% of last 15 minutes, above the time threshold 10%!”, its parsing and understanding by AI/ML methods is

expensive, complex and possibly inaccurate since it is difficult to distinguish and identify domain knowledge, properties, values, taxonomies and

categorical data. In other words, extracting feature vectors from logs is a nontrivial, however critical, procedure that exerts influence on the efficacy

of AI/ML algorithms.

Approach. A new approach proposes to move away from unstructured logs into structured logs since their format can be readily parsed by AI/ML

algorithms without requiring complex techniques to identify feature vectors. Structured logs are typically written in a format such as JSON, CSV,

XML, and RDF that can be easily parsed and processed. For example, log records containing I/O request rate, request length, queue size and

other properties can be exploited to build models for storage throughput and latency. As another example, the use of feature vectors to identify

system states provides a new way to discover relationships between components by looking at uncommon states which are correlated when

failures occur.

Results. Structured log analysis provides a novel event infrastructure which will enable to make additional progress in the fields of usage analysis,

performance modelling, anomaly detection, failure diagnosis and security.

ULTRA-SCALE AIOPS LAB 2

Log Analysis

Problem Definition

Machine Readable Data: A format that can be easily

processed by a computer

▪ Marked up human-readable

⎻ HTML, microformats, RDFa, etc.

▪ Intended for machine processing

⎻ CSV, XML, JSON, RDF, etc.

Machine processable

Apr 25 14:01:12
user Throughput
exceed 20Gbps
and 7Mpps in 35%
of last 15
minutes, above
the time
threshold 10%!

Requires expensive, complex, possibly

inaccurate modifications

Human readable

Using machine readable

data is a better approach

for log analysis using

AI/ML

Humans can easily

understand this text,

but for machines it is

complex

Log record

Machine readable

Simple

Take Away

▪ Since traditional log protocols (e.g., syslog, RFC 5424)

where mainly developed to be human readable, their

processing by AI/ML techniques is complex

[1] tools.ietf.org/html/rfc5424

AI/ML

Human Readable versus Machine Readable Data

Difficult to identify

properties and

values

ULTRA-SCALE AIOPS LAB 3

Log Analysis

Applications

Usage analysis [1]

▪ User behaviour analysis (e.g., Twitter [1]), log-based metrics

counting (e.g., Google Cloud [32]), and workload modeling

(e.g., Microsoft [33])

▪ Requires log parsing

Performance modeling

▪ Facebook [3] uses logs for performance improvements

▪ Requires log parsing

Anomaly detection

▪ PCA [18], invariant mining [34], and deep learning [10]

▪ Requires log parsing

Duplicate issue identification

▪ System issues (e.g., disk/network errors) often recur or can be

reported by different users, leading to many duplicate issues

▪ Microsoft has reported some studies [11], [35], [36] on this task

▪ Requires log parsing

Failure diagnosis

▪ Recent progress [4], [37] has been made to automate root

cause analysis based on machine learning techniques

▪ Requires log parsing

[1] Tools and Benchmarks for Automated Log Parsing, Jieming Zhu, et al.

[2] https://logz.io/blog/logstash-grok

Challenge

▪ Transform unstructured logs into structured logs

Existing Approaches

▪ Handcrafted regular expressions or grok patterns [2] to extract event

templates and key parameters: time-consuming and error-prone

▪ Automated log parsing using data-driven such as SLCT, LogCluster,

IPLoM, LKE Spell, Drain: approximated and computationally expensive

ULTRA-SCALE AIOPS LAB 4

Structured Logging

Overview

Limitations of Unstructured Logging

▪ Complex parsing to extract properties and variables

▪ Requires template mining (e.g., using Drain algorithm)

Structured Logging

▪ Logs are written in a structured format (e.g., JSON) that can be

easily parsed and processed using AI/ML

Technical Benefits

▪ Log processing. key/value pairs, explicit numbers vs strings, and

support for nested data structures enable structured logs to be

easily processed by AI/ML

▪ System monitoring. Easily generate charts to analyze behavior

▪ Data anonymization. Easily change log records to hidden

confidential information

▪ Log searching. Enables to easily search and correlate log

messages

⎻ With structured logging: clientid: 12345

⎻ With unstructured logging: SELECT text FROM logs WHERE

text LIKE ”Customer %"

log.Debug(“Response time customer ” + 1234 + ‘ ‘ + 55 + ‘ms’)

DEBUG 2017-01-27 – Response time customer 1234 55ms

Unstructured Logging

Structured Logging

log.Debug(“Response time customer ”, new {clientid=1234}, {rt={d…:55, unit: “ms”}))

DEBUG 2017-01-27 – Response time customer {"clientid": 1234}

{”rt": {‘duration’:55, ”unit": ‘ms’}

{ "time": "2010-01-01 12:34:56.0000",

“msg”: “Response time customer ”,

"clientid ": ”1234",

”rt": {

“duration”: 55,

“unit”: “ms”}

}

When a log record contains only a string message, it is

called unstructured: complex to process by AI/ML

methods

Serialize the entire message and additional metadata

as JSON

Parsing is done using, e.g., SLCT, LogCluster, IPLoM,

LKE Spell, Drain, etc.

Take Away

▪ Generate machine readable log files to supported advanced

analytics for anomaly detection and root-cause analysis

https://en.wikipedia.org/wiki/Unstructured_data

ULTRA-SCALE AIOPS LAB 5

Structured Logging

Implementation

Simple implementation in Python [2]

Take Away

▪ Structured logging libraries exist for most languages. Google

also provides a solution

⎻ https://cloud.google.com/logging/docs/structured-logging

import json

import logging

class StructuredMessage(object):

def __init__(self, message, **kwargs):

self.message = message

self.kwargs = kwargs

def __str__(self):

return ‘{%s: %s}' % (self.message, json.dumps(self.kwargs))

m = StructuredMessage # optional, to improve readability

logging.basicConfig(level=logging.INFO, format='%(message)s')

logging.info(m('message 1', foo='bar', bar='baz', num=123, fnum=123.456))

[1] https://github.com/hynek/structlog/

[2] https://docs.python.org/2/howto/logging-cookbook.html#implementing-structured-logging

{“message 1”: {"fnum": 123.456, "num": 123, "bar": "baz", "foo": "bar"}}

Which results in following log

import structlog

log = structlog.get_logger()

try:

raise ValueError("This is the exception message.")

except ValueError:

log.exception("This is the log message.")

{"event": "This is the log message.",

"exception": "Traceback (most recent call last)”,

“File”: "/usr/bin/decision_tree.py“,

“Line”: 27,

“Module”: “__main__” ,

“Exception”: “ValueError("This is the exception message.")”}

Using package structlog [1]

Python

▪ Structured logging can be easily implemented in Python or

use a specialized library such as structlog [1]

Which results in following log

[3] Learning to Log: Helping Developers Make Informed Logging Decisions -- LogAdvisor -- Jieming Zhu

Note: approaches such as LogAdvisor [3] can help developers

to write log statements

ULTRA-SCALE AIOPS LAB 6

Log Parsing

Problem Definition

1. Import messages from log storage
• Access database, e.g., from ELK

2. Preprocessing
• Parse content to extract timestamp, pid, log level and variable part

• Parse timestamps and fix them

• Squash Python stack traces

3. Template Mining
• Reconstruct log templates from message content

• Collect variables and their values

4. Record’s time-series
• Group records by templates and create time-series

5. Classification
• Classify time-series as permanent, periodic or isolated

6. Keywords extraction
• Extract keywords from templates using NLP

7. Correlation
• Find correlations between time series formed by different templates

8. Event reconstruction
• Group records into events

2019-07-10T15:23:52.264 18550 ERROR oslo.messaging._drivers.impl_rabbit
[-] [fa5b6584-eb05-4a8a-bce2-356a66a218cb] AMQP server on
192.168.5.151:5672 is unreachable: timed out. Trying again in 8
seconds.: timeout: timed out

Timestamp: 2019-07-10T15:23:52.264

Content: AMQP server on 192.168.5.151:5672 is unreachable: timed out.
Trying again in 8 seconds.: timeout: timed out

AMQP server on @VAR1 is unreachable: Trying again in @VAR2 seconds.

AMQP server on @VAR1 is unreachable: Trying again in @VAR2
seconds.

AMQP server on @VAR1 is unreachable: Trying again in @VAR2
seconds.: RecoverableConnectionError: @VAR3

Summary: AMQP server is unreachable

Keywords: AMQP

Rank: 55

Complex

and
Expensive

For more than 15 years many log parsers have been proposed.

Nonetheless, parsing is still expensive (time), complex, and not
always yields a high accuracy

ULTRA-SCALE AIOPS LAB 7

Log Parsing

Problem Definition

Limitations

▪ Accuracy for complex raw

logs (e.g., HPC) is relatively

low: 81%

Generating these events

requires sophisticated

algorithms
Log Templates

Application

Log Preprocessing Use regular expressions

to identify special fields,

e.g., IP, port, IDs

ULTRA-SCALE AIOPS LAB 8

Related Work

Facebook

Remediation at Facebook

▪ FB Auto Remediation (FBAR) [1, 2] (2011)

▪ Detect and react to failures

‒ migrating services, rebooting, reimaging or off-lining the

machine for manual repair

[1] A. Power, “Making facebook self-healing,” https://www.facebook.com/notes/facebook-engineering/making-facebook-selfhealing/10150275248698920/, 2011.

[2] R. Komorn, “Making facebook self-healing: Automating proactive rack maintenance,” https://code.facebook.com/posts/629906427171799/making-facebook-self-healing-automating-proactiverack-maintenance/, 2016.

[3] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text classification,” arXiv:1607.01759, 2016.

Benefits of FBAR service

▪ Developed and maintained by 2 engineers

▪ Doing the work of 200 system administrators

▪ Manages more >50% Facebook infrastructure

100x efficiency

improvement

Self-service

Service owners write their

own remediation plugins

Overall Procedure

1. MachineChecker [4]: runs checks periodically (ping, ssh, NIC

speed, SMART checks)

2. FBAR: Once a check fails, an alert is created with failure

information

3. Service owners: write customized remediation for symptoms

and set proper rate limits for remediation to make sure there

are always sufficient servers running to keep the service up

4. Cyborg: When none of remediations can fix an issue, FBAR

passes case to Cyborg [4] repair engine

5. Human involvement. Cyborg executes low-level software fixes

such as firmware updates. If fix fails: create repair ticket for a

technician

6. Recommendation. Use ML NLP fastText [3] to learn from

repair ticket/logs and recommend repair actions

(Huawei Cloud has Cloud Auto Remediation (CAR) which is rule-base)

FBAR uses a simple form of

templating to identify states using

log files

ULTRA-SCALE AIOPS LAB 9

Related Work

Facebook

Anomaly Detection

▪ Many false alarms

‒ Alarms when servers are under heavy load

▪ Transient failures

‒ Run CPU, MEM, and network benchmarks to create

loads to reproduce transient failures (CoreMark,

iperf3, …)

▪ Techniques

‒ Time series, Holt-Winters, exponential, and Gaussian

mixture models

▪ Thresholds

‒ Pre-defined static thresholds

‒ Data points outside predictive thresholds

‒ Learned from the time series using machine learning

Recommendations

▪ Use ML to learn from closed repair tickets

▪ Recommend repair actions

‒ Based on how similar tickets have been closed

‒ Use raw text logs as features

‒ Predict the repair actions

▪ Evaluation (undiagnosed tickets)

‒ Recommend up to 5 repair actions for undiagnosed

ticket

‒ Correct repair actions: 50% to 80%

Procedure

▪ Identify failure states

▪ Create context for failure

‒ Abstract logs, metrics, traces, events, …

▪ State explosion problem

‒ Aggregates states according to patterns

▪ Map state patterns to recovery scripts

▪ Establish relationships between patterns’ elements

and scripts actions

▪ Recommendation

‒ For a given failure, find the matching script

▪ Feedback loop from technitiaon

ULTRA-SCALE AIOPS LAB 10

Related Work

Facebook

2020
Real-time Automated RCA (Root Cause Analysis)

▪ Used in production at Facebook

▪ Analyzes structured logs to find failure modes associations

‒ Software service logs and Hardware telemetry

▪ Examples

‒ Identify a specific combination of hardware and software

configurations correlated to bad reboots

‒ Identify characteristics of a software job that are

correlated to exceptions

▪ System architecture

‒ Structured logs are pushed to Scuba in-memory db

‒ Scuba use dimensional RCA

‒ For long-term analytics, logs are stored in HDFS, queried

by Hive and Presto

Anomalous Hardware and Software Configurations

▪ Find groups of servers that failed to reboot due to a

configuration problem. Root cause analysis

‒ Labeled servers that did not rebooted as positive and the

rest as negative

‒ Create dataset with the labels and with >20 service

attributes, e.g., model, services, firmware, kernel

‒ Identify attributes correlated with positive/negative labels

‒ Root cause: {firmware version, component model, server

model}

AZ1,

firmware

3.3,
RH2288 V2

AZ1,

firmware

3.1,
RH2288 V3

AZ2,

firmware

2.1,
RH2288 V3

AZ2,

firmware

3.1,
RH2288 V3

AZ1,

firmware

2.2,
RH2288 V2

Hardware/software properties

Why some servers have bad reboots?
What is the root cause?

JSON

ULTRA-SCALE AIOPS LAB 11

Related Work

Commercial Solutions

Platform

Query,

filter,

Visual.

Template Mining Log Comparison
Anomaly

Detection
Log Correlation

Incident

Detection
RCA Uniqueness

Coralogix ELK Loggregation
Error spike

anomalies
Flow anomalies

SumoLogic Yes LogReduce LogCompare

DataDog Yes
LogPatterns

(video)

Link logs and

traces

Transactions

(using ID)

SolarWinds Loggly Yes
Anomaly

detection
Security

Logz.io ELK
LogPatterns

(clustering, video)
Security

Rollbar Yes
Grouping/Fingerp

rinting

Logentries Yes
RegEx Named

Capture Groups

Anomaly Alert

(rule-based)

SQL-based query

language (LEQL)

Oracle Log Analytics Yes
Log Comparison

(clustering)

Anomaly

Detection (OD)

Time-series

correlation

LogicMonitor Yes
RCA (topology &

metrics)

Elastic.co (ELK) Yes
Outlier detection

(using counts)

Sematext ELK
Security, 75+

integration

https://coralogix.com/tutorials/what-is-coralogix-loggregation/
https://coralogix.com/tutorials/error-volume-anomaly/
https://coralogix.com/tutorials/what-is-coralogix-pattern-anomaly/
https://help.sumologic.com/05Search/LogReduce
https://help.sumologic.com/05Search/LogCompare
https://docs.datadoghq.com/logs/explorer/patterns/
https://datadog-docs.imgix.net/images/logs/explorer/patterns/patterns_overview.mp4
https://docs.datadoghq.com/tracing/connect_logs_and_traces/?tab=java
https://docs.datadoghq.com/logs/explorer/transactions/
https://www.loggly.com/resource/loggly-anomaly-detection-introduction/
https://logz.io/platform/features/log-patterns/
https://logz.io/learn/video/how-tos-log-patterns/
https://docs.rollbar.com/docs/grouping-algorithm
https://logentries.com/product/analytics/
https://docs.logentries.com/docs/anomaly
https://docs.oracle.com/en/cloud/paas/management-cloud/logcs/perform-advanced-analytics-cluster-compare.html#GUID-3C25DE14-96C6-4575-8F3D-AF5665AB5CF5
https://docs.oracle.com/en/cloud/paas/management-cloud/logcs/example-scenario-detect-anomalies-using-outliers.html
https://www.logicmonitor.com/blog/root-cause-analysis-and-the-road-to-automated-remediation
https://www.elastic.co/guide/en/kibana/current/xpack-ml-anomalies.html

ULTRA-SCALE AIOPS LAB 12

Structured Logging

Use Cases and PoCs

[1] https://github.com/logpai/logparser

Use Case 1: Cloud Log Analysis PoC

‒ Pain point. Log analysis for CLS requires the use of CPU intensive log

parsing techniques (e.g., regex and Drain [1])

‒ Technical benefit. Adoption of structured logging will lower CPU processing

‒ Business value. Performance improvement and lower computational

resources

Use Case 2: Real-time Error Tracking PoC

‒ Pain point. DevOps cannot be notified easily when their code reaches a

specific faulty state in (pre)production

‒ Technical benefit. Real-time close-loop system from Dev, to code execution,

to Ops, and to Dev (Dev → Ops → Dev)

‒ Business value. Real-time error monitoring and debugging of services

Use Case 3: Multidimensional Root-Cause Mining PoC

‒ Pain point. It is currently difficult to use logs from CLS for root-cause

analysis

‒ Technical benefit. Structured logs enable to extract correlation rules from

logs to conduct root-cause analysis

‒ Business value. Lower troubleshooting time for service failures by 80%

Use Case 4: Cloud Log Bandwidth Reduction PoC

‒ Pain point. Transfer of logs from services to CLS uses a high network

bandwidth

‒ Technical benefit. Structured logs and protobuf enable up to 5x bandwidth

savings

‒ Business value. Network bandwidth savings 5x

LoggingMicroservice
Log Template

Mining
Log Analysis

Structured

Logging
Microservice Log Analysis

Dev → Monitoring → Anomaly Detection → Alarm → SRE

Dev → State → Monitoring → Event Handling

Real-time notification

1.5GB → 0,8GB → 0,3GB

LOWER NETWORK BANDWIDTH REQUIREMENTS

5x

Unstructured logs Structured logs Multidimensional view

Today Future

Today

Future

Today

Future

Today Future

ULTRA-SCALE AIOPS LAB 13

Use Case 3

Multidimensional Root-Cause Mining

!

SRE operator

1

2

3

4

Error: 500

Access Logs

Probable Root-cause

Rule Mining

algorithm

Customer

Goal. Reduce troubleshooting time of access logs

Business value. Save 1h-3h of debugging depending on which information is

found manually

Problem. Logs often contains the explanation of failures via the correlation of a

failure with its root causes. Unfortunately, it is typically difficult to manually find

these correlations

Approach. Association rules can be used to find the rules that correlate how

symptoms and root-cause occur together in log records

For example, the rule {error_500} ⇒ {az=north_china, host= 169.206.0.23}

indicate the root cause of the status code error_500 is caused by host

169.206.0.23 located in availability zone north_china

…

…

…

Structured

Logs

Fig. Results running PoC for Use Case #3

P. Notaro, S. Haeri, J. Cardoso and M. Gerndt, "LogRule: Efficient Structured Log Mining for Root Cause Analysis," in IEEE Transactions

on Network and Service Management, 2023

Pipeline of the LogRule algorithm. Blue boxes are algorithm phases, numbered items below are the consecutive

steps taken in each phase. First, structured logs are pre-processed to construct a transactional database D. FP-

Growth is then applied to generate a list of candidate explanations Xc, which are verified and selected via

statistical correlation with the input failure pattern Y. Remaining explanations Xs are then refined and organized to

provide a final set of explanations Xf

ULTRA-SCALE AIOPS LAB 14

Practical Implementation

Title: Structured Log Analysis in a Web Applications

Description:

• Choose a programming language and a web framework (e.g.,

Python with Flask, Java with Spring Boot).

• Implement structured logging in the application using a logging

library that supports structured data (e.g., Python's structlog,

Java's Logback).

• Ensure that logs include contextual information such as

timestamps, log levels, user IDs, request IDs, and other relevant

metadata.

• Create log entries for different levels (debug, info, warning, error)

during various operations within the application (e.g., user login,

data retrieval, error handling)

• Based on the paper "LogRule: Efficient Structured Log Mining for

Root Cause Analysis” Implement a basic algorithms for root-

cause analysis using logs

Deliverables

• Source code of the application with structured log analysis

algorithm implemented.

• A report explaining the choices made for logging library, structure

of log messages, use cases, and examples of RCA.

ULTRA-SCALE AIOPS LAB 15

References

▪ Fast dimensional analysis for root cause analysis at scale, Facebook

▪ Sentry.io, rollbar.com, Raygun, Airbrake, Bugsnag, OverOps

▪ JSON databases: MongoDB, CouchDB, ElasticSearch, MySQL, PosgreSQL

▪ Structured logging at Google Cloud

▪ https://cloud.google.com/logging/docs/structured-logging

▪ Key foundations of logging

▪ https://tersesystems.com/blog/2020/03/10/a-taxonomy-of-logging/

▪ Traditional Logging versus structured logging

▪ https://softwareengineering.stackexchange.com/questions/312197/benefits-of-structured-logging-vs-basic-logging

▪ Why Structured logging is important

▪ https://stackify.com/what-is-structured-logging-and-why-developers-need-it/

