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Abstract—Dynamic random access memory failures are a
threat to the reliability of data centres as they lead to data
loss and system crashes. Timely predictions of memory failures
allow for taking preventive measures such as server migration
and memory replacement. Thereby, memory failure prediction
prevents failures from externalizing, and it is a vital task to
improve system reliability. In this paper, we revisited the problem
of memory failure prediction. We analyzed the correctable errors
(CEs) from hardware logs as indicators for a degraded memory
state. As memories do not always work with full occupancy,
access to faulty memory parts is time distributed. Following this
intuition, we observed that important properties for memory
failure prediction are distributed through long time intervals. In
contrast, related studies, to fit practical constraints, frequently
only analyze the CEs from the last fixed-size time interval
while ignoring the predating information. Motivated by the ob-
served discrepancy, we study the impact of including the overall
(long-range) CE evolution and propose novel features that are
calculated incrementally to preserve long-range properties. By
coupling the extracted features with machine learning methods,
we learn a predictive model to anticipate upcoming failures three
hours in advance while improving the average relative precision
and recall for 21% and 19% accordingly. We evaluated our
methodology on real-world memory failures from the server fleet
of a large cloud provider, justifying its validity and practicality.

Index Terms—memory failure prediction, data science, relia-
bility, AIOps, log data

I. INTRODUCTION

Dynamic random access memory errors are omnipresent
failure types in data centres. A memory error is an event
which results in the wrong reading of the logical state of one
or multiple bits from how they were last written. An error
in a single bit corrupts the stored information and affects the
ongoing computation, sometimes leading to system crashes.
The root causes of DIMM errors are diverse, ranging from
hardware corruption of the memory arrays, up to bit-flips due
to electromagnetic influence (e.g., cosmic ray strikes) [1]. As
a preventive strategy for DIMM reliability, the manufacturers
integrate different error correcting codes (ECC) onto the
chip for single (e.g., parity checking) [2] or multi-bit error
correction (e.g., ChipKill [3]). While useful in a limited set of
circumstances (e.g., SEC corrects a single bit), once the errors
exceed the assumptions on the ECC algorithms (e.g., the error
occurs in multiple bits), the memory failure externalises and
frequently results in a system crash. Therefore, relying on error
correction codes as a preventive strategy is insufficient for

reliable DIMM behaviour. To reduce the effect of the DIMM
failures alternative strategies are needed.

A possible strategy to amortize the effect of DIMM failures
is to predict when the memory will fail. By a sufficiently large
prediction interval, the correct prediction enables the triggering
of preventive measures (e.g., server migration). Therefore, the
failure will not be externalised. This makes memory failure
prediction an important task for system reliability. The key
requirement for memory prediction is the availability of data
that encapsulates the properties of a degraded DIMM. Two
common data sources are used, i.e., 1) hardware error logs
and 2) system-level metrics [4]. Hardware error logs record
the correctable errors generated from the DIMM’s ECC chips.
These errors are referred to as correctable errors. Different
studies show that the accumulated repetition of CE on nearby
memory locations is correlated with memory failures [4],
[5]. Therefore, DIMM characterization through CEs is useful
to model DIMM degradation. In contrast, memory-related
system-level metrics are time series points showing the mem-
ory utilization (e.g., byte read/write). Although system-level
metrics are reported as useful [6], [7], the CEs are generally
recognized to better capture the memory degradation and are
more frequently used for failure prediction [4].

In this paper, we revisit the problem of memory failure
prediction by using CEs. Owning to practical requirements
(e.g., unavailable infrastructure for long-term storage of the
overall CE log history), existing approaches introduce an
observation window with a fixed time duration as part of the
algorithm design. Studies typically consider a fixed window of,
e.g., one or two weeks [6], [8], [9]. However, as the utilization
of the servers has a stochastic component, it is often the case
that the servers will be accessed time apart at distant intervals.
Furthermore, as memories on a single server do not always
work with full occupancy, the access of the faulty memory
parts (and CE generation thereof) is time-distributed as well.
Therefore, by using fixed observation windows, one may
expect that important details from CE history may be missed.
Based on this intuition, we examine the impact of considering
the overall CEs DIMM history instead of using an observation
window of fixed size. We used our observations to propose
a set of novel features that can be incrementally calculated
while preserving the long-term temporal CEs dependencies of
a degraded DIMM not needing to store all the data. By pairing
the calculated features with machine learning methods, weIEEE BigData 978-1-6654-8045-1/22/$31.00 ©2022 IEEE
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Fig. 1: (A) The Memory Failure Prediction Problem; (B) Model learning pipeline;

learn a predictive model that can anticipate memory failures
three hours in advance, outperforming operational practices.
Our evaluation is performed on real-world memory failure
data collected from the server fleet of a large cloud provider,
justifying the validity and practicality of our approach.

II. BACKGROUND

A. System Memory Organization

The memory system of a server has a hierarchical orga-
nization. A single DIMM (dual in-line memory module) is
a computer working memory type. The DIMM stores each
data bit in a separate memory cell and is used by the CPU for
different operations (e.g., add, write). The DIMM is connected
with the integrated memory controller (IMC) within the CPU
via a memory channel. To increase the DIMM performance,
a DIMM is usually composed of multiple integrated chips
that are organized in ranks (set of connected chips). Each
chip is further composed from arrays of transistors identifiable
by rows and columns. The intersection between a row and
column is called cell. Each cell stores one bit. The DIMM
has also additional circuitry that enables effective memory
operations, and potentially ECC mechanisms for CE event
generation. The CE events can be read out from dedicated CPU
register set groups (e.g., the Machine Check Exception (MCE)
register set for Intel x86) generating the CE logs. Opposed to
the properties of the software logs, like semantics [10], or
sequences [11], the CE logs contain information about the
place in the memory where the CE occurred (e.g., specific
cell, bank, row, etc).

B. Problem Formulation

Let Di is a DIMM that reported a CE log, denoted by
l(tj) at a certain point in time tj , and let w and m denote
an observation window length and a prediction time length
interval, accordingly. The goal of memory failure prediction
is to map F : φ(l(t0−w:t0)) 7→ Bm, where t0 is the current
observation moment and φ(l(t0−w:t0)) is a representation func-
tion φ : Li 7→ Rd that maps the set of observed correctable
errors Li for DIMM Di from the time period (t0−w, t0) into
a certain representation space Rd, where d is representation
size. The set Bm ∈ {0, 1} denotes if the DIMM i will fail in
m time units (1) or not (0).

Motivation. In previous works [6], [8], [9], the observation
window w used for feature extraction is usually fixed, e.g.,
two weeks. Figure 1a (A) illustrates this with the time interval
(t0−w : t0). Intuitively, as the utilization of the servers has a
stochastic component, it is often the case that the servers will

be accessed at different time intervals. Furthermore, different
address locations of the DIMMs on the same server will be
accessed at different time intervals. If certain cells are faulty,
the sparsity in memory address accesses will lead to non-
uniform temporal CEs distribution. By using fixed observation
windows (t0−w : t0), one may expect to miss details relevant
for predicting memory failures. We found that there exist
properties of failures that propagate through time through CEs
that often surpass the observation window (t0 − w : t0) (e.g.,
the number of unique banks that generate CEs). Thereby,
we consider structuring the CE reporting history into two
disjoint time intervals, i.e., 1) (− inf : t0 −w) (Figure 1a (A)
highlighted in grey) and 2) (t0−w : t0) (the white rectangle).
By proposing novel incrementally calculable features that
among others characterize the difference between the disjoint
intervals (e.g., the number of new banks generating correctable
errors), we can preserve important information for upcoming
failures. Motivated by our intuition, the focal point of this
paper is to investigate the potential strengths of this view of
the memory failure prediction problem.

III. PREDICTING MEMORY FAILURES WITH CES

In this section, we describe the procedure we implemented
to learn a memory failure prediction model. It is a standard
machine learning pipeline composed of data preprocessing,
feature extraction and model learning. Once the model is
learned it is used for online prediction. Figure 1b (B) shows
the pipeline. The input data comes in form of CE logs. They
contain information for the DIMM name the CE appeared in,
the timestamp, and the CE information (e.g., row, columns,
banks, and similar). The log information proceeds towards the
data preprocessing where CEs with incomplete log information
are filtered. The filtered CEs proceed toward the feature
extraction part. The latter implements a set of functions that
characterize the degradation state of the DIMM. Once the
features are extracted the CE represented with the feature
vector is given as input for the machine learning model. In the
following, we discuss each of the three parts in more detail.

A. CEs Preprocessing and Feature Extraction

The recorded CEs contain noise. For example, not all CE
logs have information for the columns, rows or banks. Addi-
tionally, certain types of correctable errors, such as ”uce.read”
logs appear rarely. Therefore, the CEs preprocessing removes
CEs of this kind (e.g., that are of type ”uce.read”, or have in-
sufficient CE information). The filtered CEs proceeded toward
the feature extraction part.
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Fig. 2: Feature Taxonomy; Based on the hierarchical DIMM organization.

The feature extraction part implements functions that char-
acterize the degradation state of the DIMM. In total, we
implemented 189 features calculable incrementally. To better
describe them, we organize them in a taxonomy following
DIMM properties and the failures are reflected. Figure 2 gives
the feature taxonomy. On the first level, there are five feature
groups: general DIMM, bank, column, row and cell-level fea-
tures. The general DIMM features characterize the overall CE
statistics for the DIMM, irrespective of its components. This
category includes features such as the frequency of errors, or
frequency of the error types similar as in related work [4]. We
also proposed to use the relative change of the error frequency
and error types between the two adjoint time intervals. The
bank-level features characterize the overall statistics of the CE
frequency on a bank level, such as the number of banks that
reported CEs, and the number of new banks that reported CEs
between the observation window and the CEs before that. The
focus of this category of feature is to describe the evolution
of the failure on a bank level.

The column, row and cell-level features characterized the
DIMM banks on the memory array level. They are different
in the way how they group the CEs alongside the memory
array (e.g., by row, column or cell). For all the three groups
there are three subgroups, i.e., neighbourhood, repeating and
bank-row(/column/cell) features. The repeating group refers
to the repetition of a CE from a single cell address or group
of addresses sharing the same row/column. Intuitively, if one
transistor is worn-off, any subsequent accesses to that memory
will generate CEs. Therefore, repeating the same errors can
indicate hard failures. The neighbourhood features are similar
to the repeating ones, however, they further exploit the concept
of the DIMM bursting mechanism. This concept enables
reading out multiple adjacent memory addresses to speed up
performance. Therefore, if an error occurs in the neighbour-
hood, it is likely that there are issues with the memory. The
third group considers row/column/cell properties for the arrays
irrespective of the bank and the chip. This group is closely
related to the procedure of how the logical reading/writing of
a whole word from multiple banks is conducted.

B. Memory Failure Prediction

As machine learning methods we consider two popular clas-
sification methods for tabular data, i.e., Random Forest [12]

and XGBoost [13]. These methods are often shown to achieve
high performance on a plethora of tasks concerning tabular
input representation [14].

To learn the models, one requires labels for the individual
CEs. As it is not known in advance the exact moment when
the DIMM is in a degraded state, to label the data, we used
a heuristic (similar as in related works [5]). We observed that
the CEs for the failure DIMMs are usually generated in bursts
that are time-delayed. In the cases when there are prior CE
generated from a single DIMM, there is a large time between
the adjacent bursts. To label the CEs representing the degraded
DIMM state, we first find the largest existing gap between two
adjacent CEs. This creates two sets of CE. We label all the
CEs from the first set with 0. We consider the CEs from the
second set to denote a degraded state and label them with
1. The correctable errors from new DIMMs in the current
observation interval are given chronologically to the model. If
the model predicts that at least one CE is degraded, the DIMM
is predicted to fail. When learning the model, the CEs in the
m time units prior to the failure are removed. The final output
of the system are the DIMM IDs, predicted to fail.

IV. EVALUATION

A. Experimental Setup

To evaluate our methodology, we collected CE data with
memory failures over six months (November-March 2020/21)
from part of the server fleet of a large cloud provider. There
were 12000 DIMMs with at least one CE. Around 3% of the
DIMMs failed. As the number of failed DIMMs composes 3%
of all the DIMMs, the problem of memory failure prediction
indicates imbalanced classification. We adopted subsampling
of the majority class (normal DIMMs), as a strategy to deal
with this problem. To construct the training and test data,
we split the normal DIMMs into two sets. We sampled 5000
normal DIMMs for cross-validation and used the remaining
ones as a normal test set. We repeat the sampling five times
and report the average results for the evaluation criteria. The
validation normal DIMMs are paired with the failure DIMMs
and are used to learn the model and access its performance.
To access model performance we used 10 Fold CV. Precision
and recall are common evaluation criteria for memory failure
prediction [8], and we adopt them. We set the value for m to
3 hours, as it is sufficient time for server content migration.



TABLE I: Experimental Results

Feature
Calculation

Strategy

Method RF XGB Operational
Practicies

w
[h]

# Normal
DIMMs Precision Recall Error Rate

(Normal Test) Precision Recall Error Rate
(Normal Test) Precision Recall Error Rate

(Normal Test)

Overall
CE

Evolution

3h 2500 0.24±0.01 0.58±0.01 0.27±0.01 0.58±0.01 0.38±0.01 0.043±0.0 0.279 0.056 0.0275000 0.16±0.01 0.49±0.01 0.20±0.01 0.48±0.01 0.38±0.01 0.033±0.0

168h 2500 0.36±0.01 0.55±0.01 0.15±0.01 0.60±0.01 0.42±0.01 0.037±0.0 0.109 0.015 0.0065000 0.30±0.01 0.46±0.01 0.09±0.01 0.47±0.01 0.44±0.01 0.037±0.0

336h 2500 0.35±0.01 0.54±0.01 0.14±0.01 0.61±0.01 0.45±0.01 0.046±0.0 0.31 0.06 0.0115000 0.29±0.01 0.45±0.01 0.07±0.01 0.48±0.01 0.41±0.01 0.034±0.0

Fixed
Window

Size
[w]

3h 2500 0.29±0.01 0.48±0.01 0.17±0.01 0.37±0.01 0.21±0.01 0.056±0.0 0.23 0.023 0.0175000 0.20±0.01 0.38±0.01 0.12±0.01 0.24±0.01 0.23±0.01 0.055±0.0

168h 2500 0.31±0.01 0.57±0.01 0.204±0.01 0.54±0.01 0.38±0.01 0.05±0.0 0.16 0.06 0.0255000 0.24±0.01 0.52±0.01 0.14±0.01 0.42±0.01 0.43±0.01 0.047±0.0

336h 2500 0.31±0.01 0.58±0.01 0.19±0.01 0.54±0.01 0.35±0.01 0.051±0.0 0.29 0.06 0.0185000 0.22±0.02 0.43±0.02 0.11±0.01 0.44±0.01 0.37±0.01 0.036±0.0

For the window interval used to extract features, we used
w = {3, 168, 332} hours. The models were learned with
the implementations of the sklearn-learn and xgboost Python
libraries. Another baseline we consider is the thresholding of
domain features (e.g., CE rate, or the number of uncorrectable
errors) as frequent operational practices. Specifically, we ex-
periment with all possible values for the CE rate and reported
the best values for precision and recall.

B. Results and Discussion

Table I summarizes the results. When considering the over-
all CE evolution, one can observe that irrespective of the
method or the experiment parameters, the results for both
precision and recall are generally improved in comparison to
those not considering it. For example, for a time window of
14 days and normal DIMMs 5000, for XGBoost the precision
is improved for 9% ( (0.48−0.44)

0.44 ), while the recall for 11%
( (0.41−0.37)

0.37 ). Similar improvements of 32% on precision and
5% on recall are observed for RF for 14 days and normal
DIMMs 5000. The average improvement in precision and
recall for XGBoost is 33.6% and 33% accordingly, while for
RF it is 8.1% on precision and 5% on recall.

As seen by the results, including the long-term dependencies
is particularly important for improving precision. This is likely
related to the bursting nature of the CEs in anticipation of a
failure. The long-term CE preservation enables the inclusion
of non-related CEs from the normal DIMM behaviour that
later failed. This effectively introduces information about the
differences between the CEs of DIMMs that will fail in the
future, guiding the model to better learn the normal DIMM
states. This ultimately reduces the false positives and increases
the precision. Another important point is that the model
predictions outperform the manual operational practices. This
is to the capabilities of the methods to combine complex
information from multiple features.

Finally, by close inspection of the features’ importance, we
noted that the most important features are the ones charac-
terizing the transition between the two disjoint time intervals
formed with the parameter w (i.e., (− inf , t0−w) and (t0−w,
t0)). This observation encourages further investigation into
finding new features that better utilize the overall information.

V. CONCLUSION

In this paper, we revisited the problem of memory failure
prediction with CEs. We found that considering the whole
CEs-generation history is more indicative of failures, as com-
pared to considering a fixed observation interval. We proposed
a set of incrementally calculable features that preserve long-
term CEs dependencies. In the evaluation of memory failures
from the server fleet of a large cloud provider, we showed an
average improvement of 21% on precision and 19% on recall,
justifying the validity of our approach. This paper invites
further research on how to better utilize the overall CEs data,
to improve the performance on memory failure prediction.
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