

Discovering Semantic Web services with and without a Common Ontology

Commitment

Jorge Cardoso

Department of Mathematics and Engineering

University of Madeira, Portugal

jcardoso@uma.pt

Abstract

This paper presents an algorithm to match a semantic

Web service request against semantic Web service

advertisements. The algorithm is to be used by systems to

discover semantic Web services, such as the UDDI.

Matching is based on the assessment of the similarity

among semantic Web service properties, such as inputs

and outputs. Semantic Web services have their inputs and

outputs annotated or described by ontological concepts.

The algorithm is able to match a semantic Web service

request against advertisements that are annotated with

concepts with and without a common ontology

commitment. The similarity of inputs and outputs is

evaluated based on concepts (classes), their semantic

relations, and their common and distinguishing features

(properties).

1. Introduction

With the proliferation of Web services and the

evolution towards the Semantic Web comes the

opportunity to automate various Internet related tasks.

Applications should be able to automatically or semi-

automatically discover, invoke, compose, and monitor

Web services offering particular services and having

particular properties [1].

Given the dynamic environment in e-businesses, the

power of being able to discover Web services on the fly,

to dynamically create business processes is highly

desirable. The discovery of Web services has specific

requirements and challenges compared to previous work

on information retrieval systems and information

integration systems. Several issues need to be considered.

The discovery has to be based, not only on syntactical

information, but also on data, as well as functional and

QoS semantics [2].

Discovery is the procedure of finding a set of

appropriate Web services that meets user requirements

[3]. The discovery of Web services to model Web

processes differs from the search of tasks/activities to

model traditional processes, such as workflows. One of

the main differences is in terms of the number of Web

services available to the composition process. In the Web,

potentially thousands of Web services are available which

make the discovery a difficult procedure. One cannot

expect a designer to manually browse through all the Web

services available and select the most suitable one.

Therefore, one of the problems that needs to be overcome

is how to efficiently discover Web services [2].

Currently, the industry standards available for

registering and discovering Web services are based on the

Universal Description Discovery and Integration (UDDI)

specification [4]. Unfortunately, discovering Web services

using UDDI is relatively inefficient since the discovery

mechanism only takes into account the syntactic aspect of

Web services by providing an interface for keyword and

taxonomy based searching.

The key to enhance the discovery of Web services is to

describe Web services semantically [5] and use semantic

matching algorithms (e.g. [2, 6-8]) to find appropriate

services. Semantic discovery allows the construction of

queries using concepts defined in a specific ontological

domain. By having both the advertisement description and

request query explicitly declare their semantics, the results

of discovery are more accurate and relevant than keyword

or attribute-based matching.

The algorithms that enable the discovery of semantic

Web services generally use a semantic similarity distance

function. Similarity is a judgment process that requires

two semantic Web services to be decomposed into aspects

in which they are the same and aspects in which they are

different. Examples of aspects that can be used to

determine if two Web services are similar include their

inputs, outputs, and functionality, with and without a

common ontology commitment.

This paper describes a semantic matching algorithm

based on a feature-based model that determines the

matching distance among two semantic Web services

using a similarity function in terms of common and

different features of the ontological concepts that specify

the Web services input and output.

The remainder of this paper is structured as follows:

Section 2 gives a brief overview on how Web services can

be semantically annotated or described so that they can be

considered semantic Web services. In section 3, we

Cardoso, J., “Discovering Semantic Web services with and without a Common Ontology Commitment” The 3rd International Workshop

on Semantic and Dynamic Web Processes (SDWP 2006), In conjunction with the 2005 IEEE International Conference on Web Services

(ICWS 2006), September 18-22, 2006, Chicago, USA. pp. 183-190, IEEE Computer Society. ISBN: 0-7695-2681-0

present our semantic Web service matching function to

discover services. Section 4 describes a ranking algorithm

that uses the matching function previously presented and

that can be used by discovery mechanisms. Section 5

discusses the related work in this area and section 6

presents our conclusions.

2. Enhancing Web services using semantics

It has been recognized [1] that due to the

heterogeneity, autonomy and distribution of Web services

and the Web itself, new approaches should be developed

to describe and advertise Web services. The most notable

approaches rely on the use of semantics to describe Web

services. This new breed of Web services, termed

semantic Web services, will enable the automatic

annotation, advertisement, discovery, selection,

composition, and execution of inter-organization business

logic, making the Internet become a common global

platform where organizations and individuals

communicate with each other to carry out various

commercial activities and to provide value-added services.

Academia has mainly approached this area from the

semantic Web side, while industry is beginning to

consider its importance from the point of view of Web

services [9]. Three main approaches have been developed

to bring semantics to Web services: WSDL-S, OWL-S,

and WSMO.

WSDL-S. One approach to creating semantic Web

services is by mapping concepts in a Web service

description (WSDL specification) to ontological concepts.

This approach is termed WSDL-S [10]. The idea of

establishing mappings between service, task, or activity

descriptions and ontological concepts was first proposed

in [2]. By this approach, users can explicitly define the

semantics of a Web service for a given domain. With the

help of ontologies, the semantics or the meaning of

service data and functionality can be explained. As a

result, integration can be accomplished in an automated

way and with a higher degree of success. The WSDL

elements that can be marked up with metadata are

operations, messages, preconditions and effects, since all

the elements are explicitly declared in a WSDL

description.

• Operations. Each WSDL description may have a

number of operations with different functionalities. In

order to add semantics, the operations must be

mapped to ontological concepts to describe their

functionality.

• Message. Message parts, which are input and output

parameters of operations, are defined in WSDL using

the XML Schema. Ontologies – which are more

expressive than the XML Schema – can be used to

annotate WSDL message parts.

• Preconditions and effects. Each WSDL operation

may have a number of preconditions and effects. The

preconditions are usually logical conditions, which

must be evaluated to true in order to execute a

specific operation. Effects are changes in the world

that occur after the execution of an operation.

OWL-S. OWL-S (formerly DAML-S) is emerging as a

description language that semantically describes Web

services using OWL ontologies. OWL-S consists of three

parts expressed with OWL ontologies: the service profile,

the service model, and the service grounding. The profile

is used to describe “what a service does”, with

advertisement and discovery as its objective. The service

model describes “how a service works”, to enable

invocation, enactment, composition, monitoring and

recovery. Finally, the grounding maps the constructs of

the process model onto detailed specifications of message

formats and protocols

WSMO. The third approach, Web Services Modeling

Ontology (WSMO), provides ontological specifications

for the description of semantic Web services. WSMO has

been developed by the Digital Enterprise Research

Institute (DERI), a European research organization that

targets the integration of the semantic Web with Web

services. The WSMO approach is based on the Web

Services Modeling Framework (WSMF) [11], a

framework that provides the appropriate conceptual model

for developing and describing Web services and their

composition based on the maximal de-coupling and

scalable mediation service principles. The main objective

of WSMO is to solve the application integration problem

for Web services, Enterprise Application Integration

(EAI), and Service-Oriented Architectures (SOA), by

providing a conceptual framework and a formal language

for semantically describing all relevant aspects of Web

services. These technologies will facilitate the automation

of discovering, interoperating, composing, and invoking

Web services over the Web.

The algorithm presented in this paper can be easily

used to discover semantic Web services defined with

WSDL-S, OWL-S, and WSMO. For reasons of simplicity

we will restrict our focus on semantic Web service input

and output parameters. Please note that the algorithm can

be easily adapted to match functional and operational

semantics [2], and the preconditions and effects [10]of

semantic Web services.

3. Matching Algorithm for Semantic Web

services

This section presents an algorithm for matching

semantic Web services. The algorithm presented

computes the degree of match between two output and

two input concepts, of a service request and

advertisement, represented by an ontology.

We exploit the fact that the input and output concepts

which are match may have (in addition to their name)

properties (e.g., in the form of attributes) associated with

them, and we also take into account the level of generality

(or specificity) of each concept within the ontology as

well as their relationships with other concepts. Notice that

in contrast to semantic-based matching, syntactic-based

matching cannot use this information.

Matching input and output concepts differs slightly

from calculating their semantic similarity. One difference

is that the functions to compute the semantic similarity of

ontological concepts are usually symmetric, while

matching functions are asymmetric. For example, let us

assume that the ontology from Figure 1 is used to

semantically annotate or describe a set of Web services.

Figure 1. Example of an ontology used to

semantically annotate a set of Web services.

Let us assume that we have a semantic Web service

request R with the input concept StaffRecord (c1) and an

advertisement A with the input concept EmployeeRecord

(c2). In this scenario, request R matches advertisement A

(i.e., match(c1, c2)=true), since StaffRecord is a subclass

of EmployeeRecord. Our rationale is that if A is able to

deal with the input EmployeeRecord is must also be able

to deal with the input StaffRecord. We can think that when

the Web service is invoked there will be some kind of cast

(as in C programming) from StaffRecord to

EmployeeRecord.

Now, let us assume that we have a semantic Web

service request R with the input concept EmployeeRecord

(c2) and an advertisement A with the input concept

StaffRecord (c1). In this scenario, it is possible that the

semantic Web service A cannot be invoked with the input

EmployeeRecord since A may need properties that only

exist in the class StaffRecord. Therefore, match(c2,

c1)=false. As we can see from this two scenarios, the

function match is asymmetric, since match(c1, c2) ≠ match

(c2, c1).

3.1. Formal definition of a semantic Web service

Since we only deal with the input and output

parameters of semantic Web services, we define a Web

service as a finite sequence of ontological concepts,

sws(ci, co).

The number of elements can be different than 2 if we

consider more or fewer concepts to be used in a match. As

we have mentioned before, the functionality and QoS of

Web services [2] can also be considered when matching

requests with advertisements.

4.2. Comparing semantic Web services with a

common ontology commitment

In this scenario, Web service input and output concepts

(ci and co) are related to one global and unique ontology

providing a common vocabulary for the specification of

semantics. Comparing a concept with the ontology is

translated into searching for the same or similar concepts

within the ontology.

There are several functions that can be adapted and

used to compute the degree of match of two input or

output concepts belonging to the same ontology. The

following four main techniques have been identified [12]:

1. Ontology based approaches. These approaches [13-

15] use an ontology and evaluate the semantic

relations amount concepts. The most basic metric

simply computes the distance between two concepts

in an ontology.

2. Corpus based approaches. These approaches [16-

18] use a corpus to establish the statistical co-

occurrence of words. The rationale is that if two

words constantly appear together we may conclude

that some relation exists between them.

3. Information theoretic approaches. These

approaches [19-22] consider both a corpora and an

ontology, and use the notion of information content

from the field of information theory. By statistically

analyzing corpora, probabilities are associated to

concepts based on word occurrences. The information

content for each concept is computed in such a way

that infrequent words are more informative than

frequent ones. Knowing the information content of

concepts it is possible to calculate the semantic

similarity between two given concepts.

4. Dictionary based approaches. These approaches

[23, 24] use a machine readable dictionary to

discover relations between concepts. For example,

one approach determines the sense of a word in a

given text by counting the overlaps between

dictionary definitions of the various senses.

Most of these approaches are not suitable to compute

the degree of matching between input and output concepts

of the semantic Web services. All these metrics are

symmetric (except [20]). This mean that f(c1, c2) = f(c2,

c1). As explained previously, when matching inputs and

outputs the matching function needs to be asymmetric.

Furthermore, ontology-based approaches are rather

limited since only the taxonomy of the ontology is used to

find similarities between concepts. Corpus and dictionary-

based approaches require associating a probability with

each concept and finding a specific meaning of a word

according to the context it is found in a dictionary,

respectively. These approaches are not simple to

implement for Web services. Questions raised include

which corpus and dictionaries to use and how to deal with

the heterogeneity of domains of discourse of Web

services.

In our opinion, Tversky’s model [20] is the most

suitable approach to match semantic Web services. This

model has been considered one of the most powerful

similarity models to date [25]. It is also known as a

feature-counting metric or feature-contrast model. This

model is based on the idea that common features tend to

increase the perceived similarity of two concepts, while

feature differences tend to diminish perceived similarity.

The model takes into account the features that are

common to two concepts and also the differentiating

features specific to each. More specifically, the similarity

of a concept c1 to a concept c2 is a function of the features

common to c1 and c2, those in c1 but not in c2 and those in

c2 but not in c1. For instance, a SUV (Sport Utility

Vehicle) and a sedan are similar by virtue of their

common features, such as wheels, engine, steering wheel,

and gears, and are dissimilar by virtue of their differences,

namely height and the size of the tires.

Based on Tversky’s model, we introduce the matching

functions),(ARi ccS
=

 and),(ARo ccS
=

 which analyze the

number of properties shared among two input or output

concepts cR and cA (R stands for a Web service request, A

stands for a Web service advertisement, i stands for input,

and o stands for output) conceptualized within the same

ontology. In our functions S
=
, the function p(c) retrieves

all the properties associated with a concept c and function

|s| corresponds to the number of elements in set s.















≠
∩

<

>

=

=
=

AR

A

AR

AR

A

R

AR

AR

ARi

cc
cp

cpcp

cc
cp

cp

cc

cc

ccS

,
|)(|

|)()(|

,
|)(|

|)(|

,1

,1

),(















≠
∩

<

>

=

=
=

AR

R

AR

AR

AR

R

A

AR

ARo

cc
cp

cpcp

cc

cc
cp

cp

cc

ccS

,
|)(|

|)()(|

,1

,
|)(|

|)(|

,1

),(

Since functions),(ARi ccS
= and),(AR ccS =

 are very

similar we will only describe function =

iS . Four distinct

cases can occur:

Case 1: In the first case, since the two input concepts

are equal (cR=cA) their similarity is maximal and therefore

the degree of match is one.

Case 2: In the second case, the concept cR is a

specialization of concept cA (cR>cA). As a result, a Web

service with input concept cA, is able to process concept

cR. For example, let us consider the ontology from Figure

1. If a Web service request specifies concept StaffRecord

as input and an advertisement specifies concept

EmployeeRecord as input then the advertised service is

able to process the input concept StaffRecord. This is

because the concept cR is a subclass of concept cA and it

has at least the same set of properties as cA. In this case,

the similarity is also one.

Case 3: In the third case, if the request concept cR is a

generalization of advertisement concept cA (cR<cA), then

cA has probably some properties that do not exist in cR.

Therefore, it is possible that a Web service advertisement

with input cA is not able to process the input concept cR

due possibly to missing properties. For example, if a Web

service request R specifies concept EmployeeRecord as

input and an advertisement A specifies concept

StaffRecord as input then Web service A may not be able

to process the input concept EmployeeRecord. This is

because A may need the property Degree and

Competencies of the input concept to work properly.

Case 4: In the last case, the concepts cR and cA are not

equal and do not subsume each other in any way (cR ≠ cA).

In this scenario, we evaluate the matching by analyzing

how many common properties exist between the two

concepts and how many properties are different. Also, we

analyze the percentage of input advertisement properties

that were satisfied.

As an example, let us illustrate the use of function

),(ARi ccS
=

 for the four cases – 1), 2), 3) and 4) – that

can occur when matching a request cR with an

advertisement cA. In our example, the Web services’ input

is annotated with concepts from the ontology illustrated in

Figure 1. The four cases that may occur are listed in Table

1 and are evaluated as follows:

� In case 1), both cR and cA are associated with the

same concept (StaffRecord). Since the request

matches the advertisement perfectly. The result is 1.

� In case 2), the request cR is associated with the

concept StaffRecord and the advertisement cA is

associated with the concept EmployeeRecord. Since

the concept EmployeeRecord is a generalization of

concept StaffRecord, the properties of the concept

StaffRecord (the set {Salary, Degree, Competencies})

is a superset of the properties of the concept

EmployeeRecord (the set {Salary}). All the

properties of cA exist in cR. As a result, the similarity

is evaluated to 1.

� In case 3), the request cR is associated with the

concept StaffRecord and the advertisement cA is

associated with the concept SecretaryRecord. Since

the concept StaffRecord is a subclass of concept

SecretaryRecord, the properties of the concept

StaffRecord (the set {Salary, Degree, Competencies})

is a subset of the properties of the concept

SecretaryRecord (the set {Salary, Degree,

Competencies, SpokenLanguage, WrittenLanguage,

ComputerSkills}). In this case, when the request cR

matches the advertisement cA some properties of cA

are left unfulfilled (the properties SpokenLanguage,

WrittenLanguage, and ComputerSkills). To indicate

this mismatch the matching is set to the ratio of the

number of properties of cR and the number of

properties of cA, which in this case is |p(cR)|/|p(cA)| =

3/6 = 0.5.

� In the last case (4), the request cR is associated with

the concept StaffRecord and the advertisement cA is

associated with the concept ManagerRecord. The

concept StaffRecord has the set of properties {Salary,

Degree, Competencies} and the concept

ManagerRecord has the set of properties {Salary,

Level, Area}. Since the concepts do not have a

parent/children relationship, we compute the

percentage of the advertisement’s properties that are

fulfilled with a property from cR. The similarity is

evaluated as follows:

3

1

|)(|

|)()(|
),(=

∩
=

=

A

AR
ARi

cp

cpcp
ccS

The result of evaluating the function indicates a low

degree of matching between the concepts StaffRecord and

ManagerRecord. Only one of the three advertisement

properties are satisfied by request properties. The

following table shows the results for the four cases

presented.

Request cR Advertisement cA),(ARi ccS
=

StaffRecord StaffRecord 1

StaffRecord EmployeeRecord 1

StaffRecord SecretaryRecord 0.5

StaffRecord ManagerRecord 1/3

Table 1. An example of matching inputs with a

common ontology commitment.

As we can see the concept SecretaryRecord is closer to

the concept StaffRecord than the concept ManagerRecord.

This result corroborates our intuition and visual analysis

of the ontology and its concepts.

3.3. Comparing semantic Web services with no

common ontology commitment

In this scenario, different Web services are described

by different ontologies. Since there is no common

ontology commitment, there is no common vocabulary

which makes the comparison of different concepts a more

complicated task.

Web service parameters (such as inputs and outputs)

are identified by words (classes) and there are two major

linguistic concepts that need to be considered: synonymy

and polysemy. Polysemy arises when a word has more

than one meaning (i.e., multiple senses). Synonymy

corresponds to the case when two different words have the

same meaning. To tackle the existence of these linguistic

concepts we will use a feature-based similarity measure

that compares concepts based on their common and

distinguishing features (properties).

The problem of determining the similarity of concepts

defined in different ontologies is related to the work on

multi-ontology information system integration. Most of

the similarity measures previously presented [13-19, 21-

24] cannot be directly used to match Web services since

they are symmetric, and more importantly, they can only

be used when the concepts to compare are defined in the

same ontology.

Nonetheless, the Tversky’s feature-based similarity

model [20] is interesting since it takes into account the

features or properties of concepts and not the taxonomy

that defines the hierarchy of concepts. We believe that

when matching inputs and outputs, the features of

concepts tell more than the taxonomy.

Based on Tversky’s model, we introduce matching

functions),(ARi ccS
≠

 and),(ARo ccS
≠

 for semantic Web

services with no common ontology commitment based on

the number of properties shared among two input or

output concepts cR and cA conceptualized within the same

ontology. The function computes the geometric distance

between the similarity of the domains of concept cR and

concept cA and the ratio of matched input properties from

the concept cA. Our similarity functions are defined as

follows,

|)(|

))(),((
*

))(),((|)()(|

))(),((

),(

A

AR

ARAR

AR

ARi

cp

cpcp

cpcpcpcp

cpcp

ccS

Π

Π−∪

Π

=
≠

|)(|

))(),((
*

))(),((|)()(|

))(),((

),(

R

AR

ARAR

AR

ARo

cp

cpcp

cpcpcpcp

cpcp

ccS

Π

Π−∪

Π

=
≠

Function Π establishes a mapping between the

properties of two concept classes. Figure 2 illustrates two

ontologies involved in a mapping.

Figure 2. Two ontologies involved in a mapping

For example, when matching the class concepts

SecretaryRecord and EmployeeR we need to establish a

mapping between the properties of the two classes. The

mapping is computed with function

Π(p(SecretaryRecord), p(EmployeeR)), which is

equivalent to Π({Salary, Degree, Competencies,

SpokenLanguages, WrittenLanguages, ComputerSkills},

{ID, Spoken_Lang, Written_Lang, Name}). Possible

mappings that can be established are the following:

Πi,1: (SpokenLanguages , Spoken_Lang)

Πi,2: (WrittenLanguages , Written_Lang)

Πi,3: (Name, ComputerSkills)

Function Π establishes the best mapping between two

sets of properties and it is defined as follows:














∅=∨∅=

∅≠∧∅≠

=−−∏

∅≠∧∅≠

=+−−∏

=∏

21

21

212211

21

21212211

21

,0

,0),(),,(

,1),()),,(),((

),(

plpl

plpl

ppsspplppl

plpl

ppssppsspplpplMax

plpl

Function ss(p1, p2) determines if two properties are

considered to be equal using function g. If two properties

match syntactically then function ss returns 1, otherwise it

returns 0. Properties match syntactically only if function g

determines that the syntactic similarly it greater that a

constant β.





<

≥
=

β

β

),(,0

),(,1
),(

21

21

21
ppg

ppg
ppss

Function g(p1, p2) is a function that computes the

syntactic similarity of two words. In our approach, we use

“string-matching” as a way to calculate similarity.

Function g can be implemented using several existing

methods such as equality of name, canonical name

representations after stemming and other preprocessing, q-

grams, synonyms, similarity based on common sub-

strings, pronunciation, soundex, abbreviation expansion,

stemming, tokenization, etc. Other techniques borrowed

from the information retrieval area may also be

considered. A very good source of information retrieval

techniques can be found in Belew [26].

For example, let us consider the request query

swsR(“SecretaryRecord“, cRo) and the advertisement

swsA(”EmployeeR”, cAo). When computing

Π(p(“SecretaryRecord”), p(“EmployeeR”)) of the inputs

we obtain two mappings Πi,1 and Πi,2. The mapping Πi,1 is

found since the results of ss(“SpokenLanguages“,

”Spoken_Lang”), using the q-grams methodology [27] as

an implementation of g with β = 0.5, is 0.53 (i.e.,

g(“SpokenLanguages“, ”Spoken_Lang”)=0.53). As a

result, ss is evaluated to 1. Mapping Πi,2 yields because

ss(“WrittenLanguages” ,” Written_Lang”) is 1. The

mapping Πi,3 is not part of Π since ss(“Name”,

”ComputerSkills”) is evaluated to zero. All the other

mappings are not part of Π. For example, if we compute

ss(“SpokenLanguages”, “Written_Lang”) we obtain a

result of 0 (function g has a value of 0.13), which means

that we do not consider the properties to be syntactically

equal. The result of computing),(ARi ccS
≠

 is:

5.0
4

2

4

2
*

26

2
==

−

This result corroborates our intuition since only two of

the four properties of the concept EmployeeR are satisfied

by the properties of concept SecretaryRecord.

4. Ranking algorithm

In this section we present the actual algorithm for

ranking Web service advertisements, following the

functions presented previously.

REQ(ci, co) = Web service request

ADVj (cji, cjo) = List of advertisement

For all j get ADVj(cji, cjo)

If same_ontology(ci , cji) i =),(jiii ccS
=

else i =),(jiii ccS
≠

If same_ontology(co ,cjo) o =),(jooo ccS
=

else o =),(jooo ccS
≠

match[j] = (i+o)/2;

Forall

Sort match[j]

The algorithm uses the function same_ontology that

determines if two concepts are defined in the same

ontology. Once the matching degree of the input and

output between a Web service request and a Web service

advertisement is calculated, we define the overall degree

of the match as the arithmetic mean of the input match

degree and output match degree.

5. Related Work

The OWL-S/UDDI Matchmaker [28] introduces

semantic search into the UDDI directory by embedding an

OWL-S Profile in a UDDI data structure, and augmenting

the UDDI registry with an OWL-S matchmaking

component. The matching algorithm recognizes four

degrees of match between two concepts defined in the

same ontology: (1) exact, (2) plug in, (3) subsume, and (4)

fail. The function used by the algorithm is asymmetric and

is based on the existence of relationships between

concepts. When no direct relationship exists among two

concepts the algorithm simple return fail. Unlike the

algorithm presented in this paper, the OWL-S/UDDI

Matchmaker searches for services based on inputs and

outputs within the IOPEs of the profile which must belong

to the same ontology. Our approach allows evaluating the

similarities of IOPE that are annotated with concepts from

distinct ontologies.

The METEOR-S [10] Web Service Annotation

Framework (WSAF) allows semi-automatically matching

WSDL concepts (such as inputs and outputs) to DAML

and RDF ontologies using text-based information retrieval

techniques (for example, synonyms, n-grams and

abbreviation). The strength of matches (SM) is calculated

using a scoring formula which involved element

(ElemMatch) and structure level schema (SchemaMatch)

matching. The ElemMatch function performs the element

level matching based on the linguistic similarity of the

names of the two concepts. The SchemaMatch function

examines the structural similarity between two concepts.

A concept in an ontology is usually defined by its

properties, superclasses and subclasses. Since concept

labels are somewhat arbitrary, examining the structure of a

concept description can provide more insight into its

semantics. In WSAF, the XML representation of WSDL is

matched against the concepts of a given ontology. The

best match between WSDL concepts and ontological

concepts are returned to users as a suggestion of potential

mappings. In our work we match ontological concepts

with ontological concepts. It should be noticed that the

work presented in [10] cannot be easily adapted to our

problem. There are several reasons. First, the weight

values for calculating the MS function were set without

empirical testing and validation. Also, the weights are not

defined for a set of ElemMatch and SchemaMatch values.

For example, if 0.5<ElemMatch<0.65 then no weights are

suggested. Furthermore, the function that computes the

ElemMatch of a WSDL concept and an ontological

concept is not defined when the MatchScore is different

than zero, but less than one, using the NGram or Synonym

matching algorithms.

6. Conclusions

In this paper we have described a semantic matching

algorithm to be used by UDDI registries enhanced with

semantics. Our algorithm can work with Web services

described with WSMO and OWL-S, or annotated with

WSDL-S. Compared to previous work [28], we do not

limit the classification of the accuracy of matching a

request with an advertisement using a four value schema

(i.e. exact, plug in, subsume, and fail). The accuracy of

matching if assessed with a continue function with the

range [0..1]. Furthermore, compared to [28], we allow the

matching of semantic Web services with and without a

common ontology commitment. This aspect is important

since it is not realistic to assume that Web services will

always be defined by the same ontology. In some case,

similar services may be defined by different ontologies.

Our algorithm relies on the Tversky’s feature-based

similarity model to match requests with advertisement.

This model takes into account the features or properties of

ontological concepts and not the taxonomy that defines

the hierarchy of concepts. We believe that when matching

inputs and outputs, the features of concepts tell more than

the taxonomy. The matching process that we are using so

far is restricted to the inputs and outputs of Web services.

Nevertheless, it can be easily extended to include

functional and non-functional capabilities of services.

8. References

[1]. Cardoso, J. and A.P. Sheth, Introduction to Semantic

Web Services and Web Process Composition, in Semantic

Web Process: powering next generation of processes with

Semantics and Web services, J. Cardoso and A.P. Sheth,

Editors. 2005, Springer-Verlag: Heidelberg, Germany. p.

1-13.

[2]. Cardoso, J. and A. Sheth, Semantic e-Workflow

Composition. Journal of Intelligent Information Systems

(JIIS). 2003. 21(3): p. 191-225.

[3]. Verma, K., et al., METEOR-S WSDI: A Scalable

Infrastructure of Registries for Semantic Publication and

Discovery of Web Services. Journal of Information

Technology and Management (in print), 2004.

[4]. UDDI, Universal Description, Discovery, and

Integration. 2002.

[5]. Sheth, A. and R. Meersman, Amicalola Report:

Database and Information Systems Research Challenges

and Opportunities in Semantic Web and Enterprises.

SIGMOD Record, 2002. 31(4): p. pp. 98-106.

[6]. Rodríguez, A. and M. Egenhofer, Determining

Semantic Similarity Among Entity Classes from Different

Ontologies. IEEE Transactions on Knowledge and Data

Engineering (in press). 2002.

[7]. Smeaton, A. and I. Quigley. Experiment on Using

Semantic Distance Between Words in Image Caption

Retrieval. in 19th Intemational Conference on Research

and Development in Information Retrifval SIGIR'96.

1996. Zurich, Switzerland.

[8]. Klein, M. and A. Bernstein. Searching for Services on

the Semantic Web Using Process Ontologies. in

International Semantic Web Working Symposium

(SWWS). 2001. Stanford University, California, USA.

[9]. Cardoso, J., et al., Academic and Industrial Research:

Do their Approaches Differ in Adding Semantics to Web

Services, in Semantic Web Process: powering next

generation of processes with Semantics and Web services,

J. Cardoso and S. A., Editors. 2005, Springer-Verlag:

Heidelberg, Germany. p. 14-21.

[10]. Patil, A., et al. MWSAF - METEOR-S Web Service

Annotation Framework. in 13th Conference on World

Wide Web. 2004. New York City, USA.

[11]. Fensel, D. and C. Bussler, The Web Service

Modeling Framework WSMF. Electronic Commerce

Research and Applications, 2002. 1(2): p. 113-137.

[12]. Zavaracky, A., Glossary-Based Semantic Similarity

in the WordNet Ontology, in Department of Computer

Science. 2003, University College Dublin: Dublin.

[13]. Wu, Z. and M. Palmer. Verb Semantics and Lexical

Selection. in 32nd Annual Meeting of the Associations for

Computational Linguistics (ACL'94). 1994. Las Cruces,

New Mexico.

[14]. Rada, R., et al., Development and Application of a

Metric on Semantic Nets. IEEE Transactions on Systems,

Man, and Cybernetics, 1989. 19(1): p. 17-30.

[15]. Leacock, C. and M. Chodorow, Combining local

context and WordNet similarity for word sense

identification, in WordNet: An Electronic Lexical

Database, C. Fellbaum, Editor. 1998, MIT Press. p. 265-

283.

[16]. Turney, P.D. Mining the Web for Synonyms: PMI-IR

versus LSA on TOEFL. in 12th European Conference on

Machine Learning. 2001: Springer-Verlag.

[17]. Keller, F. and M. Lapata, Using the Web to Obtain

Frequencies for Unseen Bigrams. Computational

Linguistics, 2003.

[18]. Church, K.W. and P. Hanks. Word association

norms, mutual information, and Lexicography. in 27th.

Annual Meeting of the Association for Computational

Linguistics. 1989. Vancouver, B.C.: Association for

Computational Linguistics.

[19]. Lin, D. An information-theoretic definition of

similarity. in 15th International Conf. on Machine

Learning. 1989. San Francisco, CA: Morgan Kaufmann.

[20]. Tversky, A., Features of Similarity. Psychological

Review, 1977. 84(4): p. 327-352.

[21]. Resnik, P. Using Information Content to Evaluate

Semantic Similarity in a Taxonomy. in 14th International

Joint Conference on Artificial Intelligence. 1995.

[22]. Jiang, J. and D. Conrath. Semantic Similarity Based

on Corpus Statistics and Lexical Taxonomy. in

Intemational Conference on Computational Linguistics

(ROCLINGX). 1997. Taiwan.

[23]. Lesk, M. Automatic sense disambiguation using

machine readable dictionaries: how to tell a pine cone

from an ice cream cone. in 5th annual international

conference on Systems documentation. 1986: ACM Press.

[24]. Banerjee, S. and T. Pedersen. Gloss Overlaps as a

Measure of Semantic Relatedness. in Eighteenth

International Joint Conference on Artificial Intelligence.

2003. Acapulco, Mexico.

[25]. Richardson, R. and A. Smeaton, Using WordNet in a

Knowledge-Based Approach to Information Retrieval.

1995, Dublin City University, School of Computer

Applications: Dublin, Ireland.

[26]. Belew, R.K., Finding Out About : A Cognitive

Perspective on Search Engine Technology and the WWW.

2000, Cambridge, U.K: Cambridge University Press. 356.

[27]. Salton, G., Automatic Text Processing: The

Transformation, Analysis and Retrieval of Information by

Computer. 1988, Massachusetts: Addison-Wesley.

[28]. Srinivasan, N., M. Paolucci, and K. Sycara, An

efficient algorithm for OWL-S based semantic search in

UDDI, J. Cardoso and A. Sheth, Editors. 2005, Lecture

Notes in Computer Science, Springer.

