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Abstract—In large-scale datacenters, memory failure is a com-
mon cause of server crashes, with Uncorrectable Errors (UEs)
being a major indicator of Dual Inline Memory Module (DIMM)
defects. Existing approaches primarily focus on predicting UEs
using Correctable Errors (CEs), without fully considering the
information provided by error bits. However, error bit patterns
have a strong correlation with the occurrence of UEs. In this
paper, we present a comprehensive study on the correlation
between CEs and UEs, specifically emphasizing the importance
of spatio-temporal error bit information. Our analysis reveals a
strong correlation between spatio-temporal error bits and UE
occurrence. Through evaluations using real-world datasets, we
demonstrate that our approach significantly improves prediction
performance by 15% in F1-score compared to the state-of-the-art
algorithms. Overall, our approach effectively reduces the number
of virtual machine interruptions caused by UEs by approximately
59%.

Index Terms—Memory, Failure prediction, AIOps, Uncor-
rectable error, Reliability, Machine Learning

I. INTRODUCTION

With the increasing demand for cloud computing and big
data storage services, hardware failures [1], [2] can signif-
icantly impact the Reliability, Availability, and Serviceabil-
ity (RAS)1 of servers. Among hardware failures, DRAM
(Dynamic Random Access Memory) failure is a major oc-
currence, accounting for 37% of total hardware failures in
Figure 1. DRAM failure is often accompanied by DRAM
errors, i.e, Correctable Error (CE) and Uncorrectable Error
(UE). To mitigate DRAM failures, Error Correction Code
(ECC) mechanisms such as SEC-DED [3], Chipkill [4] and
SDDC [5] are used to detect and correct data corruption errors.
For example, Chipkill ECC can correct any erroneous data
bits originating from a single DRAM chip. However, when
erroneous data bits span across two or more chips, the error
correction capability of Chipkill ECC becomes overwhelmed,
often resulting in a system crash due to a UE. Moreover,
the ECC on contemporary Intel platforms like Skylake and
Cascade Lake servers is less robust compared to Chipkill
ECC, making it vulnerable to certain error-bit patterns from
a single chip [6]. Thus, soly depending on ECC for DRAM
reliability proves inadequate, with DRAM failures remaining
a significant cause of system failures.

To improve memory reliability, several studies [8]–[13]
have investigated the correlations between memory errors and

1Reliability, Availability, and Serviceability are three key attributes assess-
ing the dependability of computer systems.
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Fig. 1: Distribution of Hardware Failures in Data Centers [7].

failures, which forms the foundation of our work. Machine
Learning (ML)-based techniques have been leveraged for
DRAM failure prediction [14]–[21], using CEs information
from a large-scale datacenter to predict UEs. These studies
have effectively utilized the spatial distribution of CEs to
enhance DRAM failure prediction. Moreover, system-level
workload indicators such as memory utilization, read and write
have been applied for DRAM failure prediction in [22]–[24].
The experiments in [24] have demonstrated that the workload
metric is relatively less significant compared to other CE
related features. In [25], CE storm (numerous CEs occurring
in a short period) and UEs are considered for predicting
DRAM-caused node unavailability (DCNU), emphasizing the
importance of spatio-temporal CE features. Furthermore, in
[6], specific error bit patterns are discussed and correlated
with DRAM UEs. Rule-based error bit pattern indicators
are developed for DRAM failure prediction across different
manufacturers and part numbers, aligning with the ECC design
of contemporary Intel Skylake and Cascade Lake servers.
In addition, HiMFP framework [26] advocates a hierarchical
system-level approach to memory failure prediction, using
error bits features. However, the intrinsic distributions of
error bits, specifically in Data pins (DQ) and beat, remain
unexplored in above literature. Delving into these distributions
is crucial for understanding the correlation between CE and
UE.

In this paper, we present an in-depth correlative analysis be-
tween CE and UE, specifically focusing on the spatio-temporal
distribution of error bits. We also investigate latent patterns
of error bits from CE to UE on the ECC of contemporary
Intel servers. Our primary goal of analysis is to enhance
memory failure prediction based on various DRAM errors and
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system configurations. Finally, machine learning models are
implemented to leverage spatio-temporal error bits for memory
failure prediction.

The key contributions of the paper are as follow:
• We analyze error bits patterns generated from DIMM

manufacturer and part number, and construct novel tem-
poral risky CE indicators for UE prediction.

• We conduct the first in-depth correlative analysis between
error bits and UE, specifically during DRAM read/write
in Data pins (DQ) and beat. In addition, micro-level faults
in the memory subsystem and system configurations are
further correlated with UE occurrences.

• We design ML-based failure prediction algorithms, based
on the statistical insights from our analyses. Through
evaluations using real-world data from a large-scale data
center, our proposed error bits features have demonstrated
the ability to capture latent patterns within the ECC
of contemporary Intel servers, significantly improving
UE prediction. When compared to the state-of-the-art
algorithm [6], our approach achieves up to an 15%
improvement in F1-score for UE prediction, resulting in
approximately a 59% Virtual Machine Reduction Rate
(VIRR) in our data centers.

The remainder of this paper is organized as follows: Sec-
tion II provides the background of our work. Section III
discussed the dataset employed in our data analysis. In Sec-
tion IV, we formulate the the problem and define the perfor-
mance measurements. Section V introduces error bit pattern
indicators for UE prediction. Section VI presents an correlative
study on UE. Section VII demonstrates machine learning
techniques for memory failure prediction. Experimental results
are shown in Section VIII. Section IX concludes this paper.

II. BACKGROUND

A. Terminology

A fault serves as the underlying cause of an error in DRAM,
and it can be caused by various factors such as particle
impacts, cosmic rays or defects.

An error refers to the situation in which a DIMM provides
data to the memory controller that is inconsistent with the
ECC [3]–[5], [27], resulting from an active fault. Depending
on ECC’s capability to correct them, memory errors can
be classified into correctable errors (CEs) and uncorrectable
errors (UEs) [12]. Two specific types of UEs are well-studied
in prior literature [14]. 1) sudden UE: UEs caused by some
component faults that instantly corrupt data, and 2) predictable
UE: UEs that initially manifest as correctable errors but
eventually escalate into UEs. A sudden UE typically has no
CEs before it occurs, while a predictable UE can be predicted
using CEs with failure prediction algorithms.

B. Memory Organization and Access

Figure 2 illustrates a framework of memory subsystem orga-
nization, memory access and memory RAS. The memory sys-
tem is hierarchical in Figure 2(1): A DIMM rank is composed
of several DRAM chips that form banks of two-dimensional

arrays. Each bank is organized into rows and columns, and
each addressable unit indexed by rows and columns is a
memory cell containing a 4-bit word in the x4 DRAM device.
Data flow in this architecture is transmitted from the cell to
memory controller, which can generally detect and correct
CEs via channels. Figure 2(2) depicts the transmission process
of x4 DRAM Double Data Rate 4 (DDR4) chips via DQs.
Upon initiating a data request, 8 beats each with 72 bits (64
data bits and 8 ECC bits) including ECC error codes are
transferred to memory controller via DQ wires. Implementing
the contemporary ECC [6], [27], 72-bit data are spread across
18 DRAM chips, allowing the memory controller to detect
and correct them with ECC in Figure 2(3). Note that ECC
checking bits addresses are decoded to locate specific errors
in DQs and beats. Then, all these logs including error detection
and correction, events, and memory specifications are archived
in Baseboard Management Controller (BMC)2 in Figure 2(4).
Among previous works [6], [15]–[19], [25], [26], error bits in
a cell have not been extensively examined. In our work, we
conduct the first in-depth correlative analysis between error
bits and UE in the field, to unveil the latent patterns of memory
UEs.

C. DRAM RAS Techniques

DRAM subsystems are typically protected by RAS fea-
tures in Figure 2(6). Proactive early VM live migrations can
greatly reduce VM interruptions by moving VMs without
service interruption. The CE storm suppressed mechanism
helps avoid service degradation caused by CE storm3. Ad-
vanced RAS techniques are designed to protect server-grade
machines include the avoidance of fault regions. On the
hardware technologies, sparing mechanisms are employed,
such as bit sparing (e.g., Partial Cache Line Sparing (PCLS)
[28]), row/column sparing (e.g., Post Package Repair (PPR)
[29]), bank/chip sparing (e.g., Intel’s Adaptive Double Device
Data Correction (ADDDC) [30], [31]), etc. On the software-
sparing mechanisms, such as the page offlining in operating
systems, can also be applied to avoid memory errors [30],
[32], [33]. However, these techniques often require higher re-
dundancy and entail additional overhead, which can potentially
impact system performance. Hence, these techniques cannot be
universally adaptable across all machines. Utilizing memory
failure prediction allows for the prediction of UEs and the
activation of corresponding mitigation techniques based on
specific use cases.

III. DATASET

Our dataset was obtained from the Baseboard Management
Controller (BMC) of a large-scale datacenter, which includes
system configuration, Machine Check Exception (MCE) log
[34], and memory events. We focus on DIMMs with CEs,
excluding those with sudden UEs from our datasets due to

2BMC is a delicated processor integrated into server’s motherboard, tasked
with monitoring the physical state of a computer, network server, or other
hardware device.

3CE interruptions repeatedly occur multiple times, e.g., 10 times.
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Fig. 2: Illustration of Memory Failure Prediction Framework.
TABLE I: Description of dataset.

Dataset Timespan DIMMs DIMMs
with CEs with UEs

Train set 9 months > 80,000 > 2,000
Test set 3 months > 30,000 > 1,000

a lack of prediction information. The MCE log records both
CE and UE, providing details about memory error addresses
(e.g., rank, bank, column) and DIMM specifications (e.g.,
manufacturer, capacity). We examined error logs from approxi-
mately 200,000 servers with Intel Skylake (Launched in 2017),
Cascade Lake (Launched in 2019), Cooperlake (Launched in
2020) and Icelake (Launched in 2021) architectures in the
datacenter.

Table I provides an overview of the collected data. For the
training set, we gathered over 80,000 Double Data Rate 4
(DDR4) DIMMs, spanning different manufacturers and part
numbers, with CEs recorded from January to September 2022.
Among them, we observed over 2,000 DIMMs with UEs,
with 71% of UE DIMMs having preceding CEs and 29%
are sudden UEs. Using a consistent collection approach, we
prepared over 30,000 DIMMs for the test set from October
to December 2022. This test set included over 1,000 DIMMs
with UEs, with 67% of UE DIMMs having preceding CEs and
33% are sudden UEs. We conducted our correlative analysis
and algorithm training based on the train set. The test set is
reserved for final evaluation in Section VIII.

IV. PROBLEM FORMULATION AND PERFORMANCE
MEASURES

The failure prediction problem is formulated as a binary
classification problem [26]. As illustrated in Figure 3, at
present t, an algorithm observes historical data from an ob-
servation window △td to predict failures within the prediction
period [t+△tl, t+△tl+△tp], where △tl is a minimum time
interval between the prediction and the failure. △tp denotes

Past Future

Sampling interval

Observation window Lead prediction
window

Prediction window Post-prediction window

Prediction interval

Present time
 

Failure time
 

Present

Time

Fig. 3: Failure prediction problem definition [26].
the prediction interval. Online event samples are taken every
△is, e.g, CE events are logged every minute. Predictions run at
5-minute intervals △ip. Observation and prediction windows
are set at 5 days (△td) and 30 days (△tp) respectively, en-
abling proactive measures. Note that these parameter settings
were derived from an empirical analysis in the production
environment. The lead prediction window △tl ∈ (0, 3h]
varies based on production use cases. A True Positive (TP)
is a correctly predicted failure within the prediction window,
while a False Positive (FP) is an incorrect prediction. A
failure without a prior alarm is a False Negative (FN), and a
True Negative (TN) occurs when no failures are predicted or
occur. We assess the algorithm using Precision = TP

TP+FP ,
Recall = TP

TP+FN and F1 = 2×Precision×Recall
Precision+Recall .

VM Interruption Reduction Rate (VIRR). Previous works
[6], [17], [19], [25], [26] have proposed cost-aware models
to measure the benefits of memory failure prediction. In this
work, we focus on VM Interruption Reduction Rate (VIRR)
[26] as it more accurately reflects the impact on customers.

To understand VIRR, consider Va as the average number
of VMs in a server. In a scenario devoid of prediction, the
interruptions are defined as V = Va(TP + FN). Even
though proactive VM live migrations can reduce VM inter-
ruptions without service interruption, a notable fraction of
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Fig. 4: Performance analyses of risky CE patterns.

VMs may still experience cold migration, which generally
interrupts VMs. This cold migration typically ensues when
live migrations cannot be applied, either due to a paucity of
resources or unforeseen failures. Given that cold migration
is a prevalent strategy for both VM relocation and mainte-
nance. The percentage of such migration is represented as yc.
Therefore, we define V ′

1 = Va · yc(TP + FP ) as the number
of VM interruptions arising from cold migrations initiated by
positive failure predictions (TP + FP). On the other side, any
missed failure predictions invariably escalate the interruptions,
represented by V ′

2 = Va · FN . The overall interruptions after
factoring in the prediction algorithm sum up to V ′ = V ′

1 +V ′
2 .

The formula to measure VIRR is thus: V IRR = V−V ′

V .
Simplifying this give us (1 − yc

precision ) · recall as derived
in [26].

In real-world production environments, yc retains a positive
value as VMs can be cold migrated due to the failure of live
migration or memory recovery. If a model’s precision dips
below the percentage of cold migration (precision < yc),
the VIRR becomes negative, indicating an increase in VM
interruptions. In contrast, models with high precision consis-
tently yield a positive VIRR, and this is further amplified
by the recall. Based on our observations in the production
environment, we have defined yc = 0.1 for our evaluation.
Note that this value is already pessimistic, as the cloud
infrastructure continues to expand, leading to a decrease in
yc over time.

V. TEMPORAL RISKY CE PATTERN INDICATORS

According to a recent study by Intel [6], ECCs in modern
Intel server platforms do not fully cover every potential errors
from a single chip. Although Intel keeps the exact ECC
algorithms confidential and undisclosed, they have provided
some general information on error-bit patterns that can be
fully correctable, partially correctable and potential risky in
[6], [30], [35]. For example, as shown in Figure 2(2), a DIMM
with x4 DRAMs provides 32 error checking bits across 4 DQs
and 8 beats during memory access. In a specific ECC outlined
in [35], if all the actual erroneous bits are bounded within the
half of the bitmap (highlighted in gray in the error checking
bits), that error is guaranteed to be correctable. Otherwise, it

is risky. More publicly available examples of error bit patterns
can be found in [6], [30], [35].

In this paper, we also obtain coarse-grained error-bit pat-
terns, such as risky error bit patterns that are more likely to
encounter UEs on contemporary Intel servers. CEs with risky
error bit patterns are prone to evolve to UEs that cannot be
corrected by the modern ECC algorithm [6]. We introduce
three temporal risky pattern indicators as follows:

• R1: Risky CE Cnt: The number of unique CEs that
match at least one risky error-bit pattern in a 24-hour
period;

• R2: Risky Pattern Cnt: Total number of matched risky
error-bit patterns in a 24-hour period;

• R3: Max Risky Pattern Cnt: Maximum number of
unique matched risky error-bit patterns counted in a 24-
hour period;

While R1 is similar to the indicator in [6], R2 and R3 are
novel pattern indicators proposed in this work. We compare
the performance of these three indicators in Figure 4. As
shown in Figure 4(a), when the count of risky CEs is greater
than 0 (indicating at least one risky CE), it achieves 52%
precision, 46% recall and 49% F1-score on the training set. As
the count of risky CEs increases, the precision also increases
accordingly. However, the recall drops, indicating that most
DIMMs with UE originate from a small number of risky
CEs. This is intuitive that We evaluate the performance of R2
indicator in Figure 4(b) and observe that its performance does
not increase linearly as the count of matched risky patterns
increases. However, when combining R1 > 2 and R2 > 2,
the precision increases significantly to 86%. On the other
hand, individual R3 does not perform well on its own in
Figure 4(c). However, when combined with R1 and R2, it
improves precision to the highest value of 89%. Therefore,
combining different pattern indicators can effectively enhance
performance, which motivates us to use machine learning
to integrate all indicators and correlated features, aiming to
further improve UE prediction. Additionally, the risky patterns
originate from the distribution of error bits in Data pins
(DQs) and beats. We delve deeper into investigating the spatial
and temporal distribution of error bits in DQs and beats in
Section VI-A.
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Finding 1. The performance of an individual risky CE
pattern is limited. However, the proper combination of risky
CE pattern indicators can significantly improve the results,
particularly precision.

VI. CORRELATIVE ANALYSIS BETWEEN UNCORRECTABLE
ERROR AND VARIOUS FACTORS

We start with the high-level of correlative study between
UE and various factors. Specifically, we investigate the rela-
tionship among error bits, DRAM faults, and system configu-
rations to gain insights into their influence on UE occurrences.
This analysis is essential for identifying relevant features that
can be used for model training and failure prediction as
outlined in Section VII. Our methodology follows a similar
approach to previous studies [9], [11], [20]. We employ a
calculation method named as relative UE rate, where DIMMs
are grouped based on specific characteristics (e.g., server age),
and the fraction of DIMMs experiencing UEs is determined.
The relative UE rates are normalized within the range [0,
1], enabling us to observe trends, compare rates, and finally
extract important features for UE prediction.

A. Correlative Analysis Between Error Bits and UE

We first examine the relative UE rate based on characteristic
of error bits. To quantify this, we first calculate the total
number of error bits and the number of adjacent error bits
within a single CE event. For a specific memory access,
Figure 5 visualizes bitmap of error bits occurring in four DQs
and four beats. In this example, there are total six error bits
and one pair of adjacent error bits. Figure 6 illustrates the
correlation between the total number of error bits and the UE
rate. As the count of error bits increases, the UE rate generally
rises. However, the overall relative UE rates remain relatively
low.
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Fig. 5: Spatial correlations of error bits in DQs and Beats.
A finding emerges when comparing the relevance of ad-

jacent error bits with the total number of error bits. The
occurrence of adjacent error bits within a specific range, such
as greater than 0 or 5, is more strongly associated with the

occurrence of UEs. This implies that even a small number of
adjacent bits can have a risk for UE occurrence.

Finding 2. In terms of UE occurrence, the total number of
error bits exhibits weaker correlation compared to adjacent
error bits. Even a small number of adjacent bits can lead to
UE occurrence.
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Fig. 6: Error bits analysis.
We then investigate the spatial distribution of error bits in

DQs and beats. As shown in Figure 5, we have calculated the
number of error DQs and beats, which yields four error DQs
and four error beats. We also examine other key features such
as the interval between error DQs and the interval between
error beats.

The correlative analysis of these spatial features is presented
in Figure 7. In Figure 7(a), error DQs with two, three, or
four generally exhibit higher UE rates compared to those
CEs with only one error DQ. Similarly, Figure 7(b) indicates
that multiple error beats have higher UE rates compared to
one error beat. Error bits occurring in more than one DQ
and beat are more likely to encounter UEs. Additionally,
our analysis reveals an important observation regarding the
interval between error DQs and beats. Specifically, we found
that the error DQs interval of three exhibit a relatively lower
UE rate compared to other intervals. On the other hand,
beats interval of four have the highest UE rate compared
to other intervals. These insights highlight the importance of
considering the specific intervals between error DQs and beats
in understanding the occurrence of UE.

In addition to spatial correlative analysis of error bits in
DQs and beats, we incorporate temporal information into these
features. As shown in Figure 8, error bits are propagated
through DQs and beats over time in t, which can be increased
from a single one in t0 to multiple bits spanning across DQs
and beats, eventually lead to UE. Note that error bits of UEs
are typically unknown, since they are not correctable, typically
leading to service down without logging error addresses. In
terms of spatial distribution, a single CE event in ti−1 may
involve 2 error DQs within the same beat. However, in the
case of multiple CEs within an interval △ti, there could be
three error DQs spanning across 2 beats. To capture these
spatio-temporal bits patterns, we calculate statistical features
such as Sum, Maximum, Minimum, Average and Standard
deviation of error bits in DQs and beats based on all CE
events within the aggregation window △ti. Additionally, we
analyze spatio-temporal features of DQ and beat counts and
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intervals within a 24-hour aggregation window in Figure 7(e)-
(h). While the relative UE rates for temporal error DQs and
beats in Figure 7(e) and (f) are vary with Figure 7(a) and (b)
respectively, the consistent trend remains that one error DQ or
beat has a lower relative UE rate compared to multiple error
DQs and beats. Furthermore, the minimum error DQ interval
and the maximum error beat interval within 24 hours exhibit
different relative UE rates in Figure 7 (g) and (h). Among all
error DQ intervals, the interval of 3 consistently exhibits the
lowest UE rate. On the other hand, among all beat intervals,
the interval of 4 demonstrates the highest UE rate.

Finding 3. Our analyses reveal that both spatial and
temporal error bits in DQs and beats play a significant role in
distinguishing UE occurrences. This finding suggests that these
features can serve as important indicators for UE prediction.

Therefore, we generate both spatial error bits features in
a single CE and spatio-temporal error bits features across
multiple CE events for UE prediction. Even features with
relatively low UE rates may still contribute significantly when
utilized in conjunction with machine learning techniques for
UE prediction. We conduct feature selection and UE prediction
based on machine learning in Section VII.

B. Correlative Analysis Between DRAM Faults and UE
CEs can originate from various components within the

memory subsystem, as depicted in Figure 2(1). To examine the
impact of different component faults on memory failure, which
ultimately leads to the generation of error bits during memory
access as shown in Figure 2(2). We consider DIMM-level of
components’ faults from cell, column, row, bank, device and
rank respectively. If the number of CEs repeated in the same
cell reaches a predefined threshold θcell, it refers to Cell fault.
If CEs scattered along in a row and a column reaches θrow and
θcolumn, they are Row fault and Column fault respectively.
Bank fault refers to the case where row faults and column
faults both are greater than θbank in the same bank. More than
θdevice of unique bank faults occurred in a device indicates
Device fault. Rank fault represents that deveice faults reach
a predefined threshold θrank in the same rank. We defined
{θcell, θrow, θcolumn, θDevice, θRank} = 2 and θbank = 3 in
our analyses.

Cell

Colu
mn

Ro
w
Ban

k
Dev

iceRan
k

(a)

0.0

0.1

0.2

0.3

0.4

0.5

Re
la

tiv
e 

UE
 ra

te

Cell

Colu
mn

Ro
w
Ban

k
Dev

iceRan
k

(b)

0

10

20

30

40

Re
la

tiv
e 

%
 o

f U
E

Fig. 9: Micro-level components’ fault analysis.
We first examine each component fault by excluding the

higher-level faults. For example, As shown in Figure 9, Cell
faults exhibit a UE rate of less than 0.2. However, when cell
faults accumulate and propagate to higher levels of DRAM
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Fig. 10: System configurations analyses.

components, relatively 0.31 of UE rate associated with row
faults (excluding column and higher-level faults, such as
bank, device and rank), and 0.22 of UE rate associated with
bank faults (excluding device and rank faults). We also visit
relative percentage of UE in each component fault. Although
Device and Rank faults have a higher relative UE rate, the
proportion of UEs associated with these faults is relatively
small compared to Row and Bank faults.

Finding 4. While higher-level faults may have a higher
likelihood of causing UEs, Row and Bank faults account
for the majority of UEs in the system. This emphasizes the
importance of addressing and mitigating Row and Bank faults
to improve the overall reliability and performance of the
memory subsystem.

C. Correlative Analysis Between System Configuration and
UE

In our study, we examine the correlation between system
configurations and UEs. We first analyze the server age, and
our findings align with our conjecture that older servers are
more likely to experience memory failures. Figure 10(a) shows
that servers with more than 2 years of age have a higher UE
rate.

Furthermore, we investigated various DRAM hardware
configurations, including manufacturer, capacity, device data
width, frequency, and process in Figure 10. To protect the
confidentiality of manufacturer names, we anonymized them
as manufacturers A to D, representing the four major DIMM
manufacturers in our data centers. Different manufacturers
exhibited varying UE rates, potentially due to differences in
DIMM processes.

We also observe that DIMMs with x8 bit width have a
higher relative UE rate compared to those with x4 bit width.
This difference may be attributed to variations in memory
access and ECC correction. Additionally, higher DRAM fre-
quency generally correlates with higher relative UE rates. We
further examine the DRAM process, categorizing them as
either 20nm or not (as the exact processes of 1ynm, 1xnm,
and 1znm are proprietary information). The not 20nm process
category shows a higher relative UE rate.

The capacity of the DIMM did not significantly impact the
UE rate in our study.

Finding 5. The UE rate varies across server age, manufac-
turers, data width, frequency and process, while we did not

observe significant differences in the UE rate based on the
capacity of the DIMM.

These attributes, including server age, manufacturer, data
width, frequency, and process, can be valuable for failure
prediction in Section VII.

VII. FAILURE PREDICTION

In this section, we design memory failure prediction based
on pattern indicators (Section V) and correlative analysis
between UE and various factors (Section VI).

We develop failure prediction mainly using machine learn-
ing techniques, e.g., Random Forest [25], XGboost [25], Light-
GBM [20] and AdaUboost [19], since these ensemble learning
techniques have been widely used in previous memory failure
prediction literature [14], [17]–[19], [24] due to their fast
learning and good performance. The experimental results of
these models are presented in Section VIII.

Labeling method: Our prediction framework categorizes
samples into two classes: Positive and Negative. DIMMs
expected to encounter at least one UE within the prediction
window are categorized as Positive, whereas those not ex-
pected to experience any UE are termed Negative.

Positive samples are labeled based on the time interval ti
between a CE and its subsequent UE. Selected intervals for
ti include 6 hours, 24 hours, 72 hours, 120 hours, 1 month,
and a DIMM’s entire lifetime. CEs that fall within the 0 to ti
interval preceding a UE are marked as Positive smaples. CE
events outside this period are excluded to prevent mislabeling.
All CE events from healthy DIMMs are labeled as Negative
samples. However, our training data experiences from class
imbalance, we employ over-sampling strategies for positive
samples, ensuring models adequately address both classes.

Feature generation. We categorize features into six groups
including:

• Static Features describe DIMM characteristics studied in
Section VI-C including server age, manufacturers, data
width, frequency and chip process.

• CE error rate refer to the number of CEs and their
occurrence frequency, e.g., error counts of all CEs within
the predefined time.

• DQ-Beat Error Bits features refer to the spatial and
temporal distribution of error bits in DQs and beats, as
discussed in Section VI-A.

• Error bit Patterns features are derived from three risky
CE pattern indicators described in Section V.
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• Fault Counts refers to the cumulative number of compo-
nents’ faults (cell, row, column, bank, device and rank)
within ti, derived from study in Section VI-B.

• Memory Events refers to CE storm3, CE overflow4, CE
storm suppressed notification5, etc, which indicate the
unhealthy status of memory.

Totally, six groups of features are constructed as input
of machine learning approaches. We select the best features
using Pearson correlation, Random Forest and LightGBM in
Section VIII.

VIII. RESULT

After empirical experiments on the training set, we explored
the parameter ti ranging from 1 minute to 5 days. The output
probability threshold was set to 0.3, since it can achieve
the best VIRR with a predefined yc = 0.1. To evaluate
the importance of designed features, three feature selection
approaches are implemented in Table II. Among the top five
important features identified by these approaches, four out
of five are related to error bits, highlighting the significance
of error bits in predicting UEs. Notably, Minmum error DQ
interval consistently ranked as the most important feature
across all approaches. To determine the best feature set for
algorithm training, we employed recursive feature elimination
and feature importance ranking. Table III displays the results,
demonstrating that LightGBM outperformed other machine
learning techniques with a F1-score of 0.64 on the test set.
Consequently, we selected LightGBM for further analysis in
our study.

TABLE II: Rankings of the top five important features.

Rank Pearson Random Forest LightGBM
1 Min DQ interval Min DQ interval Min DQ interval
2 Max beat interval Error DQ counts 24h Fault(Cell)
3 Risky CE Cnt CE overflow Risky CE Cnt
4 Risky Pattern Cnt Max adjacent bits 24h Risky Pattern Cnt
5 Fault(Row) Error beat Cnt Error DQ counts 24h

Comparison with existing approaches. We further eval-
uate the significant of our proposed error bits features by
comparing with existing the state-of-the-art approaches pre-
sented in [6]. Specifically, we reproduced their rule-based
approaches as discussed in Section V and apply the same
experimental setup on our dataset. Note that the approaches in
[6] are designed with various part numbers of manufacturers,
but the detail was not disclosed in their work. We evaluated
their approaches without differentiating the part numbers. The
results in Table IV demonstrate that our approach significantly
achieves higher F1-score of 0.64 by including all features.
In addition, our algorithm still achieves relatively better per-
formance by excluding the error bits patterns features, which
indicates the superior of error bits features in UE prediction.
By excluding both error bits and pattern features, algorithm
cannot perform well, which further prove the significant of
error bits information for UE prediction.

4CE counts reach am initial overflow threshold.
5The mechanism suppresses and notifies if a CE storm occurs several times

in the same DIMM.

TABLE III: Performance of ML algorithms.

Algorithms Precision Recall F1-Score
Random Forest 0.63 0.62 0.63
XGBoost 0.54 0.67 0.59
AdaUboost 0.54 0.78 0.64
LightGBM 0.53 0.82 0.64

TABLE IV: Comparison with existing approaches.

Algorithms Precision Recall F1-Score
Risky CE Pattern 0.53 0.46 0.49
Risky CE Pattern ∧ Column 0.68 0.10 0.17
Risky CE Pattern ∧ Bank 0.84 0.11 0.19
Ours (Excluding error bits and patterns) 0.30 0.51 0.38
Ours (Excluding patterns) 0.45 0.74 0.56
Ours (All features) 0.53 0.82 0.64

Finding 6. The inclusion of error bits features significantly
enhances UE prediction performance, even without knowledge
of the error bits patterns. This alludes that the latent patterns
of error bits can be predicted using spatio-temporal error bits
features.

Lead time. In Table V, we also examine the prediction
results for three lead times. The lead time refers to the duration
between the prediction time and the expected occurrence of a
failure. Depending on the memory mitigation techniques, these
lead times can vary. For instance, in a 15-minute lead time
allows VM migration to a backup system and the deployment
of advanced RAS techniques to prevent UE incidents. With
a 1-hour lead time, VM migration may span up to an hour
due to the workload involved, and failing machines can be lo-
calized and replaced with the corresponding DIMM. The VM
Interruption Reduction Rate (VIRR) discussed in Section IV
is estimated for these lead times. In our datacenters, we take
into consideration a 15-minute lead time, which results in a
reduction of approximately 59% in VM interruptions caused
by UEs.

TABLE V: Performance in different lead times.

Lead time Precision Recall F1-Score VIRR
1s 0.53 0.82 0.64 0.67

15m 0.46 0.75 0.57 0.59
1h 0.36 0.45 0.40 0.33

IX. CONCLUSION

We present an in-depth correlative analysis on uncorrectable
errors with various factors, particularly focusing on spatio-
temporal error bits information of CEs. We report 6 findings
from our analyses and failure prediction studies. Through
evaluations using real-world datasets, we demonstrate that our
approach significantly improves prediction performance by
15% in F1-score compared to the state-of-the-art algorithms.
Overall, it can reduce VM interruptions by around 59% VIRR
in the datacenter. In the future, we plan to extend our algorithm
to include servers from different manufacturers’ platforms,
particularly focusing on the comparisons of Chipkill and non-
Chipkill ECC servers.
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