
https://doi.org/10.1007/s10723-021-09551-5

Automated Analysis of Distributed Tracing: Challenges
and Research Directions

Andre Bento · Jaime Correia ·Ricardo Filipe ·
Filipe Araujo · Jorge Cardoso

Received: 10 July 2020 / Accepted: 6 February 2021
© The Author(s), under exclusive licence to Springer Nature B.V. part of Springer Nature 2021

Abstract Microservice-based architectures are gain-
ing popularity for their benefits in software develop-
ment. Distributed tracing can be used to help operators
maintain observability in this highly distributed con-
text, and find problems such as latency, and analyse
their context and root cause. However, exploring and
working with distributed tracing data is sometimes dif-
ficult due to its complexity and application specificity,
volume of information and lack of tools. The most
common and general tools available for this kind of
data, focus on trace-level human-readable data visu-
alisation. Unfortunately, these tools do not provide
good ways to abstract, navigate, filter and analyse trac-
ing data. Additionally, they do not automate or aid
with trace analysis, relying on administrators to do
it themselves. In this paper we propose using trac-
ing data to extract service metrics, dependency graphs
and work-flows with the objective of detecting anoma-
lous services and operation patterns. We implemented
and published open source prototype tools to process
tracing data, conforming to the OpenTracing standard,
and developed anomaly detection methods. We vali-
dated our tools and methods against real data provided

A. Bento (�) · J. Correia · R. Filipe · F. Araujo ·
J. Cardoso
CISUC, Department of Informatics Engineering,
University of Coimbra, Coimbra, Portugal
e-mail: apbento@dei.uc.pt

J. Cardoso
Huawei Munich Research Center, Munich, Germany

by a major cloud provider. Results show that there
is an underused wealth of actionable information that
can be extracted from both metric and morphological
aspects derived from tracing. In particular, our tools
were able to detect anomalous behaviour and situ-
ate it both in terms of involved services, work-flows
and time-frame. Furthermore, we identified some lim-
itations of the OpenTracing format—as well as the
industry accepted tracing abstractions—, and provide
suggestions to test trace quality and enhance the stan-
dard.

Keywords Microservices · Autonomic analysis ·
Anomaly detection · Observability · Monitoring ·
Tracing

1 Introduction

Following modern Software Engineering trends, sys-
tems are becoming larger and more distributed, requir-
ing new solutions and new development patterns. One
approach that emerged in recent years is to decou-
ple large monolithic components into interconnected,
functionally small, components that encapsulate and
provide specific logic. These components are known
as microservices and have become mainstream in the
enterprise software development industry [13]. Despite
their organizational and technical advantages [9, 39],
Fine-Grained Distributed Systems (FGDS), specifi-
cally microservices increase system complexity, thus

(2021) 19: 9Journal of Grid Computing

/Published online: 25 February 2021

http://crossmark.crossref.org/dialog/?doi=10.1007/s10723-021-09551-5&domain=pdf
http://orcid.org/0000-0002-5388-0342
mailto:apbento@dei.uc.pt


turning anomaly detection into a more challenging
task [14].

To tackle this problem, operators resort to state
observation techniques like monitoring [11], log-
ging [19], and end-to-end tracing [41]. Monitoring
consists in measuring aspects like Central Process-
ing Unit (CPU) and hard drive usage, network latency
and other infrastructure metrics around the system
and components. Logging provides an overview to
a discrete, event-triggered log. Tracing is similar to
logging, but focuses on registering the flow of execu-
tion of the program, as requests travel through several
system modules and boundaries. Distributed tracing
preserves causality relationships when state is parti-
tioned over multiple threads, processes, machines and
even geographical locations. In particular for anomaly
detection in FGDS, distributed tracing tools—like
Jaeger [44] or Zipkin [3]—, are currently the state
of the art. They are used to looking for traces that
take too long to execute or exhibit other unexpected
behaviours; However, due to the volume of data, this
task is hard and tedious to perform, and tools fail to
direct the attention of operators to notice the inter-
esting time-frames or traces. For example, to find
traces involved in an anomalous region of operation,
one must manually query the distributed tracing tool
based on time and annotations (developer defined
properties).

To improve the state of the art, and make systems
more autonomic, tracing analysis needs to be auto-
mated to produce higher order constructs that provide
insights for operators. The objective is to automati-
cally find anomalies from traces.

We developed a number of tools to process traces
and used machine learning algorithms to look for
anomalies. The resulting data drives operators towards
anomalous locations, in the temporal and service
dimensions (i.e., time-stamp and service or a partic-
ular trace), reducing the search space. In particular,
we created an OpenTracing Processor (OTP) to extract
metrics from traces and fed them to our Data Anal-
yser, which identifies anomalies in time-series of
number of in-calls, out-calls and response times. To
validate our approach and tools, we used production
tracing data provided by Huawei Germany, from their
Cloud Platform.

Results show that our approach can identify anoma-
lies in FGDS by time-frame and services; However,
one of the most interesting results of our analysis was

to realize that the OpenTracing standard was in itself
a limiting factor. To start, OpenTracing lacks support
tools to create and analyse dependency graphs and
span trees. While Zipkin manages the latter, it does
not export such data in a structured form. Extract-
ing knowledge from this unprocessed data will require
manpower proportional to its volume—to the point
of being untreatable in web-scale systems. The time-
stamp fields, indicating when spans start and end, are
not labelled with units, leading to mistakes such as
spans in a dataset, showing up in various units. In
particular, in our data, we found both milliseconds
and microseconds. Other parts of the specification are
also too ambiguous, as they allow arbitrary key-value
pairs in annotations that explode the possible ways
of expressing the same measurement. This is the case
of error codes, function returns, Uniform Resource
Locators (URLs) and other fields that vary between
spans. As a result, the trace data is not given to com-
putational processing, requiring a data cleaning step
and most of the time statistical or machine learning
approaches to work around ambiguity. Finally, we also
observed that trace quality varies widely. This sug-
gests that tracing frameworks, like OpenTelemetry [6],
which is currently under development, should support
testability, by providing developers with concrete met-
rics of quality, capable of improving instrumentation
and, therefore, the resulting traces.

To summarize, we make two contributions in this
paper: i) we developed processing and analysis tools
for OpenTracing data; and ii) we identified important
limitations of OpenTracing, which might help other
researchers, namely those building distributed tracing
tools and standards.

The rest of the paper is organized as follows.
Section 2 presents the state of the art for this research.
Section 3 describes the proposed solution. Section 4
we show and evaluate the results and the strengths of
this approach. Section 5 we discuss a set of limitations
we found concerning both methods and standards.
Section 6 concludes the paper and describes future
directions.

2 State of the Art

In this section we provide some background notions,
as well as an overview of similar approaches. Having
only been adopted recently by the industry, the number

9 Page 2 of 15 J Grid Computing (2021) 19: 9



of anomaly detection approaches using tracing is rela-
tively small.

2.1 Core Concepts

Distributed tracing [41] is a method that comes from
traditional tracing, but applied to a distributed system
at the work-flow level. Unlike simple logging, trac-
ing must relate information from different parts of the
system, to order events according to some order, like
Lamport’s happens-before relation [23], serving mul-
tiple purposes, such as identifying the root-cause of
anomalies or perform distributed profiling, and moni-
tor applications, especially those built using microser-
vice architectures and, in the end, it can be used to
pinpoint failures and reason about their root cause.

A number of tools and standards emerged from this
concept. For example, the OpenTracing standard [33]
uses baggage passing mechanisms (e.g. see [12]), to
connect together a tree of scoped units of work, like
threads, functions, and services. For generality, Open-
Tracing extended their model to support full directed
acyclic graphs instead of just trees. These traces reveal
the causal connections between such units of work
throughout the system.

OpenTracing uses dynamic, fixed-width meta-data
to propagate causality between spans, meaning that
each span has a trace identifier common to all spans of
the same trace, as well as a span identifier and parent
span identifier representing parent/child relationships
between spans [40]. The standard defines the format
for spans and the semantic [34, 35] conventions for
their content/annotations.

Usually, the span has an operation name, start time-
stamp, duration and some annotations regarding the
operation itself. An example of a span can be a Remote
Procedure Call (RPC) or Hypertext Transfer Protocol
(HTTP) call annotated with source, destination and
possibly user defined logs/data. We provide insight of
how spans are related to each other and with time in
Fig. 1. As we can see, spans spread over time, overlap-
ping each other since nothing prevents the occurrence
of multiple calls in a short period or simultaneously.
From a trace like this, one may extract a span tree, as
the one we show in Fig. 2.

However, this specification may not be sufficient—
namely, it is not strict enough to be quantitatively
tested. Furthermore, the semantic conventions are very

Span A

Time

Span B

Span C

Span D

Span E

Fig. 1 Sample trace over time

generic and leave most decisions to the practitioner.
This lead to incoherence in traces, even inside the
same organization, and undermines the creation of
tools to automate their analysis.

From a representative set of traces and their respec-
tive span trees, we are able to extract the service
dependency graph. Figure 3 shows a possible depen-
dency graph generated from the span tree in Fig. 2.
Service A, the root, directly uses services B and E,
which on turn use C, D, and F; F uses G. We used
dashed arrows after service E, because these depen-
dencies do not come from the trace of Fig. 1, but
from the traces of other invocations involving E. From
these invocations, we can produce request work-flows.
Request work-flows represent the path carried out by
one request throughout services in the system. For
example, from the dependency graph presented in
Fig. 3, a clear work-flow is: Service A → Service
E → Service F → Service G. This request work-flows
can be used to trace and study service and business
process interactions.

Span A

Span B

Span C Span D

Span E

Fig. 2 Span tree example

J Grid Computing (2021) 19: 9 Page 3 of 15 9



Service A

Service B

Service C Service D

Service E

Service F

Service G

Fig. 3 Dependency graph example

2.2 Distributed Tracing Tools

Distributed tracing tools fetch or receive trace data from
complex distributed systems—such as microservice-
based ones—and process this data, before presenting
it to the user using more readable charts and diagrams.
Among other things, these tools provide the possibil-
ity to perform queries on the tracing data, e.g., by
trace identifier and by time-frame. Table 1 presents a
comparison of open source tracing tools.

The two tools we compare, Jaeger [44] and Zip-
kin [3], are very similar. Their advantages include the
availability of source code, containerization, support
for well known span transport technologies, and span
aggregation for representation in a browser; However,

they are focused on span and trace lookup, and pre-
sentation, not doing any type of automated analysis or
processing. For example, they lack mechanisms capa-
ble of pinpointing anomalies in specific microservices
or work-flows / requests, leaving this kind of work to
operators, whom must perform manual trace and span
inspection.

In summary, while generating, persisting, sorting
and representing tracing data is certainly a good start-
ing point for these tools, they still lack more advanced
features for autonomic system analysis. Application
Performance Monitoring Tools usually sport some
analysis capability, but they are typically expensive
full-stack observability suites [32].

2.3 Related Work

To contextualize our contributions, this sub-section
summarizes the related work found in the literature.
Automating tracing analysis has been attempted for
classic tracing, where the data is usually from a sin-
gle process or machine, and focuses on lower level
calls, such as functions and kernel calls. In this vein,
[22] present a method to detect anomalies in fea-
tures extracted from Linux kernel traces. While the
subject of anomaly detection from tracing features
is a shared concern, our approach focuses on the
distributed nature of FGDS—on its unique aspects,

Table 1 Distributed tracing tools comparison

Jaeger [44] Zipkin [3]

Brief description Released as open-source by Uber Technolo-
gies. Used for monitoring and troubleshooting
microservice-based distributed systems.

Helps gathering timing data needed to troubleshoot
latency problems in microservice applications. It
manages both the collection and lookup of data.
Zipkin’s design is based on the Google Dapper
paper [42].

Pros Open-source; Open-source;

Docker-ready; Docker-ready;

Collector interface is compatible with Zipkin Allows multiple span transport technologies

protocol; (HTTP, Kafka, Scribe, AMQP);

Dynamic sampling rate; Browser User Interface.

Browser User Interface.

Cons Only supports two span transport technologies Fixed sampling rate.

(Thrift and HTTP).

Analysis Dependency graph view; Dependency graph view.

Trace comparison.

9 Page 4 of 15 J Grid Computing (2021) 19: 9



such as morphological analysis—and the existing dis-
tributed tracing standards.

As instrumentation cost is relevant for the applica-
tion of distributed tracing, there is significant research
in attempting to automate or circumvent instrumenta-
tion. There are tools that attempt to automate instru-
mentation, either at code runtime or middle-ware levels
[4, 10, 28]. Others attempt an inference-based tracing
approach, statistically extracting causal order, making
it transparent to the services themselves and treating
them as black boxes [2]. [5, 37] do the same, with focus
on systems of microservices and exploiting the obser-
vation features of the underlying platforms, such as
service meshes and cluster managers. In contrast, we
assume that the instrumentation effort has already been
carried out, as it is gaining popularity in the industry
to solve FGDS observability issues. Furthermore, this
affords higher confidence in the results, especially for
statistically rare work-flows or occurrences.

On the subject of tracing collection—which we
approach in our suggestions to improve the useful-
ness of tracing for automated analysis—[25] propose
Sifter, a trace sampler built to bias the sampling deci-
sion towards edge cases and rare work-flows. [21] pro-
pose Canopy, a comprehensive instrumentation, col-
lection and analysis framework, that decouples those
steps and allows dynamic feature extraction using a
Domain-Specific Language (DSL).

Artificial Intelligence for Information Technology
(IT) Operations (AIOps), the application of artifi-
cial intelligence to operations [18] was introduced in
2016 [26] to develop new methods to automate and
enhance IT operations. Firstly, it recognizes the diffi-
culty of manually managing distributed infrastructures
and system state; secondly, the amount of data that has
to be retained keeps growing, creating a plethora of
problems to operators; thirdly, the infrastructure itself
is becoming more distributed across geography and
organizations, as evidenced by trends, like cloud-first
development and fog computing. In this new field,
there are a few interesting applications to tracing anal-
ysis. [30] use deep learning, trained on encoded traces,
to detect anomalies with recourse to distributed trac-
ing, in particular of cloud systems (OpenStack). This
approach attempts to uncover features automatically
and determine anomalous operation and traces. The
amount of data needed to train these models is consid-
erable, and is limited to classifying a trace as normal
or abnormal, losing detail and interpretability, i.e., no

justification for the classification. By comparison, our
approach focuses on a fixed set of features, related
to operation metrics, and morphology, such as con-
nectivity degree and work-flow, and uses interpretable
machine learning methods.

Looking at practical applications of tracing anal-
ysis, at IBM, [27] have achieved good results with
AIOps for trace and other observability data analy-
sis; they present a complete data processing pipeline,
from ingestion to actionable insight, as well a suc-
cessful evaluation on a production cloud. [7] use trace
analysis together with fault injection to improve fail-
ure propagation analysis in cloud systems. Similarly,
[46] developed a model to predict latent errors and
localize them by learning from distributed tracing. The
model was trained using data generated under a fault
injection load.

3 Problem Statement and Proposed Solution

Improving observability in a large-scale distributed
system serves the main purpose of driving the system
towards responsiveness [20], which implies resilience
[24] and elasticity [17]. Elasticity depends on the abil-
ity of the system to scale horizontally with load and
on the availability of the provider to support such
scaling with more (or less) resources. According to
Laprie [24], resilience is:

“The persistence of service delivery that can justi-
fiably be trusted, when facing changes”.

Since, in most implementations, elasticity relies
on simple direct metrics, like CPU occupation or
response latencies, observing a system mostly serves
to ensure resilience. In our particular case, our system
was an OpenStack cluster that Huawei Research uses
for testing purposes, of which we had an anonymised
OpenTracing data set, limiting us to use our method in
an off-line post mortem analysis of the cluster. Hence,
based on the existing traces, and the metrics derived
from them, like the number of incoming and outgoing
requests, response times or service error codes, to look
for threats to resilience. To achieve this goal, we asked
two research questions:

1. Is there any anomalous behaviour in the system?
2. If yes, where?

One can easily see that a timely answer to these
questions is very helpful for resiliency during system

J Grid Computing (2021) 19: 9 Page 5 of 15 9



operation. However, the sheer number of components
and metrics, like the number of incoming and outgo-
ing requests, response times, downtimes, error codes,
and so on, requires a significant capacity to collect and
process data, but above all the need to know where and
what to look for. By doing the post mortem analysis on
the tracing data, we aim to find appropriate methods
to answer these questions.

The data from Huawei Research consisted of two
JSON Lines (JSONL) files, one file per day of oper-
ation. Table 2 provides additional details on the data.
Each file has around 200,000 Spans, composing about
70,000 Traces. This file format is an extension of
the JavaScript Object Notation (JSON) file type. In
JSONL, multiple JSON objects, each encoding a span,
are separated by a new line character.

3.1 Solution

Before we could run the data analysis tool, we had
to extract metrics from tracing data and write them
into a time-series database. For this operation, we used

Table 2 Data set provided for this research

File date June 28th June 29th

Spans count 190 202 239 693

Traces count 64 394 74 331

Algorithm 1 which retrieves tracing data from Zipkin,
links spans to rebuild Traces and Service Dependency
Graphs in memory, and finally, extracts pre-defined
metrics from these structures, to store them in the
time-series database for visualization and analysis.
Currently, OTP is extracting and analysing the follow-
ing data from tracing, for a given time interval:

– Number of incoming/outgoing calls per service.
– Average response time per service.
– Changes to service neighbourhood (both for

incoming and outgoing calls).

If necessary, for the sake of analysing the system,
one could extract other metrics, like service connec-
tion degrees, number of services traced over time, or
number of entering and departing services over time.
We did not use these additional metrics in this paper,
because we did not find them useful for the particular
traces under analysis.

3.2 Implementation

We followed the two-step high-level approach of
Fig. 4. The tracing data feeds OTP, which derives
higher order metrics from tracing data, before storing
them in a time-series database. The existing tracing
back-ends, can only export spans, leaving the recon-
struction of traces (connecting the spans as a tree) to
the user. OTP does this using Java Streaming Appli-
cation Program- ming Interface (API) [36], lever-
aging its parallelization capabilities. Service depen-
dency graphs, were extracted and processed using
NetworkX [31], a Python-based framework for graph
processing, containing a large set of graph algorithms.
OpenTSB [43] was used to store the derived metrics
that follow. To visualize the extracted metrics, we used
Grafana [16].

The other tool aims to perform metric analysis from
the time-series database. Since our data is unlabelled,
i.e., it has no classification; therefore, our analysis uses
unsupervised learning algorithms. We chose Isolation

9 Page 6 of 15 J Grid Computing (2021) 19: 9



Proposed approach

aaa
MMM

OTP

Metrics gathering from
tracing data.Traces Processed

data

Data Analyser

Performs the analysis of the
stored metrics and points
out service problems.

Fig. 4 Proposed solution

Forests [29], as the starting point, as it allows outlier
detection in a multidimensional space. We developed
this component as a collection of Python scripts in
Jupyter Notebooks [38]. We used Pandas [45], to pro-
cess time-series data, and Scikit-learn [8], to provide
an implementation of Isolation Forests.

The main goals of this pair of components was to
find the set of interesting time-frames in a large set of
traces, thus relieving operators from the need to con-
duct unguided, sometimes exhaustive, search using
Zipkin that are mostly limited to tracing visualisation
features. The code and documentation of our work are
available in GitHub.1

4 Results and Analysis

In this section we present the results gathered from
the Data Analysis component presented in Section 3,
to identify and locate anomalous behaviour in the sys-
tem. As we worked towards this goal, the quality of
the tracing data became a problem, leading us to for-
mulate an additional research question. Furthermore,
even though we had traces and were able to iden-
tify anomalous regions, we did not have access to
issue reports and were unable to validate accuracy and
precision.

4.1 Anomaly Detection

Figure 5 provides a representation of two time-frame
samples of the same service, one for an anomalous
region, and another for a non-anomalous region as
tagged by our Data Analyser component. We set
the time-series resolution to 10 minutes—to avoid

1OpenTracing Processor (OTP), https://github.com/andrepbento/
OpenTracingProcessor

intervals with too few traces—, and considered the
number of incoming and outgoing requests, in con-
junction with the average response time.

Figure 6 presents the comparison between detected
Anomalous and Non-Anomalous time-frames in unix
time stamp for a given service. This information, rep-
resented in Fig. 6, was the result of outlier detection,
considering three service metrics: number of incom-
ing requests, number of outgoing requests and average
response time. Anomalies identified by the algorithm,
are indicated by vertical red lines. In addition to the
metrics used for anomaly detection, we include an
additional time-series, which denotes the morphologi-
cal changes to the service dependency graph.

Aswe can see in Fig. 5, the difference between anoma-
lous and non-anomalous operation is made clear by the
presence of outliers. In the anomalous samples, points
form a cluster near the chart origin, with some outliers
on the upper-left and down-right regions of the chart.
Meanwhile, in the non-anomalous samples, there is
only a clustering of points near the chart origin.

The next step of our analysis is to determine the
cause for the outliers in the anomalous samples, i.e.,
what exactly is causing this unexpected increment
in the number of incoming/outgoing requests—which
accounts for load variation—and average response
times, more precisely:

– Some services take longer to respond even when
the system is lightly loaded, with few incom-
ing/outgoing requests.

– Some services are receiving more incoming/outgo-
ing requests, but still responding fast.

An elastic system should be capable of handling
more requests and still reply in an expected amount
of time. However, if the service quality degradation in
response to increased load is to steep, this represent
some error condition that we must rule out.

J Grid Computing (2021) 19: 9 Page 7 of 15 9

https://github.com/andrepbento/OpenTracingProcessor
https://github.com/andrepbento/OpenTracingProcessor


Subsequently, we analysed the work-flow types.
A work-flow is a class of requests, or traces, that
share the same service invocation graph. Usually they
represent a type of request or business process. The
objective of this analysis is to understand if there is
something wrong with the request work-flow paths,
such as degenerate paths resulting from missing ser-
vices. Algorithm 2 illustrates our approach to collect
all work-flows present in the tracing data. The process
to collect work-flows involves pinpointing requests
between services present in the span meta-data and
then storing a list of all unique graphs.

In Fig. 7 we show the most common work-
flows from the Anomalous and Non-Anomalous time-
frames. Given the large number of work-flows that
exist in the system, we encoded them numerically.

One interesting fact to notice is that, in the anoma-
lous regions, there are more request work-flows types.
The next step would be to check what was causing this
increase, by retrieving the most invoked work-flow.
Unfortunately, we were unable to continue down this
path, because tracing data was incomplete. The flows
were not relevant for a further analysis because they
were just calls between a gateway and a service. More-
over, the gateway instrumentation was incomplete;
logging the type of request and service name but not
the endpoint. At this point, and for this question, it is
possible to say that this data set was exhaustively anal-
ysed, and an improvement of the tracing data should
be the path to take.

4.2 Trace Quality Analysis

Once we concluded the impossibility of going deeper
in the analysis of the tracing data, we questioned
how we could measure the quality of tracing. Our
approach to this question was to process the tracing
data and feed it to the Data Analysis component, this
time without using a time-series database in-between.
We divided this analysis into two procedures. The
first procedure checks if the spans complies with the
OpenTracing specification. According to the algo-
rithm, every span structure complies with the spec-
ification. The problem here is that the OpenTracing
specification is not very strict and therefore, this test-
ing algorithm cannot provide very accurate results.
For example, the units for time-stamps are not uni-
form, one can use milliseconds in one field and then,
in another field of a span, in the same trace, time
might be in microseconds. This leads to problems in
time measurements, but the specification, and the very
design of the standard, make it difficult to detect com-
putationally in a deterministic manner. We discuss a
possible redefinition of the OpenTracing specification
in Section 5.

The second procedure checks if tracing covers the
entire time of the root spans. For a simple example,
if we have a trace with a root span of 100 ms, and
this root span has two children spans, one with 50
ms, the other one with 40 ms, the entire trace has
a temporal coverage of (50 + 40)/100 = 90%. We
apply this method to every trace, and plot the results;
furthermore, we split them by service, with the objec-
tive of determining the time coverage of tracing by
service.

9 Page 8 of 15 J Grid Computing (2021) 19: 9



Fig. 5 Comparison between Anomalous and Non-Anomalous service time-frame regions

The results, regarding two different services are
displayed in Fig. 8, depicting the coverage histograms
for two different services. Each time the service shows
up in a trace, we calculate the percentage of time cov-
ered, to produce the histogram. It is important to notice
the good coverage level—in the 60% − 100% range.
This means that coverage for this tracing could be bet-
ter, but it is nonetheless good. This points to the fact
that even a relatively high temporal coverage is not
a sufficient quality indicator for automated anomaly
detection.

5 Tracing Standard Limitations and Mitigations

The quality of our anomaly detectionmethodwas bounded
by the quality of the data. Specifically, the tracing dataset
presented problems in completeness and homogene-
ity, which we reason is a consequence of ambiguity in
the tracing format specification standard. Limitations

in the tooling exacerbate the aforementioned issue—
there is no tool to perform tracing quality evaluation—,
and made it necessary to develop tools to treat and
analyse data. Furthermore, exploratory analysis of
tracing data is difficult as there are no tools available
for this purpose. We categorised and sub-divided this
issues in Fig. 9. They can be roughly divided in three
groups, data sufficiency, ontological, and tools.

Data available in the tracing dataset must be suffi-
cient for the analysis. This means that the instrumenta-
tion needs to cover the code-base, like unit tests would
have to, as well as time. As described in Section 4.2, a
span should have its children spans cover as much as
its time-frame as possible, limited by code granular-
ity. Even though trace sampling becomes a necessity
at scale, to avoid unacceptable overhead, it needs to
be balanced against representativeness of the data and,
in turn, of the intelligence extracted from it. In order
to be able to capture rare events as well as enough
volume in a low throughput system, sampling-rate

J Grid Computing (2021) 19: 9 Page 9 of 15 9



0
10

00
30

00
0

10
00

20
00

0
10

00
00

0

1530140000 1530160000 1530180000 1530200000 1530220000

0
5

10

In
co

m
in

g 
R

eq
ue

st
s

O
ut

go
in

g 
R

eq
ue

st
s

R
es

po
ns

e 
Ti

m
e 

(m
s)

G
ra

ph
 C

ha
ng

es

Time Stamp

Fig. 6 Metrics over time and detected anomalies

Fig. 7 Comparison between Anomalous and Non-Anomalous service work-flow types

9 Page 10 of 15 J Grid Computing (2021) 19: 9



Fig. 8 Services coverage analysis

Fig. 9 Categorization of Tracing Limitations

J Grid Computing (2021) 19: 9 Page 11 of 15 9



must be adaptive, preferably staying at 100% until the
overhead becomes a problem.

In addition to the previous considerations, which
focused on the data set level (set of traces), it is also
important to pay attention to individual traces, in other
words, “internal trace quality”. Traces should have
enough information to clearly and uniquely identify
all the components in the system, their invocation /
causality relationships, as well as their context (e.g.,
physical computer, run-time, real time clock). Note
that component, might refer to a executable artefact,
run-time, service or be as granular as classes and
functions.

Spans should follow an ontology that enforces a
strict tracing schema upon traces, implying archetypes
for format and naming, as well as validation features.
With respect to format, spans parameters should fol-
low specific descriptions, lowering the difficulty of
employing statistical analysis and machine learning
methods. As an example, the definition of span start
and end time-stamps should be a compound type, con-
taining a 64 bit integer numeric value and a time
unit (e.g., milliseconds (ms), microseconds (μs)); in
terms of validation, there should be bounds of what is
an acceptable, relatively current time-stamp (e.g., ±1
month), and an assertion that the end time-stamp is
greater than the starting one.

In line with the current practices of Continuous
Development (CD) / Continuous Integration (CI),
there is the need to fully automate the suggested
practices. To begin, to make sure that the code-base
is sufficiently covered by the tracing instrumenta-
tion, developers need a tool that can be integrated in
their development and quality assurance pipelines as
means of enforcement. From the testing perspective,
and looking at the resulting traces themselves, there
should be tools capable of testing compliance with the
ontology / specification and clearly output errors and
warnings about any inconsistencies. To ensure that this
is noted by the developers, the tracing back-end tools
should, for example, refuse to ingest incongruent data.
Note that this is only possible if the tracing format is
sufficiently strict and well defined, leading back to the
need for an ontology.

Concerning visualization, traces are not easy to
present as a result of being tree structures represent-
ing a path on the dependency / architectural graph;
additionally, there are no tools to filter and project
results according to multiple dimensions that might be

of interest (e.g., time, work-flow, dependency graph
/ architecture, physical infrastructure, run-time, and
others).

Data exploration is another use case that would
benefit from better tooling. When debugging a system
or attempting to reason about its behaviour, it is useful
to be able to view data in context and follow connec-
tions across different dimensions, for example, find
logs or infrastructure metrics related to a particular
trace, or traces from a specific work-flow. This could
be implemented in a number of ways, as an example,
relate logs to spans by adding span identifiers to logs,
and relate infrastructure metrics by time-stamp and
physical machine; alternatively, this could be achieved
by creating a unified observation standard that col-
lects all observability data, therefore having enough
information to preserve their relation.

We believe that the industry is experiencing the
same limitations, regarding tools and standards, as we
did in this work, as evidenced by an ongoing open
source initiative entitled OpenTelemetry [6]. Sup-
ported by big companies, such as Google, Lightstep
and Uber, this project aims at creating a more com-
prehensive standard, merging OpenCensus [15] and
OpenTracing [1], to enable the creation of reusable
tools. Furthermore, so far, they have not satisfied all
the requirements we uncovered, having mostly car-
ried a merging effort between technologies, instead
of redesigning them. For example, the consortium
should consider trace testability as a driver for the
design, laying the foundation to create a quantitative
metric for trace evaluation, as well as the respective
tools. Developers need a tool capable of determining
if the analysis failed as a consequence of trace quality
issues. The lack of automatic analysis leads to usabil-
ity issues and code quality problems; instrumentation
libraries do not guide programmers towards the cor-
rect way of using them (e.g., requiring explicit units
for time-stamps).

6 Conclusion

Our results, and industry tendencies, reveal that trac-
ing data is useful and required to find anomalies in
large-scale distributed systems, where human cogni-
tion starts to fail; However, tracing data is hard to
handle due to application specificity, complexity and
sheer volume. We have used this information to detect

9 Page 12 of 15 J Grid Computing (2021) 19: 9



anomalous behaviours and locate them in services
and time. We extracted metrics, from tracing data, as
time-series, and then performed outlier detection anal-
ysis over a composite multi-dimensional time-series.
Despite the elevated cost of analysing traces manually,
issues addressed in this paper can only be identified
using tracing data.

In the end, our analysis of the tracing data from
the Huawei Cloud Platform, lead us to the following
conclusions:

1. OpenTracing suffers from a lack of tools for data
processing and visualisation.

2. The OpenTracing specification is not strict
enough for automated analysis.

3. The lack of tools to control instrumentation qual-
ity jeopardizes the tracing effort.

These conclusions are valid for the newer Open-
Telemetry standard, as it is partially derived from
OpenTracing and OpenCensus [15].

Finally, the analysis we did on tracing quality lead
us to another result. While we can use more or less
complex tools and data analysis algorithms, the poor
quality of traces compromises what can be achieved.
Even when traces are appropriately organized and pro-
vide reasonable temporal coverage, the lack of a strict
specification, together with the lack of code coverage
considerably reduces the usefulness of tracing data.

As future work, we intend to generate a labelled
dataset using fault and or failure injection to enable
the use of supervised learning methods. Additionally,
the industry definition of tracing in a distributed con-
text is lacking compared to the classic tracing concept.
One interesting path to follow is to extend tracing to
include other aspects of system state and meta-data,
such as monitoring and logging.

Acknowledgements This work was produced with the sup-
port of INCD funded by FCT and FEDER, under the project
01/SAICT/2016 n̄ 022153 and was partially carried out under
the project P2020 - 31/SI/2017: AESOP — Autonomic Service
Operation, supported by Portugal 2020 and UE-FEDER. This
work was also partially supported by national funds through
the FCT - Foundation for Science and Technology, I.P., within
the scope of the project CISUC - UID/CEC/00326/2020 and by
the European Social Fund, through the Regional Operational
Program Centro 2020.

Data Availability The data that support the findings of this
study are available from Huawei Research, but restrictions
apply to the availability of these data, which were used under
license for the current study, and so are not publicly available.

Data are however available from the authors upon reasonable
request and with permission of Huawei Research. All our source
code was made available in GitHub.2

References

1. The OpenTracing Specification repository. https://github.
com/opentracing/specification. Retrieved on Nov, 2018

2. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P.,
Muthitacharoen, A.: Performance debugging for distributed
systems of black boxes. ACM SIGOPS Operating Systems
Review 37(5), 74 (2003). https://doi.org/10.1145/1165389.
945454

3. Apache Software Foundation: Zipkin. http://zipkin.io
(2016). Retrieved on Feb, 2019

4. Ates, E., Sturmann, L., Toslali, M., Krieger, O., Meggin-
son, R., Coskun, A.K., Sambasivan, R.R.: An automated,
cross-layer instrumentation framework for diagnosing per-
formance problems in distributed applications. In: Pro-
ceedings of the ACM Symposium on Cloud Computing -
SoCC ’19, pp. 165–170. ACM Press, New York (2019).
https://doi.org/10.1145/3357223.3362704

5. Cinque, M., Della Corte, R., Pecchia, A.: Microservices
monitoring with event logs and black box execution tracing.
IEEE Trans. Serv. Comput., 1–1. https://doi.org/10.1109/
TSC.2019.2940009 (2019)

6. Cloud Native Computing Foundation: OpenTelemetry:
Effective observability requires high-quality telemetry.
https://opentelemetry.io (2019). Retrieved on July, 2019

7. Cotroneo, D., De Simone, L., Liguori, P., Natella, R.,
Bidokhti, N.: Enhancing failure propagation analysis in
cloud computing systems. In: 2019 IEEE 30th International
Symposium on Software Reliability Engineering (ISSRE),
pp. 139–150. IEEE (2019). https://doi.org/10.1109/ISSRE.
2019.00023

8. Cournapeau, D.: Scikit-learn - Machine learning in Python.
https://github.com/scikit-learn/scikit-learn. Retrieved on
Feb, 2019 (2007)

9. Dragoni, N., Giallorenzo, S., Lafuente, A.L., Mazzara, M.,
Montesi, F., Mustafin, R., Safina, L.: Microservices: yester-
day, today, and tomorrow. In: Present and Ulterior Software
Engineering, pp. 195–216 (2017). https://doi.org/10.1007/
978-3-319-67425-4 12

10. Erlingsson, Ú., Peinado, M., Peter, S., Erlingsson, U.,
Peinado, M., Peter, S., Budiu, M.: Fay. Proceedings of
the Twenty-Third ACM Symposium on Operating Systems
Principles - SOSP ’11 13(4), 311–326 (2011). https://doi.
org/10.1145/2043556.2043585

11. Ewaschuk, R., Beyer, B.: Site Reliability engineering: How
Google Runs Production Systems, chap. Monitoring Dis-
tributed Systems, pp. 55–66. O’Reilly Media Inc. (2016)

12. Fonseca, R., Porter, G., Katz, R.H., Shenker, S., Sto-
ica, I.: X-trace: a pervasive network tracing frame-
work. In: Proceedings of the 4th USENIX Confer-
ence on Networked Systems Design & Implementation

2OpenTracing Processor (OTP), https://github.com/andrepbento/
OpenTracingProcessor

J Grid Computing (2021) 19: 9 Page 13 of 15 9

https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://doi.org/10.1145/1165389.945454
https://doi.org/10.1145/1165389.945454
http://zipkin.io
https://doi.org/10.1145/3357223.3362704
https://doi.org/10.1109/TSC.2019.2940009
https://doi.org/10.1109/TSC.2019.2940009
https://opentelemetry.io
https://doi.org/10.1109/ISSRE.2019.00023
https://doi.org/10.1109/ISSRE.2019.00023
https://github.com/scikit-learn/scikit-learn
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_12
https://doi.org/10.1145/2043556.2043585
https://doi.org/10.1145/2043556.2043585
https://github.com/andrepbento/OpenTracingProcessor
https://github.com/andrepbento/OpenTracingProcessor


(NSDI’07), April, p. 20. USENIX Association (2007).
https://doi.org/10.5555/1973430.1973450

13. Fowler, M., Lewis, J.: Microservices, a definition of
this architectural term. https://martinfowler.com/articles/
microservices.html. Retrieved on Sep, 2018 (2014)

14. Francesco, P.D., Malavolta, I., Lago, P.: Research on archi-
tecting microservices: trends, focus, and potential for indus-
trial adoption. In: 2017 IEEE International Conference on
Software Architecture (ICSA), pp. 21–30. IEEE (2017).
https://doi.org/10.1109/ICSA.2017.24

15. Google LLC: OpenCensus. https://opencensus.io (2016).
Retrieved on July, 2019

16. Grafana Labs: Grafana - The tool for beautiful met-
ric dashboards. https://github.com/grafana/grafana (2015).
Retrieved on Feb, 2019

17. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud
computing: what it is, and what it is not. Presented as
part of the 10th International Conference on Autonomic
Computing, 23–27 (2013)

18. Jacob, S.: The Rise of AIOps: How Data, Machine Learn-
ing, and AI Will Transform Performance Monitoring.
https://www.appdynamics.com/blog/aiops/aiops-platforms-
transform-performance-monitoring. Retrieved onMar, 2019
(2019)

19. Janapati, S.P.R.: DistributedLoggingArchitecture forMicroser-
vices. https://dzone.com/articles/distributed-logging-archite
cture-for-microservices. Retrieved on Feb, 2019 (2017)

20. Jonas Bonér Dave Farley, R.K., Thompson, M.: The
Reactive Manifesto. https://www.reactivemanifesto.org.
Retrieved on Jun, 2019 (2014)

21. Kaldor, J., Mace, J., Bejda, M., Gao, E., Kuropatwa, W.,
O’Neill, J., Ong, K.W., Schaller, B., Shan, P., Viscomi, B.,
Venkataraman, V., Veeraraghavan, K., Song, Y.J.: Canopy:
an end-to-end performance tracing and analysis system. In:
SOSP 2017 - Proceedings of the 26th ACM Symposium on
Operating Systems Principles, pp. 34–50. ACM Press, New
York (2017). https://doi.org/10.1145/3132747.3132749

22. Kohyarnejadfard, I., Shakeri, M., Aloise, D.: System Per-
formance Anomaly Detection Using Tracing Data Analy-
sis. In: ACM International Conference Proceeding Series,
vol. Part F1482, pp. 169–173. ACM Press, New York
(2019). https://doi.org/10.1145/3323933.3324085

23. Lamport, L.: Time, clocks, and the ordering of events in
a distributed system. Communications of the ACM 21(7),
558–565 (1978). https://doi.org/10.1145/359545.359563.
http://amturing.acm.org/p558-lamport.pdf, http://portal.ac
m.org/citation.cfm?doid=359545.359563

24. Laprie, J.C.: From dependability to resilience. In: 38th
IEEE/IFIP Int. Conf. on Dependable Systems and Net-
works, pp. G8–G9 (2008)

25. Las-Casas, P., Papakerashvili, G., Anand, V., Mace, J.:
Sifter: scalable sampling for distributed traces, without fea-
ture engineering. In: Proceedings of the ACM Symposium
on Cloud Computing - SoCC ’19, pp. 312–324. ACM
Press, New York (2019). https://doi.org/10.1145/3357223.
3362736

26. Lerner, A.: AIOps Platforms. https://blogs.gartner.com/
andrew-lerner/2017/08/09/aiops-platforms. Retrieved on
Jun, 2019 (2017)

27. Levin, A., Garion, S., Kolodner, E.K., Lorenz, D.H.,
Barabash, K., Kugler, M., McShane, N.: AIOps for a
cloud object storage service. In: 2019 IEEE International
Congress on Big Data (Bigdatacongress), pp. 165–169.
IEEE (2019). https://doi.org/10.1109/BigDataCongress.
2019.00036

28. Li, H., Oh, J., Oh, H., Lee, H.: Automated source code
instrumentation for verifying potential vulnerabilities. IFIP
Advances in Information and Communication Technology
471, 211–226 (2016). https://doi.org/10.1007/978-3-319-
33630-5 15

29. Li, S.: Time Series of Price Anomaly Detection. https://
towardsdatascience.com/time-series-of-price-anomaly-
detection-13586cd5ff46. Retrieved on Jan, 2019 (2019)

30. Nedelkoski, S., Cardoso, J., Kao, O.: Anomaly detection
from system tracing data using multimodal deep learning.
In: 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD), vol. 2019-July, pp. 179–186. IEEE
(2019). https://doi.org/10.1109/CLOUD.2019.00038

31. NetworkX developers: NetworkX. https://networkx.github.
io (2014). Retrieved on Nov, 2018

32. New Relic, Inc.: Newrelic – deliver more perfect software.
https://newrelic.com (2008). Retrieved on Jan, 2021

33. OpenTracing Specification Council: The OpenTracing Data
Model Specification. https://opentracing.io/specification
(2019). Retrieved on Feb, 2019

34. OpenTracing Specification Council: The OpenTracing
Semantic Conventions. https://github.com/opentracing/
specification/blob/master/semantic conventions.md
(2019). Retrieved on Feb, 2019

35. OpenTracing Specification Council: The OpenTracing
Semantic Specification. https://github.com/opentracing/spe
cification/blob/master/specification.md (2019). Retrieved
on Feb, 2019

36. Oracle: Java Stream API. https://docs.oracle.com/javase/
8/docs/api/java/util/stream/package-summary.html (2017).
Retrieved on Feb, 2019

37. Pina, F., Correia, J., Filipe, R., Araujo, F., Cardoso, J.:
Nonintrusive monitoring of microservice-based systems.
In: 2018 IEEE 17th International Symposium on Network
Computing and Applications (NCA), pp. 1–8. IEEE (2018)

38. Project Jupyter: Jupyter Notebooks. https://jupyter.org
(2015). Retrieved on Nov, 2018

39. Richardson, C.: Microservices Definition. https://microse
rvices.io. Retrieved on Sep, 2018 (2019)

40. Sambasivan, R.R., Fonseca, R., Shafer, I., Ganger, G.R.:
So, you want to trace your distributed system? Key design
insights from years of practical experience. Tech. rep.,
Technical Report CMU-PDL-14 (2014)

41. Sambasivan, R.R., Shafer, I., Mace, J., Sigelman, B.H.,
Fonseca, R., Ganger, G.R.: Principled workflow-centric
tracing of distributed systems. In: Proceedings of the Sev-
enth ACM Symposium on Cloud Computing - SoCC ’16,
pp. 401–414. ACM Press, New York (2016). https://doi.org/
10.1145/2987550.2987568

42. Sigelman, B.H., André, L., Burrows, M., Stephenson, P.,
Plakal, M., Beaver, D., Jaspan, S., Shanbhag, C.: Dapper,
a Large-Scale Distributed Systems Tracing Infrastructure.
Tech. rep., Google LLC (2010)

9 Page 14 of 15 J Grid Computing (2021) 19: 9

https://doi.org/10.5555/1973430.1973450
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/ICSA.2017.24
https://opencensus.io
https://github.com/grafana/grafana
https://www.appdynamics.com/blog/aiops/aiops-platforms-transform-performance-monitoring
https://www.appdynamics.com/blog/aiops/aiops-platforms-transform-performance-monitoring
https://dzone.com/articles/distributed-logging-architecture-for-microservices
https://dzone.com/articles/distributed-logging-architecture-for-microservices
https://www.reactivemanifesto.org
https://doi.org/10.1145/3132747.3132749
https://doi.org/10.1145/3323933.3324085
https://doi.org/10.1145/359545.359563
http://amturing.acm.org/p558-lamport.pdf
http://portal.acm.org/citation.cfm?doid=359545.359563
http://portal.acm.org/citation.cfm?doid=359545.359563
https://doi.org/10.1145/3357223.3362736
https://doi.org/10.1145/3357223.3362736
https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms
https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-platforms
https://doi.org/10.1109/BigDataCongress.2019.00036
https://doi.org/10.1109/BigDataCongress.2019.00036
https://doi.org/10.1007/978-3-319-33630-5_15
https://doi.org/10.1007/978-3-319-33630-5_15
https://towardsdatascience.com/time-series-of-price-anomaly-detection-13586cd5ff46
https://towardsdatascience.com/time-series-of-price-anomaly-detection-13586cd5ff46
https://towardsdatascience.com/time-series-of-price-anomaly-detection-13586cd5ff46
https://doi.org/10.1109/CLOUD.2019.00038
https://networkx.github.io
https://networkx.github.io
https://newrelic.com
https://opentracing.io/specification
https://github.com/opentracing/specification/blob/master/semantic_conventions.md
https://github.com/opentracing/specification/blob/master/semantic_conventions.md
https://github.com/opentracing/specification/blob/master/specification.md
https://github.com/opentracing/specification/blob/master/specification.md
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summ ary.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summ ary.html
https://jupyter.org
https://microservices.io
https://microservices.io
https://doi.org/10.1145/2987550.2987568
https://doi.org/10.1145/2987550.2987568


43. StumbleUpon, Inc: OpenTSDB. https://github.com/
OpenTSDB/opentsdb (2010). Retrieved on Feb, 2019

44. Uber Technologies: Jaeger. https://www.jaegertracing.io
(2017). Retrieved on Jun, 2019

45. Wes McKinney: Pandas - Flexible and powerfull time-
series data analysis. https://github.com/pandas-dev/pandas
(2008). Retrieved on Nov, 2018

46. Zhou, X., Peng, X., Xie, T., Sun, J., Ji, C., Liu, D., Xiang,
Q., He, C.: Latent error prediction and fault localization
for microservice applications by learning from system trace

logs. In: Proceedings of the 2019 27th ACM Joint Meet-
ing on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering
- ESEC/FSE 2019, pp. 683–694. ACM Press, New York
(2019). https://doi.org/10.1145/3338906.3338961

Publisher’s Note Springer Nature remains neutral with
regard to jurisdictional claims in published maps and institu-
tional affiliations.

J Grid Computing (2021) 19: 9 Page 15 of 15 9

https://github.com/OpenTSDB/opentsdb
https://github.com/OpenTSDB/opentsdb
https://www.jaegertracing.io
https://github.com/pandas-dev/pandas
https://doi.org/10.1145/3338906.3338961

	Automated Analysis of Distributed Tracing...
	Abstract
	Introduction
	State of the Art
	Core Concepts
	Distributed Tracing Tools
	Related Work

	Problem Statement and Proposed Solution
	Solution
	Implementation

	Results and Analysis
	Anomaly Detection
	Trace Quality Analysis

	Tracing Standard Limitations and Mitigations
	Conclusion
	References




