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Abstract. A memory leak in an application deployed on the cloud can
affect the availability and reliability of the application. Therefore, to
identify and ultimately resolve it quickly is highly important. However, in
the production environment running on the cloud, memory leak detection
is a challenge without the knowledge of the application or its internal
object allocation details.
This paper addresses this challenge of online detection of memory leaks in
cloud-based infrastructure without having any internal application knowl-
edge by introducing a novel machine learning based algorithm Precog.
This algorithm solely uses one metric i.e the system’s memory utilization
on which the application is deployed for the detection of a memory leak.
The developed algorithm’s accuracy was tested on 60 virtual machines
manually labeled memory utilization data provided by our industry part-
ner Huawei Munich Research Center and it was found that the proposed
algorithm achieves the accuracy score of 85% with less than half a second
prediction time per virtual machine.

Keywords: memory leak · online memory leak detection · memory leak
patterns · cloud· linear regression

1 Introduction

Cloud computing is widely used in the industries for its capability to provide
cheap and on-demand access to compute and storage resources. Physical servers
resources located at different data centers are split among the virtual machines
(VMs) hosted on it and distributed to the users [5]. Users can then deploy their
applications on these VMs with only the required resources. This allows the
efficient usage of the physical hardware and reducing the overall cost. However,
with all the advantages of cloud computing there exists the drawback of detecting
a fault or an error in an application or in a VM efficiently due to the layered
virtualisation stack [1,4]. A small fault somewhere in the system can impact the
performance of the application.
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An application when deployed on a VM usually requires different system re-
sources such as memory, CPU and network for the completion of a task. If an
application is mostly using the memory for the processing of the tasks then this
application is called a memory-intensive application [8]. It is the responsibility of
the application to release the system resources when they are no longer needed.
When such an application fails to release the memory resources, a memory
leak occurs in the application [14]. Memory leak issues in the application can
cause continuous blocking of the VM’s resources which may in turn result in
slower response times or application failure. In software industry, memory leaks
are treated with utmost seriousness and priority as the impact of a memory leak
could be catastrophic to the whole system. In the development environment,
these issues are rather easily detectable with the help of static source code anal-
ysis tools or by analyzing the heap dumps. But in the production environment
running on the cloud, memory leak detection is a challenge and it only gets
detected when there is an abnormality in the run time, abnormal usage of the
system resources, crash of the application or restart of the VM. Then the reso-
lution of such an issue is done at the cost of compromising the availability and
reliability of the application. Therefore it is necessary to monitor every applica-
tion for memory leak and have an automatic detection mechanism for memory
leak before it actually occurs. However, it is a challenge to detect memory leak
of an application running on a VM in the cloud without the knowledge of the
programming language of the application, nor the knowledge of source code nor
the low level details such as allocation times of objects, object staleness, or the
object references [10]. Due to the low down time requirements for the appli-
cations running on the cloud, detection of issues and their resolutions is to be
done as quickly as possible. Therefore, this challenge is addressed in this paper
by solely using the VM’s memory utilization as the main metric and devising a
novel algorithm called Precog to detect memory leak.

The main contribution of this paper are as follows:

– Algorithm: We propose an online novel machine learning based algorithm
Precog for accurate and efficient detection of memory leaks by solely using
the VM’s memory utilization as the main metric.

– Effectiveness: Our proposed algorithm achieves the accuracy score of 85%
on the evaluated dataset provided by our industry partner and accuracy
score of above 90% on the synthetic data generated by us.

– Scalability: Precog’s predict functionality is linearly scalable with the num-
ber of values and takes less than a second for predicting in a timeseries with
100,000 values.

Reproducibility: our code and synthetic generated data are publicly available
at: https://github.com/ansjin/memory leak detection.

2 Related Work

Memory leak detection has been studied over the years and several solutions have
been proposed. Sor et al. reviewed different memory leak detection approaches

https://github.com/ansjin/memory_leak_detection
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based on their implementation complexity, measured metrics, and intrusiveness
and a classification taxonomy was proposed [11]. The classification taxonomy
broadly divided the detection algorithms into (1) Online detection, (2) Offline
detection and (3) Hybrid detection. The online detection category uses either
staleness measure of the allocated objects or their growth analysis. Offline de-
tection category includes the algorithms that make use of captured states i.e
heap dumps or use a visualization mechanism to manually detect memory leaks
or use static source code analysis. Hybrid detection category methods combine
the features offered by online and offline methods to detect memory leaks. Our
work falls in the category of online detection therefore, we now restrict our dis-
cussion to the approaches related to the online detection category only.

Based on the staleness measure of allocated objects, Rudaf et al. proposed
”LeakSpot” for detecting memory leaks in web applications [9]. It locates JavaScript
allocation and reference sites that produce and retain increasing numbers of
objects over time and uses staleness as a heuristic to identify memory leaks.
Vladimir Šor et al. proposes a statistical metric called genCount for memory
leak detection in Java applications [12]. It uses the number of different gener-
ations of the objects grouped by their allocation sites, to abstract the object
staleness - an important attribute indicating a memory leak. Vilk et al. pro-
posed a browser leak debugger for automatically debugging memory leaks in
web applications called as ”BLeak” [13]. It collects heap snapshots and analyzes
these snapshots over time to identify and rank leaks. BLeak targets application
source code when detecting memory leaks.

Based on the growth analysis objects, Jump et al. proposes ”Cork” which
finds the growth of heap data structure via a directed graph Type Points-From
Graph - TPFG, a data structure which describes an object and its outgoing
reference [6]. To find memory leaks, TPFG’s growth is analyzed over time in
terms of growing types such as a list. FindLeaks proposed by Chen et al. tracks
object creation and destruction and if more objects are created than destroyed
per class then the memory leak is found [2]. Nick Mitchell and Gary Sevitsky
proposed ”LeakBot”, which looks for heap size growth patterns in the heap
graphs of Java applications to find memory leaks [7]. ”LEAKPOINT” proposed
by Clause et al. uses dynamic tainting to track heap memory pointers and further
analyze it to detect memory leaks [3].

Most of the online detection algorithms that are proposed focus either on
the programming language of the running application or on garbage collection
strategies or the internals of the application based on the object’s allocation,
references, and deallocation. To the best of our knowledge, there is no previous
work that solely focuses on the detection of memory leaks using just the system’s
memory utilization data on which application is deployed. The work in this
paper, therefore, focuses on the detection of a memory leak pattern irrespective
of the programming language of the application or the knowledge of application’s
source code or the low-level details such as allocation times of objects, object
staleness, or the object references.
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Table 1: Symbols and definitions.

Symbol Interpretation

t a timestamp
xt the percentage utilization of a resource (for example memory

or disk usage) of a virtual machine at time t
N Number of data points
x = {x1, x2, ..., xN} a VM’s memory utilization observations from the Cloud
T time series window length
xt−T :t a sequence of observations {xt−T , xt−T+1, ..., xt} from

time t− T to t
U percentage memory utilization threshold equal to 100.
C critical time

3 Methodology for Memory Leak Detection

In this section, we present the problem statement of memory leak detection and
describes our proposed algorithm’s workflow for solving it.

3.1 Problem Statement

Table 1 shows the symbols used in this paper.
We are given x = {x1, x2, ..., xN}, an N1 dataset representing the memory

utilization observations of the VM and an observation xt ∈ R is the percentage
memory utilization of a virtual machine at time t. The objective of this work
is to determine whether or not there is a memory leak on a VM such that an
observation xt at time t reaches the threshold U memory utilization following a
trend in the defined critical time C. Formally:

Problem 1. (Memory Leak Detection)

– Given: a univariate dataset of N time ticks, x = {x1, x2, ..., xN}, represent-
ing the memory utilization observations of the VM.

– Output: an anomalous window for a VM consisting of a sequence of obser-
vations xt−T :t such that these observations after following a certain trend
will reach the threshold U memory utilization at time t+M where M ≤ C.

Definition 1. (Critical Time) It is the maximum time considered relevant for
reporting a memory leak in which if the trend line of memory utilization of VM
is projected, it will reach the threshold U .

3.2 Illustrative Example

Fig. 1 shows the example memory utilization of a memory leaking VM with
the marked anomalous window between tk and tn. It shows that the memory
utilization of the VM will reach the defined threshold (U = 100%) within the
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Fig. 1: Example memory utilization of a memory leaking VM with the marked anoma-
lous window.

defined critical time C by following a linearly increasing trend (shown by the
trend line) from the observations in the anomalous window. Therefore, this VM
is regarded as a memory leaking VM.

Our developed approach can be applied for multiple VMs as well. We also
have conducted an experiment to understand the memory usage patterns of
memory leak applications. We found that, if an application has a memory leak,
usually the memory usage of the VM on which it is running increases steadily. It
continues to do so until all the available memory of the system is exhausted. This
usually causes the application attempting to allocate the memory to terminate
itself. Thus, usually a memory leak behaviour exhibits a linearly increasing or
”sawtooth” memory utilization pattern.

3.3 Memory Leak Detection Algorithm: Precog

The Precog algorithm consists of two phases: offline training and online detec-
tion. Fig. 2 shows the overall workflow of the Precog algorithm.

Offline training: The procedure starts by collecting the memory utilization
data of a VM and passing it to Data Pre-processing module, where the dataset is
first transformed by resampling the number of observations to one every defined
resampling time resolution and then the time series data is median smoothed
over the specified smoothing window. In Trend Lines Fitting module, firstly, on
the whole dataset, the change points P = {P1, P2, ..., Pk}, where k ≤ n− 1, are
detected. By default, two change points one at the beginning and other at the
end of time series data are added. If the change points are not detected, then
the algorithm will have to go though each data point and it will be compute
intensive, therefore these points allows the algorithm to directly jump from one
change point to another and selecting all the points in between the two change
points. Trend Lines Fitting module selects a sequence of observations xt−L:t

between the two change points: one fixed P1 and other variable Pr where r ≤ k
and a line is fitted on them using the linear regression. The R-squared score, size
of the window called as duration, time to reach threshold called exit time and
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Fig. 2: Overall workflow of Precog algorithm.

slope of line are calculated. This procedure is repeated with keeping the fixed
change point the same and varying the other for all other change points. Out of
all the fitted lines, the best-fitted line based on the largest duration and highest
slope is selected for the fixed change point. If this best-fitted lines’ time to reach
threshold falls below the critical time then its slope and duration are saved as
historic trends.

This above procedure is again repeated by changing the fixed change point
to all the other change points. At the end of this whole procedure, we get for
each change point, a best-fitted trend if it exists. Amongst the captured trends,
maximum duration and the maximum slope of the trends are also calculated and
saved. This training procedure can be conducted routinely, e.g., once per day or
week. The method’s pseudocode is shown in the algorithm’s 1 Train function.

Online detection: In the Online Detection phase, for a new set of observa-
tions {xk, xk + 1, xk + 2, ..., xk + t−1xk + t} from time k to t where t−k ≥ Pmin

belonging to a VM after pre-processing is fed into the Trend Lines Fitting mod-
ule. In Trend Lines Fitting module, the change points are detected. A sequence
of observations xt−L:t between the last two change points starting from the end
of the time series are selected and a line is fitted on them using the linear regres-
sion. The R-squared score, slope, duration and exit time to reach threshold of
the fitted line is calculated. If its slope and duration are greater than the saved
maximum counter parts then that window is marked anomalous. Otherwise, the
values are compared against all the found training trends and if fitted-line’s slope
and duration are found to be greater than any of the saved trend then, again
that window will be marked as anomalous. This procedure is further repeated
by analyzing the observations between the last change point Pk and the previ-
ous next change point until all the change points are used. This is done for the
cases where the new data has a similar trend as the historic data but now with
a higher slope and longer duration. The algorithm’s pseudo code showing the
training and test method are shown in the algorithm 1.
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Definition 2. (Change Points) A set of time ticks which deviate highly from
the normal pattern of the data. This is calculated by first taking the first-order
difference of the input timeseries. Then, taking their absolute values and cal-
culating their Z-scores. The indexes of observations whose Z-scores are greater
than the defined threshold (3 times the standard deviation) represents the change
points. The method’s pseudocode is shown in the algorithm’s 1 CPD function.

4 Evaluation

We design experiments to answer the questions:

– Q1. Memory Leak Detection Accuracy: how accurate is Precog in the
detection of memory leaks?

– Q2. Scalability: How does the algorithm scale with the increase in the data
points?

– Q3. Parameter Sensitivity: How sensitive is the algorithm when the pa-
rameters values are changed?

We have used F1-Score (denoted as F1) to evaluate the performance of the
algorithms. Evaluation tests have been executed on a machine with 4 physical
cores (3.6 GHz Intel Core i7-4790 CPU) with hyperthreading enabled and 16 GB
of RAM. These conditions are similar to a typical cloud VM. It is to be noted
that the algorithm detects the cases where there is an ongoing memory leak
and assumes that previously there was no memory leak. For our experiments,
hyper-parameters are set as follows. The maximum threshold U is set to 100
and the defined critical time C is set to 7 days. The smoothing window size is 1
hour and re-sampling time resolution was set to 5 minutes. Lastly, the minimum
R-squared score R2min for a line to be recognized as a good fit is set to 0.75.
65% of data was used for training and the rest for testing. However, we also show
experiments on parameter sensitivity in this section.

4.1 Q1. Memory Leak Detection Accuracy

To demonstrate the effectiveness of the developed algorithm, we initially syn-
thetically generated the timeseries. Table 2 shows the F1 score corresponding
to each memory leak pattern and also the overall F1 score. Table 2 shows that
Precog is able to reach an overall accuracy of 90%.

In addition, to demonstrate the effectiveness of the developed algorithm on
the real cloud workloads, we evaluated Precog on the real Cloud dataset provided
by Huawei Munich which consists of manually labeled memory leak data from 60
VMs spanned over 5 days and each time series consists of an observation every
minute. Out of these 60 VMs, 20 VMs had a memory leak. Such high number of
VMs having memory leaks is due to the fact that applications with memory leak
were deliberately run on the infrastructure. The algorithm achieved the F1-Score
of 0.857, recall equals to 0.75 and precision as 1.0. Average prediction time
per test data containing approximately 500 points is 0.32 seconds.
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Algorithm 1: Precog Algorithm

Input: input Train Ts,R2 score min, input Test Ts, critical time
Output: anomalous list a

1 Function CPD(x = input Ts, threshold = 3):
2 absDiffTs = first order absolute difference of x
3 zScores = calculate z-scores of absDiffTs
4 cpdIndexes = indexes of (zScores > threshold)
5 return cpdIndexes // return the change-points indexes

6 Function TRAINING(x = input Train Ts, R2 score min,C = critical time):
// Train on input Train Ts

7 P = CPD(x) // get Change-points

8 p1 = 0
9 while p1 <= length(P) do

10 p2 = p1
11 Db, Sb, Tb = 0 // best local trend’s duration, slope, exit time

12 while p2 <= length(P) do
13 exit time, r2, dur, slope← LinearRegression(ts) // fitted

line’s exit time, R2 score, duration, slope

14 if r2 ≥ R2 score min and dur ≥ Db and slope ≥ Sb then
15 Update(Db, Sb, Tb) // update best local values

16 p2 = p2 + 1

17 if Tb ≤ C then
18 if Db ≥ Dmax and Sb ≥ Smax then
19 Update(Dmax, Smax) // update global trend values

20 saveTrend(Db, Sb), save(Dmax, Smax) // save values

21 p1 = p1 + 1

22 Function TEST(x = input Test Ts, C = critical time):
// Test on the new data to find anomalous memory leak window

23 a = [0] // anomalous empty array of size input Test Ts

24 P = CPD(x) // get Change-points

25 len = length(P) // length of change point indexes

26 while i ≤ len do
27 ts = x[P [len− i] : P [len]] // i is a loop variable

28 exit time, r2, dur, slope = LinearRegression(ts)
29 Dmax, Smax, T rends = get saved values
30 if exit time,≤ C and r2 ≥ Rmin then
31 if slope ≥ Smax and dur ≥ Dmax then
32 a[P [len− i] : P [len]] = 1 // current trend greater than

global saved so mark anomalous

33 else
34 For Each t in Trends if slope ≥ St and dur ≥ Dt then
35 a[P [len− i] : P [len]] = 1 // current trend greater

than one of the saved trend so mark anomalous

36 i = i + 1

37 return a // list with 0s and anomalous indexes represented by 1
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Table 2: Synthetically generated timeseries corresponding to each memory leak pattern
and their accuracy score.

Memory Leak Pattern +ve cases -ve cases F1 Score Recall Precision

Linearly Increasing 30 30 0.933 0.933 0.933
Linearly Increasing(with Noise) 30 30 0.895 1.0 0.810
Sawtooth 30 30 0.830 0.73 0.956

Overall 90 90 0.9 0.9 0.91

(a) Linearly increasing (b) Sawtooth linearly increasing

(c) Linearly increasing without trends
detected in training data

(d) Linearly increasing with similar trend as
training data and correctly not detected

Fig. 3: Algorithm result on 3 difficult cases having memory leak (a-c) and one case not
having a memory leak (d).

Furthermore, we present the detailed results of the algorithm on the selected
4 cases shown in the Figure 3 : simple linearly increasing memory utilization,
sawtooth linearly increasing pattern, linearly increasing pattern with no trends
detected in training data, and linearly increasing with similar trend as training
data. The figure also shows the change points, training trends and the detected
anomalous memory leak window for each of the cases.

For the first case shown in Fig. 3a, memory utilization is being used normally
until it suddenly starts to increase linearly. The algorithm detected one training
trend and reported the complete test set as anomalous. The test set trend is
having similar slope as training trend but with a longer duration and higher
memory usage hence it is reported as anomalous.

In the second case (Fig. 3b), the trend represents commonly memory leak
sawtooth pattern where the memory utilization increases upto a certain point
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(a) Training Time (b) Prediction Time

Fig. 4: Precog’s prediction method scale linearly.

and then decreases (but not completely zero) and then again it start to increase
in the similar manner. The algorithm detected three training trends and reported
most of the test set as anomalous. The test set follows a similar trend as captured
during the training but with the higher memory utilization, hence it is reported.

In the third case (Fig. 3c), no appropriate training trend was detected in the
complete training data but, the algorithm is able to detect an increasing memory
utilization trend in the test dataset.

In Fig. 3d, the VM does not have a memory leak but its memory utilization
was steadily increasing which if observed without the historic data seems to be
a memory leak pattern. However, in the historic data, the same trend is already
observed and therefore it is a normal memory utilization pattern. Precog using
the historic data for detecting the training trends and then comparing them with
the test data correctly reports that trend as normal and hence does not flag the
window as anomalous. It is also to be noted that, if the new data’s maximum
goes beyond the maximum in the training data with the similar trend then it
will be regarded as a memory leak.

4.2 Q2. Scalability

Next, we verify that our prediction method scale linearly. We repeatedly dupli-
cate our dataset in time ticks, add Gaussian noise. Figure 4b shows that Precog’
predict method scale linearly in time ticks. Precog does provide the prediction
results under 1 second for the data with 100,000 time ticks. However, the train-
ing method shown in Figure 4a is quadratic in nature but training needs to
conducted once a week or a month and it can be done offline as well.

4.3 Q3. Parameter Sensitivity

Precog requires tuning of certain hyper-parameters like R2 score, and critical
time, which currently are set manually based on the experts knowledge. Figure 5
compares performance for different parameter values, on synthetically generated
dataset. Our algorithm perform consistently well across values. Setting minimum
R2 score above 0.8 corresponds to stricter fitting of the line and that is why the
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Fig. 5: Insensitive to parameters: Precog performs consistently across parameter values.

accuracy drops. On the other hand, our data mostly contains trend lines which
would reach threshold withing 3 to 4 days, therefore setting minimum critical
time too less (less than 3 days) would mean the trend line never reaching thresh-
old within the time frame and hence decreasing the accuracy. These experiments
shows that these parameters does play a role in the overall accuracy of the algo-
rithm but at most of the values algorithm is insensitive to them. Furthermore,
to determine these automatically based on the historic data is under progress
and is out of the scope of this paper.

5 Conclusion

Memory leak detection has been a research topic for more than a decade. Many
approaches have been proposed to detect memory leaks, with most of them look-
ing at the internals of the application or the object’s allocation and deallocation.
The Precog algorithm for memory leak detection presented in the current work is
most relevant for the cloud-based infrastructure where cloud administrator does
not have access to the source code or know about the internals of the deployed
applications. The performance evaluation results showed that the Precog is able
to achieve a F1-Score of 0.85 with less than half a second prediction time on the
real workloads. This algorithm can also be useful in the Serverless Computing
where if a function is leaking a memory then its successive function invocations
will add on to that and resulting in a bigger memory leak on the underneath
system. Precog running on the underneath system can detect such a case.

Prospective directions of future work include developing online learning-
based approaches for detection and as well using other metrics like CPU, network
and storage utilization for further enhancing the accuracy of the algorithms and
providing higher confidence in the detection results.
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