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Abstract. Server virtualization in the form of virtual machines (VMs)
with the use of a hypervisor or a Virtual Machine Monitor (VMM) is an
essential part of cloud computing technology to provide infrastructure-
as-a-service (IaaS). A fault or an anomaly in the VMM can propagate to
the VMs hosted on it and ultimately affect the availability and reliability
of the applications running on those VMs. Therefore, identifying and
eventually resolving it quickly is highly important. However, anomalous
VMM detection is a challenge in the cloud environment since the user
does not have access to the VMM.
This paper addresses this challenge of anomalous VMM detection in
the cloud-based environment without having any knowledge or data from
VMM by introducing a novel machine learning-based algorithm called
IAD: Indirect Anomalous VMMs Detection. This algorithm solely uses
the VM’s resources utilization data hosted on those VMMs for the anoma-
lous VMMs detection. The developed algorithm’s accuracy was tested on
four datasets comprising the synthetic and real and compared against
four other popular algorithms, which can also be used to the described
problem. It was found that the proposed IAD algorithm has an average
F1-score of 83.7% averaged across four datasets, and also outperforms
other algorithms by an average F1-score of 11%.

Keywords: anomaly detection · cloud computing · VMM · hypervisor.

1 Introduction

Cloud computing enables industries to develop and deploy highly available and
scalable applications to provide affordable and on-demand access to compute and
storage resources. Server virtualization in the form of virtual machines (VMs)
is an essential part of cloud computing technology to provide infrastructure-
as-a-service (IaaS) with the use of a hypervisor or Virtual Machine Monitor
(VMM) [12]. Users can then deploy their applications on these VMs with only
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Fig. 1: An example showcasing the propagation of anomalies in a Type-1 hypervisor or
VMM to the virtual machines (VMs) hosted on it.

the required resources. This allows the efficient usage of the physical hardware
and reduces the overall cost. The virtualization layer, especially the hypervi-
sors, is prone to temporary hardware errors caused by manufacturing defects,
a sudden increase in CPU utilization caused by some task or disconnection of
externally mounted storage devices, etc. The VMs running on these VMMs are
then susceptible to errors from the underneath stack, as a result, can impact
the performance of the applications running on these VMs [7,8]. Figure 1 shows
an example propagation of anomalies in a virtualization stack using a type-1
hypervisor to the VM hosted on it. These anomalies may lead to the failure of
all VMs and, ultimately, the applications hosted on them.

In the development environment, these anomalous VMMs are relatively eas-
ily detectable by analyzing the logs from the hypervisor dumps. But in the
production environment running on the cloud, anomalous VMMs detection is a
challenge since a cloud user does not have access to the VMMs logs. Addition-
ally, many anomalous VMM detection techniques have been proposed [11,13,15].
However, these works either require the monitoring data of the hypervisor or in-
ject custom probes into the hypervisor. Therefore, the usage of such solutions
becomes infeasible. Furthermore, due to the low downtime requirements for the
applications running on the cloud, detecting such anomalous VMMs and their
resolutions is to be done as quickly as possible.

Therefore, this challenge is addressed in this paper for detecting anoma-
lous VMMs by solely using the VM’s resources utilization data hosted on those
VMMs by creating a novel algorithm called IAD: Indirect Anomalous VMMs
Detection. We call the algorithm indirect since the detection must be done with-
out any internal knowledge or data from the VMM; it should be solely based on
the virtual machine’s data hosted on it. The key contributions are :

– We present an online novel machine learning-based algorithm IAD for accu-
rate and efficient detection of anomalous VMMs by solely using the resource’s
utilization data of the VM’s hosted on them as the main metric (§3).

– We evaluate the performance of the IAD on two different aspects: 1) Anoma-
lous VMMs finding accuracy (§5.1), and 2) Anomalous VMMs finding effi-
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Table 1: Symbols and definitions.

Symbol Interpretation

n Number of time ticks in data
d Number of virtual machines hosted on a VMM
Xt The percentage utilization of a resource (for example, CPU

or disk usage) by a VM at a time t

Xj
t The percentage utilization of a resource at a time t for jth VM

{c1t , c2t , ..., cmt } a set of m ≤d VMs with change point at time tick t
w Window size
minPercentVMsFault Minimum % of total number of VMs on a VMM which must

have a change point for classifying the VMM anomalous.

ciency and scalability (§5.2), and compare it against five other popular algo-
rithms which can also be applied to some extent on the described problem.

– We evaluate the IAD algorithm and other five popular algorithms on syn-
thetic and two real datasets.

Paper Organization: Section 2 describes the overall problem statement ad-
dressed in this paper along with an illustrative example. The design and details
of the proposed IAD algorithm are presented in Section 3 . Section 4 provides ex-
perimental configuration details along with the algorithms and the datasets used
in this work for evaluation. In Section 5, the evaluation results are presented.
Finally, Section 6 concludes the paper and presents an outlook.

2 Problem Definition

This section presents the overall problem definition of indirectly detecting anoma-
lous VMMs in a cloud-based environment. Table 1 shows the symbols used in
this paper.

We are given X = n × d dataset, with n representing the number of time
ticks and d the number of virtual machines hosted on a VMM. Xj

t denotes the
percentage utilization of a resource (for example, CPU or disk usage) at a time
t for jth VM. Our goal is to detect whether the VMM on which the d virtual
machines are hosted is anomalous or not. Formally:

Problem 1. (Indirect Anomalous VMM Detection )

– Given a multivariate dataset of n time ticks, with d virtual machines (Xj
t

for j = {1, · · · , d} and t = {1, · · · , n}) representing the CPU utilization
observations of VMs hosted on a VMM.

– Output a subset of time ticks or a time tick where the behavior of the VMM
is anomalous.

One of the significant challenges in this problem is the online detection, in
which we receive the data incrementally, one time tick for each VM at a time,
i.e., Xj

1 , X
j
2 , · · · , for the jth VM. As we receive the data, the algorithm should
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Fig. 2: Examples showing CPU utilization of two virtual machines hosted on a VMM.
The left sub-figure shows an application running only on VM 2, while the right sub-
figure shows the application running on both VMs. We can see a significant decrement
in the CPU utilization of the two VMs when an anomaly (high-CPU load) is generated
on the VMM (shown by dotted red lines).

output the time ticks where the behavior of the VMM is observed as anomalous.
However, without looking at the future few time ticks after time t, it would
be impractical to determine whether at time point t, the VMM is anomalous
or not since the time ticks t+ 1, t+ 2, · · ·, are essential in deciding whether an
apparent detection at time t was an actual or simply noise. Hence, we introduce
a window parameter w, upon receiving a time tick t+w, the algorithm outputs
whether at time t the VMM showcased anomalous behavior or not. Additionally,
as the change points for VMs hosted on VMM could be spread over a specific
duration due to the effect of the actual fault being propagating to the VMs and
the granularity of the collected monitoring data, therefore, using an appropriate
window size can provide a way for getting those change points.

2.1 Illustrative Example

Here we illustrate the problem with two examples in Fig. 2 showcasing the CPU
utilization of two virtual machines hosted on a VMM. In the left sub-figure,
an application is running only on VM 2, while in the right, an application is
running on both VMs. During the application run time, an anomaly, i.e., high
CPU load, was generated on the hypervisor for some time (shown by dotted red
lines). During this time, we can observe a significant drop in the CPU utilization
by the application (affecting the performance of the application) of the two VMs
(especially when an application is running on the VM). The load on a VMM
affects all or most of the VMs hosted on it, which ultimately can significantly
affect the performance of the applications running on the two VMs; therefore,
we call such a VMM anomalous when the load was generated on it.

3 Indirect Anomaly Detection (IAD) Algorithm

This section presents our proposed Indirect Anomaly Detection (IAD) algorithm
along with the implemented system for evaluating it. The overall system work-
flow diagram is shown in Figure 4 and mainly consists of two parts: the main
IAD Algorithm, and the Test Module for evaluating the algorithm.
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Fig. 3: High-level system workflow of the implemented system for evaluating IAD al-
gorithm and the interaction between its components in a general use case.

3.1 IAD Algorithm

Our principal intuition behind the algorithm is that if a time tick t represents
a change point for some resource utilization (such as CPU utilization) in most
VMs hosted on a VMM; then the VMM is also anomalous at that time tick. This
is based on the fact that a fault in VMM will affect most of the VMs hosted
on it, and therefore those VMs would observe a change point at a similar point
of time (in the chosen window w (Table 1)) in their resource’s utilization. IAD
algorithm consists of two main parts, described below:

Change Points Detector : We first explain how the change point, i.e., time
tick where the time series changes significantly, is calculated. Recall from §2 that,
we have introduced a window parameter w, upon receiving the time tick t+ w,
the Change Points Detector outputs whether the time tick t is a change point
or not. Given a dataset Xj of size w for jth VM, this component is responsible
for finding the change points in that VM. This can be calculated in two ways:
Mean-based detector and Z-score-based detector.

– Mean-based Detector: In this detector, a windowed mean, i.e., the mean
of all the values in the window, and the global mean, i.e., the mean of all
the values until the current time tick is calculated. Since the IAD algorithm
is designed for running it in an online way, therefore not all the values can
be stored. Thus global mean is calculated using Knuth’s algorithm [5,9]. We
then calculate the absolute percentage difference between the two means:
windowed mean and global mean. If the percentage difference is more sig-
nificant than the specified threshold (by default is 5%), then the time tick t
for jth VM is regarded as the change point.

– Z-score-based Detector: This detector is based on the calculation of the Z-
scores [4,6]. Similar to the Mean-based detector, here also a windowed mean,
i.e., the mean of all the values in the window, and the global mean, i.e., the
mean of all the values until the current time tick is calculated. We addition-
ally calculate the global stand deviation, i.e., the standard deviation of all
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Fig. 4: Indirect Anomaly Detection (IAD) Algorithm workflow sequence diagram

the values until the current time tick. Since the IAD algorithm is designed
for running it in an online way, global stand deviation is calculated using
Welford’s method [9]. These statistics are then used for the calculation of
the z-scores for all the data points in the window using Equation 1.

z scores =
(windowed mean− global mean)

global stand deviation√
w

(1)

If the Z-scores of all windowed observations are greater than the defined
threshold (3 × global stand deviation) then the time tick t for jth VM is
regarded as the change point.

In the main algorithm, only Z-Ssore-based Detector is used as it provides
higher accuracy and has fewer false positives.

Anomaly Detector This component receives the input resource utilization
data X of size n× d where d is the number VMs hosted on a VMM along with
the minPercentVMsFault (Table 1)) as the input parameter. We first check the
input timeseries of w length for 1) zero-length timeseries and 2) if the input
timeseries of all VMs are of the same length or not. If any of the two initial
checks are true, then we quit and don’t proceed ahead. We assume that all the
VM’s resources utilization data is of the same length only. After doing the initial
checks, each of the VM’s windowed timeseries belonging to the VMM is sent to
the Change Points Detector for the detection of whether the time tick t is a
change point or not. If the percentage number of VMs ({c1t , c2t , ..., cmt } out of d)
having the change point at time tick t is greater than the minPercentVMsFault
input parameter, then the VMM is reported as anomalous at time tick t. The
above procedure is repeated for all time ticks. Figure 4 shows the workflow
sequence diagram of the IAD algorithm. Furthermore, the developed approach
can be applied for multiple VMMs as well.
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3.2 Test Module

This component is responsible for generating the synthetic data and evaluating
the algorithm performance by calculating the F1-score on the results from the
algorithm. It consists of multiple sub-component described below:

– Synthetic Data Generator: It takes the number of VMMs, number of
VMs per VMM, percentage of the VMs with a fault; as the input for gen-
erating synthetic timeseries data. This synthetic data follows a Gaussian
distribution based on the input parameters. This component also automat-
ically divides the generated data into true positive and true negative labels
based on the percentage of the VMs with a fault parameter.

– Algorithm Tester: It is responsible for invoking the algorithm with various
parameters on the synthetic data and tune the algorithm’s hyperparameters.

– Evaluation: The results from the algorithm are passed as the input to this
sub-component, where the results are compared with the actual labels, and
the overall algorithm score in terms of F1-score is reported.

4 Experimental Settings

We design our experiments to answer the following questions:
Q1. Indirect Anomaly Detection Accuracy: how accurate is IAD in the

detection of anomalous VMM when compared to other popular algorithms?
Q2. Anomalous VMMs finding efficiency and scalability: How does

the algorithm scale with the increase in the data points and number of VMs?

4.1 Datasets

For evaluating the IAD algorithm, we considered four types of datasets listed in
Table 2 along with their information and are described below:

Synthetic: This is the artificially generated dataset using the Test Module
component described in §3.

Experimental-Synthetic Merged: This is a dataset with a combination of
experimental data and synthetic data. We created two nested virtual machines
on a VM in the Google Cloud Platform to collect the experimental dataset.
The underneath VM instance type is n1-standard-4 with four vCPUs and 15
GB of memory, and Ubuntu 18.04 OS was installed on it. This VM instance
acts as a host for the above VMs. libvirt toolkit is used to manage and create
nested virtualization on top of the host machine. Kernel-based Virtual Machine
(KVM) is used as a VMM. The configuration of the two nested VMs are i) 2vCPU
and 2GB memory, ii) 1vCPU and 1GB memory. Cloud-native web applications
were run on these two VMs. Monitoring data from the two VMs and underneath
host is exported using the Prometheus agent deployed on each of them to an
external virtual machine. stress-ng is used for generating the load on the VMM.
Based on this infrastructure, we collected a dataset for various scenarios and
combined it with the synthetic data.
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Table 2: Datasets used in this work for evaluating the algorithms.

Dataset Anomalous Non-Anomalous VMs TimeTicks
Name VMMs VMMs Per VMM per VM

Synthetic 5 5 10 1000
Exp-Synthetic Merged 42 17 2 (experimental) 5400

8 (synthetic)

Azure† [1] 16 10 10 5400

Alibaba† [14] 10 10 10 5400
†These are modified for our usecase.

(a) Synthetic (b) Exp-Synthetic (c) Azure (d) Alibaba

Fig. 5: An example profile of an anomalous VMM having 10 VMs in all the datasets
used in this work for evaluation.

Azure Dataset: This dataset is based on the publicly available cloud traces
data from Azure [1]. We used the VMs data from it and created random groups
of VMs, with each group representing the VMs hosted on a VMM. Afterward,
we feed these timeseries groups in our synthetic data generator for randomly
increasing or decreasing the CPU utilization of the VMs within a VMM based
on the input parameters to create anomalous and non-anomalous VMMs.

Alibaba Dataset: This dataset is based on the publicly available cloud
traces and metrics data from Alibaba cloud [14]. A similar method as the Azure
Dataset was also applied to form this dataset.

Figure 5 shows an example profile of an anomalous VMM for all the datasets.

4.2 Evaluated Algorithms

We compare IAD to the five other algorithms listed in Table 3 along with their
input dimension and parameters. ECP is a non-parametric-based change detec-
tion algorithm that uses the E-statistic, a non-parametric goodness-of-fit statis-
tic, with hierarchical division and dynamic programming for finding them [3].
BnB (Branch and Border) and its online version (BnBO) are also non-parametric
change detection methods that can detect multiple changes in multivariate data
by separating points before and after the change using an ensemble of random
partitions [2]. Lastly, we use the popular anomaly detection algorithm: isola-
tion forest for detecting anomalous VMM [10]. The primary isolation forest (IF)
works on the input data directly, while we also created a modified version of it
called the isolation forest features (IFF), which first calculates several features
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Table 3: The details of the algorithms used in this work for evaluation, along with their
input dimension and parameters.

Algorithm Input Dimension Parameters

IAD n × d w, minPercentVMsFault
ECP [3] n × d change points, Min. points b/w change points
BNB [2] n × d w, number of trees, threshold for change points
BNBOnline [2] n × d w, number of trees, threshold for change points
IF [10] n × d contamination factor (requires training)
IFF [10] n × features contamination factor (requires training)

such as mean, standard deviation, etc., for all values within a window on the
input dataset and then apply isolation forest on it. The downside of the IF and
IFF is that they require training.

4.3 Other Settings

We have used F1-Score (denoted as F1) to evaluate the performance of the
algorithm. Evaluation tests have been executed on 2.6 GHz 6-Core Intel Core i7
MacBook Pro, 32 GB RAM running macOS BigSur version 11. We implement
our method in Python. For our experiments, hyper-parameters are set as follows.
The window size w is set as 1 minute (60 samples, with sampling done per
second), threshold k as 5%, and percentVMsFault f as 90%. However, we also
show experiments on parameter sensitivity in this section.

5 Results

Our Initial experiments showed that 1) CPU metric is the most affected and
visualized parameters in the VMs when some load is generated on the VMM; 2)
All or most VMs are affected when a load is introduced on the VMM.

5.1 Q1. Indirect Anomaly Detection Accuracy

Table 4 shows the best F1-score corresponding to each algorithm evaluated in this
work (§4.2) and on all the datasets (§4.1). We can observe that IAD algorithm
outperforms the others on two datasets, except for the Experiment-Synthetic
dataset (BNB performed best with F1-Score of 0.90) and Alibaba dataset (IFF
performed best with F1-Score of 0.66. However, if one wants to find an algorithm
that is performing well on all the datasets (Average F1-score column in Table 4),
in that case, IAD algorithm outperforms all the others with an average F1-score
of 0.837 across all datasets.

Furthermore, we present the detailed results of the algorithms on all four
datasets varying with the number of VMs and are shown in Figure 6. One can
observe that IAD performs best across all the datasets, and its accuracy increases
with the increase in the number of VMs. Additionally, after a certain number of
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Table 4: F1-score corresponding to each algorithm evaluated in this work (§4.2) and
on all the datasets (§4.1)
Algorithm Synthetic Exp-Synthetic Azure Alibaba Average F1-score

IAD 0.96 0.86 0.96 0.57 0.837
ECP 0.67 - 0.76 0.51 0.64
BNB 0.62 0.90 0.8 0.33 0.662
BNBOnline 0.87 0.81 0.86 0.4 0.735
IF 0.76 0.83 0.76 0.2 0.637
IF Features (IFF) 0.76 0.83 0.76 0.66 0.75

(a) Synthetic (b) Exp-Synthetic

(c) Azure (d) Alibaba

Fig. 6: F1-score variation with the number of VMs corresponding to each algorithm
evaluated in this work (§4.2) and on all the datasets (§4.1)

VMs, the F1-score of IAD becomes stable. This shows that if, for example, we
have the synthetic dataset, then the best performance is possible with VMs ≥ 9.
Similarly, in the case of the Azure dataset, while for the Exp-Synthetic dataset,
one needs at least five VMs, and for the Alibaba dataset, seven VMs for the
algorithm to perform well.

5.2 Q2. Anomalous VMMs finding efficiency and scalability

Next, we verify that our algorithm’s detection method scale linearly and com-
pare it against other algorithms. This experiment is performed with the synthetic
dataset, since we can increase the number of VMs per VMM in it. We linearly in-
creased the number of VMs from 1 to 100 and repeatedly duplicated our dataset
in time ticks by adding Gaussian noise. Figure 7 shows various algorithm’s de-
tection method scalability for different parameters. One can observe that IAD’s
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(a) With number of VMs (b) With number of time ticks

Fig. 7: Algorithm’s detection method scalability with respect to different parameters.

detection method scale linearly in terms of both the parameters. However, when
the number of VMs are scaled to 100, IAD takes a longer time as compared
to others, but it provides results under 2.5s which if we see is not that much
considering the accuracy we get with that algorithm. However, on the time ticks
parameter, BNB, BNBOnline and IAD performed similar to each other, while
IF and IFF provides results under 1 second, but its accuracy is worse as com-
pared to the others on all the datasets, and it has the extra overhead of training.
ECP algorithm’s results are not shown, since it requires more than an hour for
performing the detection with 100 VMs and 100,000 time ticks.

6 Conclusion

We propose IAD algorithm for indirect detection of anomalous VMMs by solely
using the resource’s utilization data of the VM’s hosted on them as the primary
metric. We compared it against the popular change detection algorithms, which
could also be applied to the problem. We showcased that IAD algorithm outper-
forms all the others on an average across four datasets by 11% with an average
accuracy score of 83.7%. We further showcased that IAD algorithm scale’s linear
with the number of VMs hosted on a VMM and number of time ticks. It takes
less than 2.5 seconds for IAD algorithm to analyze 100 VMs hosted on a VMM
for detecting if that VMM is anomalous or not. This allows it to be easily usable
in the cloud environment where the fault-detection time requirement is low and
can quickly help DevOps to know the problem is of the hypervisor or not.

The future direction includes using other metrics like network and storage
utilization to enhance the algorithm’s accuracy further.
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