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Abstract—Artificial Intelligence for IT Operations (AIOps)
describes the process of maintaining and operating large IT
systems using diverse AI-enabled methods and tools for, e.g.,
anomaly detection and root cause analysis, to support the reme-
diation, optimization, and automatic initiation of self-stabilizing
IT activities. The core step of any AIOps workflow is anomaly
detection, typically performed on high-volume heterogeneous
data such as log messages (logs), metrics (e.g., CPU utilization),
and distributed traces. In this paper, we propose a method for
reliable and practical anomaly detection from system logs. It
overcomes the common disadvantage of related works, i.e., the
need for a large amount of manually labeled training data, by
building an anomaly detection model with log instructions from
the source code of 1000+ GitHub projects. The instructions from
diverse systems contain rich and heterogenous information about
many different normal and abnormal IT events and serve as a
foundation for anomaly detection. The proposed method, named
ADLILog, combines the log instructions and the data from the
system of interest (target system) to learn a deep neural network
model through a two-phase learning procedure. The experimental
results show that ADLILog outperforms the related approaches
by up to 60% on the F1 score while satisfying core non-functional
requirements for industrial deployments such as unsupervised
design, efficient model updates, and small model sizes.

Index Terms—anomaly detection, log data, system dependabil-
ity, AIOps, deep learning

I. INTRODUCTION

IT infrastructures in numerous application fields consist of
thousands of networked software (microservices) and hard-
ware (e.g., IoT, Edge) components. The uninterrupted and
correct interaction is crucial for the functionality of the over-
all system and the deployed applications. However, this IT
complexity combined with the required QoS guarantees (e.g.
maximal latency) increasingly overwhelms the IT operators
in charge. The current trends of agile software development
with hundreds of updates and daily deployments further ex-
acerbate the operational challenges. The holistic overview,
operation, and maintenance of the IT infrastructure grow
even more challenging when additionally it is affected by
unforeseen factors such as failures, software errors, security
breaches, or external environmental events. Companies react to
these threats by employing additional site reliability engineers
(SREs) as well as by deploying AI-enabled methods for IT
operations (AIOps) [1].

The AIOps methods collect and analyse plenty of IT system
information – metric data (e.g., CPU utilization), logs, and
traces (paths of function calls) to detect anomalies, locate their

root causes and remediate them. The diverse AIOps techniques
enable fast, efficient and effective prevention of upcoming
failures, aiming to minimize their hazardous effects during the
daily operational activities [1].

In this paper, we focus on anomaly detection in the context
of AIOps, as a core step towards enhancing fault tolerance:
the earlier an anomaly is detected, the more time is available
to prevent the failure and mitigate the impact on the QoS.
We focus on system log messages (logs) as semantically rich
data written by humans for humans. The logs allow a more
insightful analysis and interpretation than, e.g., metric data [2].
For example, a sharp increase in the network packet loss (a
commonly used metric for network monitoring) only indicates
a problem with the network, but it does not provide a clue why
it happens. In comparison, logs give semantically meaningful
clues for the anomaly. For example, when a switch generates
the log “System is rebooting now.”, the operator detects that
the switch is failing (potentially anomalous) and obtain a clue
that the potential anomaly is caused by switch rebooting.

Logs are generated from log instructions that developers in-
sert in the source code (e.g., log.info(”VM took %f seconds to
spawn.”, createSeconds)) to visualise important system events
and to create hints for the operators that run the system as a
black-box [3]. The log instructions are commonly composed
of static text (log template), variable parameters of the event
(e.g., createSeconds), and log level giving information about
the severity level of the event (e.g., ”info”, ”fatal”, ”error”).
The log levels come at different granularity, conditioned on the
used programming languages and logging libraries. The lower
log levels such as ”info” are usually used when describing nor-
mal state or state transitions, e.g., ”Successful connection.”. In
contrast, higher log levels such as ”error”, ”critical”, or ”fatal”
commonly accompany events that describe abnormal states or
state transitions, e.g., ”Machine failure”. Therefore, the log
levels encode rich expert information for manual detection
of anomalous events, frequently used in today’s operational
practices [3]. For example, to diagnose an anomaly, operators
commonly use manual search for logs with higher levels such
as ”error”, ”critical”, or ”fatal” [4].

Owning to the ever-increasing IT system complexities,
logs are constantly generated in large volumes (e.g., up to
several TB per day [5]). The emergence of complexity makes
the manual log-based anomaly detection time-consuming [3],
prompting the need for automation [6], [7]. Thereby, automatic
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methods for log-based anomaly detection are increasingly
researched and adopted [8]–[14]. Current methods are com-
monly grouped into two families, i.e., supervised and unsuper-
vised [6]. Existing supervised methods depend on manually
labeled training data. Due to the constant evolution of the
software systems [11], the supervised methods require a repet-
itive, time-expensive labeling process, which is oftentimes
practically challenging and infeasible [5]. The unsupervised
methods mitigate the labeling problem by modeling with
logs from normal system states and detecting any significant
deviations from the modeled normality state as anomalies.
However, the lack of explicit information about anomalous
logs during modeling leads to limited input representation,
reducing their detection performance, and questioning their
practical usability [6].

To address the two challenges, we propose ADLILog. The
central idea of the method is to use data from public code
projects (e.g., GitHub) alongside the data from the system
of interest (target system) when learning the anomaly detec-
tion model. Since the public code projects contain numerous
log instructions for diverse normal and abnormal events, we
assume that they may encode rich anomaly-related informa-
tion. Following the usage of the log levels for manual log
anomaly detection, we considered grouping the instructions
based on the log levels to extract anomaly-related information.
Specifically, we created two severity level groups from the log
instructions based on their log levels – ”normal” (composed
of ”info”) and ”abnormal” (composed of ”error”, ”fatal”, and
”critical”). To verify our assumption, we conducted a study to
examine the anomaly-related language properties between the
two groups (i.e., diversity in the vocabulary and the sentiment
of the words). The study results show that the two groups
extract anomaly-related information that can be used as a basis
for anomaly detection. Based on this observation, we introduce
ADLILog, which uses the anomaly-related information along-
side the target system data to learn a deep learning anomaly
detection model through a two-phase learning procedure.

An important advantage of ADLILog is that, by having ac-
cess to ”normal” and especially ”abnormal” event descriptions
from many different software systems, it learns a model by
supervised learning objectives, without the need for target-
system log labels (i.e., its unsupervised method). Thereby,
ADLILog eliminates the need for time-expensive labeling
while preserving the advantage of supervised modeling. The
latter addresses the challenge of limited input representa-
tion during modeling. To prove the quality of detection, we
extensively evaluate ADLILog against seven related methods
on two widely used benchmark datasets and demonstrate that
our method outperforms the supervised methods by 5-24%,
and the unsupervised by 40-63% on F1 score. The datasets1

and method implementation2 are available as open-source for
fostering the research on this practically relevant problem.

The remaining of the paper is structured as follows. Sec-

1https://zenodo.org/record/6376763
2https://github.com/ADLILog/ADLILog

tion II presents our study that examines the potential of the
log instructions to aid anomaly detection. Section III intro-
duces ADLILog. Section IV gives the experimental results.
Section V discusses the related work. Section VI concludes
the paper and gives directions for future work.

II. EXAMINING THE POTENTIAL OF LOG INSTRUCTIONS
FOR LOG-BASED ANOMALY DETECTION

In this section, we examine the potential of the log instruc-
tions to aid anomaly detection. We start with our observation
that there exist two log instructions severity groups, based on
their log levels, i.e., ”normal” (”info”) and ”abnormal” (”fatal”,
”critical”, and ”error”). Following the usages of the log levels
for anomaly detection [4], we assume that the static texts of
the instructions have complementary properties concerning the
two severity level groups, preserving anomaly-related informa-
tion. To study the validity of the assumption, we analyze two
language properties of the word combinations (n-grams) in
the log instructions static texts with respect to the two groups.
Specifically, by studying the n-gram uniqueness among the
groups, we examine the differences in the vocabulary used
to describe normal/abnormal events. By relating the n-grams
with the expressed intent (e.g., positive intent relates to normal
system state), we examine the semantic diversity between
the groups, i.e., if the n-grams express positive (normal state
transition) or negative (abnormal state transition) intents. In the
following, we first describe the 1) log instruction collection
procedure and then present the 2) uniqueness and the 3)
sentiment analyses of the log instructions static texts.

A. Log Instruction Collection and Processing

For the starting point of the analysis, we created a repre-
sentative dataset by collecting log instructions from the source
code of more than 1000 public code projects from GitHub. We
included a wide spectrum of domains and programming lan-
guages (Python, Java, C++), covering different log instruction
types. The heterogeneity enables us to examine the vocabulary
diversity and semantic properties used in describing normal
and abnormal events across systems. That way, we consider
diverse logging styles and a wide range of events, with
complementary severity levels. To account for the reliability
in the log level assignment, we selected projects with more
than a 100-stars and at least 20 contributors. The collection
procedure resulted in more than 100.000 log instructions.

Afterwards, we process the log instructions by extracting
the log levels and the static texts to represent their severity
levels and the event descriptions. The diverse programming
languages use different names for the log levels. Therefore, as
a first step, we unify all the log levels. We preprocess the static
texts by applying several preprocessing techniques, similar to
related works [15], including lower-case word transformation,
splitting the static texts on whitespace, removing placeholders,
removing ASCII special characters and stopwords from the
Spacy English dictionary [16]. We refer to this data as Severity
Level (SL) data. It is a set of tuples from two elements – (1)

https://zenodo.org/record/6376763
https://github.com/ADLILog/ADLILog
http://github.com


the static text of log instruction, and (2) the severity group
based on the aforenamed log level to severity group mapping
(e.g., (”machine error”, ”abnormal”)). We used the SL data
to conduct the log instruction examination study. Similar to
related log instruction analysis studies [17], we extracted the
n-grams from the static text by varying the value for the n
parameter in the range n = {3, 4, 5}. An n-grams analysis
shows that many n-grams appear once. To eliminate the impact
of the rare n-grams on the analysis, we considered the n-grams
that appear more than three times [17].

B. Log Instructions Static Texts Uniqueness Analysis

Intuitively, when describing abnormal events, the static text
typically contains n-grams like ”failure” or ”error connection”,
as opposed to normal events, where n-grams like ”successful”
and ”accepted” are more likely to appear. Therefore, we
assume that the log instructions static texts of the two severity
level groups share different, partially overlapping vocabularies.
To verify this, we considered an approach from information
theory that defines the amount of information uncertainty in
a message [18]. In our case, we analyze the relation of the
n-grams with the two severity groups. At first, given an n-
gram (e.g., ”machine failure”), there is high uncertainty for
the assigned severity group. As we receive more information
for the n-gram (e.g., new logs with the n-gram ”machine
failure”), its uncertainty concerning the associated severity
group is reduced. For example, if the n-gram ”machine failure”
is associated five times with the ”abnormal” and one time
with the ”normal” severity group, we have low uncertainty.
In contrast, if another n-gram, e.g., ”verifying connection” is
associated three times with the ”abnormal” and three times
with the ”normal” group, the n-gram uncertainty is high.
To measure the uncertainty, we used Normalized Shanon’s
entropy [18]. We calculated the entropy for each n-gram and
reported the key statistics of the n-grams entropy distribution.

TABLE I
LOG INSTRUCTIONS STATIC TEXTS UNIQUENESS ANALYSIS RESULTS

Min 1st Qu. Median 3rd Qu. Max
Average Entropy 0.00 0.00 0.00 0.27 0.51

TABLE I summarizes the key properties of the n-gram
entropy distribution. It is seen that the median of the distri-
bution is 0. This means that the majority of the n-grams are
associated with only one of the two severity groups. Thereby,
the two severity groups are characterized with a rather unique
vocabulary. While this analysis gives information about the
uniqueness of the vocabularies, it does not account for the
type of intent expressed with the n-grams. To investigate the
expressed event intent, we made an n-gram sentiment analysis
(where the sentiment is used to quantify the intent type, i.e.,
positive or negative), given in the following.

C. Log Instructions Static Texts Sentiment Analysis

To evaluate the n-gram sentiment concerning the two sever-
ity groups, we considered a pretrained sentiment analysis

model from Spacy [16]. We justify the applicability of the
sentiment model by pointing to the observed similarities
between general language and logs (as short texts) [17]. Since
the sentiment model is trained on diverse language texts, it
has learned notions of positive, neutral or negative intent. We
run the n-grams through the model to obtain the sentiment
score. We used the sentiment score to categorize the n-
grams into three categories, i.e., positive, negative and neutral.
We relate the events from the ”normal” severity group with
positive intent because they describe a successful state or state
transition. Similarly, we relate the ”abnormal” group with a
negative intent because it describes unsuccessful system state
or state transition. The third category contains n-grams with
neutral intent, i.e., events without strongly expressed intent.

TABLE II summarize the results of the n-gram sentiment
analysis. For each of the three sentiment categories, we show
the percentages of the n-grams concerning the two severity
groups. In the positive intent category 66.94% of the n-
grams are associated with the normal severity group, and
28.13% are related to the abnormal severity group. In contrast,
from the n-grams associated with negative intent, 69.75% are
associated with the abnormal group, 23.13% are associated
with the normal severity group, and 7.12% are shared between
the two. These two observations show that there exists a
relationship between the normal group and positive intent,
and the abnormal group and the negative intent. Therefore,
the proposed severity log level grouping aligns with human
intuition when expressing positive and negative sentiments.
Structuring the static text of the log instructions by their log
levels in the proposed way extracts anomaly-related informa-
tion. Combining this observation with the uniqueness in the
vocabularies between the two severity groups demonstrates
that SL data has rich anomaly-related properties, which can
serve as a foundation for anomaly detection.

III. ADLILOG: LOG-BASED ANOMALY DETECTION BY
LOG INSTRUCTIONS

Following the affirmative observations about anomaly-
related information encoded in the SL data from the ex-
amination study, in this section, we introduce ADLILog as
an unsupervised log-based anomaly detection method. Fig. 1
illustrates the overview of the approach. Logically, it is com-
posed of (1) log preprocessing, (2) deep learning framework
and (3) anomaly detector. The role of the log preprocessing
is to process the raw logs by carefully selecting preprocessing
transformations that expose rich information for the deep
learning framework. The deep learning framework’s goal is
to learn and output useful log representations for the target-
system logs. It does so by training a deep neural network
model with a sequential two-phase learning process (pretrain-
ing and finetuning), during which data from the target-system
logs and the SL data are used. The anomaly detector detects if
the input target-system logs are normal or anomalous. In the
following, we describe the three components of ADLILog.



TABLE II
LOG INSTRUCTIONS STATIC TEXTS SENTIMENT ANALYSIS RESULTS

Sentiment Positive Negative Neutral
Severity Group Normal Abnormal Shared Normal Abnormal Shared Normal Abnormal Shared

N-gram Coverage [%] 66.94% 28.13% 4.93% 23.13% 69.75% 7.12% 46.98% 43.43% 9.59%

A. Log Preprocessing

The raw target-system logs are characterized by high
noise due to the parameter values generated during system
runtime (e.g., IP address, endpoints, numerical parameters).
The log noise can significantly affect the anomaly detection
performance [6]. Therefore, the log preprocessing aims to
reduce the noise by applying a set of preprocessing steps.
To that end, we start by removing all path endpoints (e.g.,
/home/spelce1/HPCCIBM/bin/) and split the static text using
whitespaces into singleton items we call tokens. The tokens
with numeric values most often denote variable parameters
that are not relevant for the semantics of the logs. We consider
them as noise and remove them. Similar to the preprocessing
for the SL data, we apply Spacy and remove all ASCII special
characters (e.g., $), the stopwords (e.g., is and the) [16] and
transformed each character into a lower case, following related
work [15]. Notably, as previously described, the SL data is
already preprocessed by a similar set of operations making
the preprocessing uniform. In addition, each log is prepended
with a dedicated Log Message Embedding ([LME]) token.
The [LME] token is an important design detail because we
use it to extract a numerical representation of the log from
the neural network, further given as input to the anomaly
detector. An important advantage of our method over the
related work is that ADLILog does not depend on log parsing
(a preprocessing procedure that extracts event templates from
raw logs) [19]. Since the existent log parsers are imperfect,
the incorrect parsing adds additional noise and can degrade
the anomaly detection performance [11]. By directly learning
features from the raw logs, we eliminate this source of errors.
Finally, different logs can have a variable number of tokens
while the neural network requires fixed-size input. Therefore,
we specify a hyperparameter max len to unify the lengths.
The shorter logs are appended with a special pad token ([PD]),
while the longer ones are truncated at max len size.

B. Deep Learning Framework

The deep learning framework consists of three components:
1) embedding layer, 2) encoder network from Transformer
architecture [20] and 3) classification layers. Given the prepro-
cessed and tokenized logs at the input, the embedding layer
transforms the input tokens into numerical vector representa-
tions, which we refer to as vector token embeddings. The token
embeddings are numerical features represented in a suitable
format for the neural network. We then use the encoder
network to learn relationships between the vector embeddings
from the embedding layer and the appropriate target. The
output from the encoder layer is the vector embedding of
the input log/(static text), i.e., the [LME] vector. Depending

on the training phase (pretraining or finetuning), the [LME]
vector proceeds towards one of the two classification layers.
The output from the classification layers is used as input in the
appropriate loss function. After finetuning, the output from the
second set of classification layers is the final vector embedding
of the input log, which proceeds towards the anomaly detector.

1) Embedding Layer: The embedding layer receives the
preprocessed logs as input. It serves as an interface between
the textual and numerical token representation format. Specif-
ically, each token is assigned a single index corresponding
to a token embedding vector. The embeddings are learned
during pretraining and are adjusted to learn the properties of
the normal and abnormal events. The embeddings are learned
jointly with the parameters of the neural network. Notably,
the embedding layer is updated just during the pretraining
phase. Updating the embedding layer during the two phases
is challenged by the appearance of unseen words during
finetuning. For example, there may be some operations in the
target system that are not covered by the SL data, which leads
to the appearance of missing tokens. The joint training with
the new tokens requires an update of the internal structure of
the neural network and learning new parameters every time
we encounter new words. Therefore, the effective transfer of
the parameters between the two learning phases is challenged.
To address this issue, we introduce a special token referred
to as an unknown ([UNK]) token. Notably, during pretraining
(first training phase), we randomly sample 15% of the SL
data and in each sample, we replace 20% of the tokens
with [UNK] (a similar strategy is used in related works from
general language [21]). Therefore, the pretrained model learns
contexts with missing tokens. During finetuning, whenever we
encounter a new token from the target-system data, we replace
it with the [UNK], effectively handling the new tokens.

2) Log Message Encoder: As a suitable architecture for
the log message encoder, we identified the encoder of the
Transformer [20] architecture. This architecture provides state-
of-the-art results in many NLP tasks (e.g., sentiment analysis,
translation) [21]. By pointing to the similarities between the
log static texts and natural language [17], we justify our
design of choice. The encoder implements a multi-head self-
attention mechanism that exploits the relations between tokens
within the log instructions static texts. This property enables
learning discriminative features between the words and the
different contexts they appear in (e.g., diverse vocabularies,
intent). The embedding vectors and the encoder parameters are
updated via the backpropagation algorithm during pretraining.
At the output of the encoder, we provide the vector embedding
of the [LME] token. Due to the architectural design, the
vector of the [LME] token attends over all the other token
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Fig. 1. ADLILog: Detailed design of the log anomaly detection method

vectors during training. We considered this implementation
architectural design detail because it allows learning the most
relevant information from the input concerning the normal
and abnormal events. The model size, number of heads in
the encoder, and the number of encoder layers are three
hyperparameters of the log message encoder.

3) Classification Layers: The classification layers as input
receive [LME] tokens from the encoder. It is composed of
two sets of linear neural layers. As depicted in Fig. 1, the first
layer set (Set 1) has two linear layers, with parameters θ

′
.

It is trained jointly with the log message encoder during the
pretraining procedure. The size of the first linear layer (from
the first set of linear layers) is equal to the model size of
the encoder layer, while the second layer (from the first set of
linear layers) has two neurons that correspond to the ”normal”
and ”abnormal” severity groups from the SL data. The output
of the first set of classification layers is given towards the
binary cross-entropy as a loss function during pretraining.

The second set of classification layers, with parameters θ”,
has two linear layers (Set 2 in Fig. 1). The two layers have
the same number of neurons equal to the model size. The
output of the second set of linear layers is given as input for
the loss function during finetuning. Additionally, the output of
this layer is used as the final log representation, proceeded as
input to the anomaly detector.

4) Learning Process: The learning process is split into
two sequential phases: pretraining and finetuning. During the
pretraining phase, we update the parameters of the embedding
layer, the log message encoder and the first set of classification
layers. We perform the pretraining with the SL data, using
the binary cross-entropy as a commonly used loss for binary
classification [22]. The pretraining is terminated when a lack
of loss improvement is observed for five consecutive epochs on
a separate validation SL set. After pretraining, the parameters
of the encoder and the embedding layer (as pretrained model)
are frozen and no longer updated. Thereby, they preserve
anomaly-related information. The pretrained model is used to
extract the initial log representation in the finetuning phase.

For the finetuning phase, we pair the pretrained model
with the second set of linear layers. Notably, the training

data in this phase consists of the target-system data and the
”abnormal” severity group from the SL data (as its subset).
Since by definition of the anomaly detection task, the majority
of the target-system data is assumed to describe normal system
behaviour (i.e., class 0) by considering the ”abnormal” class of
the SL data as anomalous (i.e., class 1), the finetuning can be
addressed as a binary classification problem. The ”abnormal”
class of the SL data is always available, thereby, ADLILog
does not need manually labeled target-system data, i.e., its
unsupervised method. Consequently, ADLILog addresses the
challenge of time-expensive labeling. In the finetuning phase,
we update just the parameters of the second set of linear layers
(θ”), while the pretrained model is used to extract the log
embeddings of the input data. The finetuning enables learning
the specifics of the target-system data while relying on the
anomaly-related information from the SL data. In addition,
since the normal target-system data and the normal events
from the SL data can differ, the finetuning adjusts the log
representation embeddings to these differences.

Another important aspect of the finetuning phase is the
choice of the finetuning loss. It determines the form of the
final learned log vector embeddings. Since the finetuning
is defined as a binary classification problem, multiple loss
choices are possible (e.g., binary cross-entropy [22], or hyper-
spherical loss [23]). The binary-cross entropy is a formidable
choice if the anomalous labels originate from target-system
data because it allows learning of the exact discriminative
properties between the classes. However, in the case of logs,
the expensive labeling process makes this assumption hard.
In contrast, hyperspherical loss concentrates the normal class
around a single point, e.g., the centre of the hypersphere.
At the same time, it is scattering the anomalous logs further
apart. This is known as the concentration property [24]. The
literature on anomaly detection [24] suggests that preserving
this property when learning representations often improves
performance. Consequently, the hyperspherical loss has more
desirable properties for anomaly detection, and we use it as
finetuning loss. Eq. 1 gives its definition for a single log li:



Li
ad = (1− yi)||g(xi; θ, θ

”)||2 − yilog(1− exp(−||g(xi; θ, θ
”)||2)) (1)

where xi is the log representation as output from the second
classification layers set, yi ∈ {0, 1} is a label for the normal
target-system data or the ”abnormal” SL severity class, θ and
θ” are parameters of the encoder and the second set of linear
layers, and g(xi; θ, θ

”) is the function learned by the network.

C. Anomaly Detector

The goal of the anomaly detector is to highlight the anoma-
lous target-system logs represented as log vector embeddings
(xi). It has two components, i.e., 1) an assumed target-system
normality function p̃+ad, and 2) anomaly decision rule. The
normality function is an assumed model of the normal target-
system logs. It is a positive function, having small values for
the anomalous and large values for the normal target-system
logs [24]. The form of the function depends on the type of
finetuning loss. Since the chosen hyperspherical loss learns a
model that places the normal logs (class 0) close to the centre
of the hypersphere, the smaller distances correspond to normal
system behaviour. Following the definition of the normality
function, we use the reciprocal value of the Euclidean distance
between the learned log representation xi and the hypersphere
centre (set to the origin), given by Eq. 2. The large distances
of the vector representation from the centre of the hypersphere
will result in small values for the normality score (denoting
anomalies) and vice versa (as seen in Fig. 1).

p̃+ad(xi) =
1

||xi − c||2
, c = 0 (2)

Finally, to detect anomalies, we apply a decision rule on
top of the normality function score values of the input logs.
The decision rule involves setting a decision threshold ã over
the scores, such that the logs with lower normality scores
are reported as anomalous. We calculate the threshold ã on
a separate validation set. The validation set is composed of
the normal target-system data and the ”abnormal” SL class.
The threshold is set to the score that maximizes the chosen
performance criteria (e.g., F1 score) on the validation set.

IV. EXPERIMENTAL DESIGN AND EVALUATION

In this section, we present the experimental evaluation
of ADLILog in comparison to three state-of-the-art and four
traditional log-based anomaly detection methods. We set the
focus on evaluating the detection performance, as the precise
detection of anomalies is a key quality indicator for real-
world deployment. The performance evaluation is made on
HDFS and BGL [7] (as commonly used benchmark datasets),
using three performance evaluation metrics. To estimate the
ADLILog’s deployment complexity, we further analyze the
quality and quantity of the training data and two hyperpa-
rameters of the method and the learning procedure. These
experiments evaluate the practical value of ADLILog.

TABLE III
DATASET PROPERTIES

Dataset Time Span # Logs # Anomalies
HDFS 38.7 hours 11,175,629 16,838
BGL 7 months 4,747,963 348,460

A. Experimental Design

We evaluate the anomaly detection performance in two
separate evaluation scenarios (1) single log line and (2) se-
quential log anomaly detection. The advantage of the single
line anomaly detection resides in the potential to fast diagnose
anomalies because the method directly points to the potentially
anomalous log. However, the large volume of logs in short
time intervals can lead to bursts of reported anomalies which
in certain situations can be overwhelming. To that end, we
evaluate the method’s performance on event sequences as well.

1) Datasets: BGL and HDFS are two benchmark datasets
for log-based anomaly detection that are mostly used by the
research community [6], [7], [11]. TABLE III shows the
key datasets properties. To find the unique log events, we
used Drain [25], a state-of-the-art log parsing method. Drain’s
hyperparameters were set as recommended by Zhu et al. [19]
resulting in an output of 29 and 360 unique events for HDFS
and BGL, respectively. Following He, et al. [6] we split the
dataset into 80-20% train-test split. The first, chronologically
ordered 80% were used for training (and model tuning), while
the remaining 20% were used for performance evaluation for
the two datasets accordingly.

HDFS contains 11,175,629 logs generated from a map-
reduce tasks on more than 200 Amazon’s EC2 nodes [10].
Each log has a unique identifier (block id) for each operation
such as allocation, writing, replication and deletion. After
parsing, there are 29 unique events, from which ten describe
anomalous events and appear just when the block id is anoma-
lous. Therefore, they are indicators of an anomaly. We used
this observation to create two datasets, which we refer to as
HDFS-sin and HDFS-seq. HDFS-sin is composed of time-
ordered logs with a label for each event if it is anomalous or
not. This data allows the evaluation of methods performance
in absence of external identifiers, i.e., single log anomaly
detection. HDFS-seq uses the block id as a natural identifier
to construct sequences of events, and it is used in sequential
anomaly detection evaluation.

BGL contains 4,474,963 logs collected from a BlueGene/L
supercomputer at Livermore Lab [26]. BGL has two important
characteristics. The first BGL characteristic is the availability
of labels for individual log events given by the system ad-
ministrators. We use these labels as ground truth information
for single log line anomaly detection. We refer to this data
as BGL-sin (with 348,460 anomalous logs). The second BGL
characteristic is the absence of identifiers for task sequences.
To create log sequences, similar to related work [6], we use
a time window of size T . Following, He et al. [6] we set
T = 6h, as optimal for BGL. This resulted in a total of 828



log sequences. To obtain sequence labels, similar to related
work [6], if there is a single anomalous log in the window,
the sequence is labeled as anomalous. We refer to this data as
BGL-seq, and we use it for the sequential evaluation.

2) Competing Methods: We compare ADLILog (for both,
the single line and the sequential evaluation) with three
state-of-the-art deep learning-based methods; two super-
vised (LogRobust and CNN) methods and one unsupervised
(DeepLog) [7]. According to the log-based anomaly detection
survey by Chen et al. [7], these three methods show the
best detection performance on the two benchmark datasets.
We used the public implementations of the methods available
open-source in a GitHub repository 3. The three methods were
evaluated with the suggested values for their hyperparameters.
Since the three methods require fixed input, similar to Chen et
al. [7], we use window size of 10 events to create fixed-size
sequences and predict the next log (i.e., the stride is one).

For the sequential evaluation, alongside the three state-
of-the-art methods, we further considered four traditional
log-based anomaly detection methods: two supervised, i.e.,
Logistic Regression (LR) [27] and Decision Tree (DT) [9],
and two unsupervised methods, i.e., Principle Component
Analysis [10] and LogCluster (LC) [4]. While deep learning-
based methods are directly applicable for single log line [8],
we are not aware of related work that directly applies the
four traditional methods on single log lines. Therefore, we
do not use them in this evaluation type. To implement the
baselines we used logilizer4, an open-source library for log-
based anomaly detection. We set the hyperparameters of these
four methods as recommended by He et al. [6].

3) Performance Evaluation Metrics: Following related
work, we use three evaluation metrics (precision, recall and
F1) to estimate the detection performance of the compared
methods [7]. Precision shows the fraction of the correctly re-
ported anomalies (Precision = #DetectedAnomalies

#ReportedAnomalies ). Recall
shows the correctly detected anomalies that are true anomalies
(Recall = #DetectedAnomalies

AllAnomalies ). For anomaly detection in
logs, on one side, it is important not to miss anomalies
(missing an anomaly can lead to severe outages). On the
other side, reporting many false positives overwhelms the
operators, leading to alarm fatigue [3], making the method’s
practical usability questionable. Therefore, a natural trade-
off between precision and recall emerges. In this regard, we
considered F1 (a harmonic mean between precision and recall
F1 = 2×Precision×Recall

Precision+Recall ) as the primary evaluation metric.
4) ADLILog Experimental Setup: We have performed the

experiments using three different values for the model size
{16, 64, 256}. Using the model size of 16, we have obtained
the best predictive performance. The max len parameter
was set to 32 because this length covers the majority of
the log lengths. To prevent overfitting, we used the dropout
regularization technique with a probability rate of 0.05. In
the pretraining phase, we used Adam [28] optimizer with a

3https://github.com/logpai/deep-loglizer
4https://github.com/logpai/loglizer

TABLE IV
SINGLE LINE LOG ANOMALY DETECTION COMPARISON

Single Log Line
window size: 10

stride: 1
BGL-sin HDFS-sin

Method F1 Prec. Recall F1 Prec. Recall
ADLILog 0.61 0.55 0.70 0.98 1.00 0.96
DeepLog 0.21 0.12 0.82 0.35 0.62 0.24
LogRobust 0.37 0.63 0.26 0.89 1.00 0.79
CNN 0.56 0.47 0.68 0.88 1.00 0.78

learning rate 10−4 and values for β1 and β2 set to 0.9 and
0.99. Also, we explored four different values for the batch
size {32, 64, 256, 512}. The batch size of 512 showed the best
average results. The finetuning was performed for five epochs
with the same values for the optimizer. The experiments
were conducted on a machine using Ubuntu 18.04, with CPU
Intel(R) i5-9600K, RAM 128 GB, and GPU RTX 2080.

B. Experimental Results and Discussion

The performance evaluation of the proposed approach is
made using two independent experimental scenarios: single
line and sequential log anomaly detection. For the single log
line anomaly detection methods comparison, we compared
ADLILog to the three state-of-the-art deep learning-based
approaches. TABLE IV presents the results. ADLILog sig-
nificantly outperforms the supervised methods on almost all
evaluation metrics. In particular, ADLILog showed the best
predictive performance in terms of recall on both datasets
(BGL-sin, and HDFS-sin). While DeepLog is being slightly
better on recall on BGL-sin, it has significantly worsened
performance on precision. On the F1 as a primary evalua-
tion metric, our method outperforms the supervised methods
between 5-24% and the unsupervised one by 40-63%. The
improvements of ADLILog are predominantly due to the rich
set of abnormal events from the many diverse log instructions
that help to discriminate the anomalous logs. ADLILog has a
significant practical advantage in comparison to the competing
supervised approaches because does not require labeled target-
system anomalies. Therefore, it can be directly applied to a
target system while obtaining detection performance similar
or even better than the supervised approaches (which will
still require expensive manual labeling). Therefore, the good
performance of ADLILog comes at a smaller practical cost.

Further, we noted that the predictive performances of all
the methods for the BGL-sin dataset are significantly lower
compared to the HDFS-sin. For example, the F1 score of
LogRobust from 0.89 on HDFS-sin falls to 0.37 on BGL-sin.
A potential explanation for this observation is that the logs
from BGL-sin originate from many different simultaneously
running tasks. Therefore, there is a large difference between
the local log neighbourhood (nearby logs) of the log subject
to analysis, a phenomenon in log analysis literature known as
unstable sequences [11]. In BGL-sin there are 26.94% new log
events in the test data compared to the training data, which
additionally diversifies the local neighbourhoods of the events.

https://github.com/logpai/deep-loglizer
https://github.com/logpai/loglizer


TABLE V
SEQUENTIAL LOG ANOMALY DETECTION COMPARISON

Log Sequences
window size=10,

stride=1

BGL-seq
(time window = 6h)

HDFS-seq
(block ids)

Method F1 Prec. Recall F1 Prec. Recall
ADLILog 0.86 0.84 0.88 0.93 0.92 0.94
DeepLog 0.63 0.46 1.00 0.94 0.96 0.93
LC 0.57 0.42 0.87 0.80 0.87 0.74
PCA 0.55 0.50 0.61 0.79 0.98 0.67
LogRobust 0.83 0.71 1.00 0.96 0.93 0.98
CNN 0.82 0.69 1.00 0.97 0.94 0.99
LR 0.71 0.95 0.57 0.98 0.95 0.99
DT 0.72 0.95 0.57 1.00 1.00 1.00

Although some of the new events are normal, the methods
that exploit the local context miss-detect them as anomalous
(e.g., as seen by the drop in precision for DeepLog on BGL-
sin). DeepLog, as the state-of-the-art unsupervised method,
leverages the local context (window size of 10 events) to
detect anomalies and it is significantly affected by the unstable
sequences, resulting in the lowest performance. LogRobust and
CNN leverage supervised information about the events, which
helps to improve the performance. In contrast, the HDFS-sin
dataset is characterized by high regularity in the sequences due
to the data generation procedure. The repetitiveness of task
operations (e.g., deletion, allocation), the smaller number of
events and the low context change lead to higher regularity in
the local contexts, which increases the detection performance.
ADLILog is not affected by the local contexts differences
because it examines each log independently.

ADLILog detects anomalies into single log lines. To be able
to detect anomalies in log sequences, ADLILog aggregates
the predictions of the individual logs from the sequence.
If there is at least a single detected anomalous log, the
whole sequence is detected as anomalous. For BGL-seq, we
aggregated ADLILog’s logline predictions into the fixed time
intervals (same to BGL-seq data generation procedure), while
for HDFS-seq, we aggregate the predictions based on the
block ids. This way, ADLILog additionally can be evaluated
on sequential log anomaly detection.

TABLE V gives the results of the sequential log anomaly
evaluation. We discuss them for each dataset individually,
starting with BGL-seq. For BGL-seq, ADLILog achieves the
best performance among the deep-learning state-of-the-art
and the traditional approaches on the F1 evaluation metric.
Considering precision, ADLILog outperforms the three unsu-
pervised (DeepLog, LC and PCA) and the two deep-learning
supervised methods, while being outperformed by DT and LR.
In contrast, when considering recall, ADLILog outperforms
all traditional approaches. Since the logs from the BGL-seq
dataset resemble a real-world behaviour of a supercomputer,
the logs originate from many different independent tasks
and are intertwined. This leads to low repetitiveness of the
same log sequences. Therefore, the state-of-the-art methods
(LogRobust, DeepLog and CNN), which directly model the
sequences face the challenge of unstable sequences. Line

of works [7], [11] also shows that the unstable sequences
significantly affects the performance of log anomaly detection
methods. In contrast, ADLILog focuses on the discriminative
properties of the individual events, ignoring the sequential
features of the anomalous patterns. These experimental results
show that in the case of lower repetitiveness in the log
sequences, leveraging solely the differences in the language
used to describe normal and anomalous events can lead to
better anomaly detection performance.

The results on HDFS-seq show that the methods exploiting
sequential properties achieve better results. The key charac-
teristic of HDFS-seq is the high sequence regularity which
explains the good performance of the sequential methods. In
addition, not all anomalies are logged into a single log. For ex-
ample, around 70% of the anomalies in the test dataset can be
identified by shortened log sequences, however, the majority
of them have at least one anomalous logline. Since ADLILog
does not model the sequential properties directly, it does not
learn the anomalous sequence properties (e.g., long sequences
caused by delays where no anomalous events are recorded).
Nevertheless, it outperforms the traditional unsupervised base-
line methods by simply relying on the language properties
of the logs. The supervised methods are showing stronger
performance in comparison to the unsupervised. However, in
comparison to ADLILog (which does not require labeled data),
the supervised methods require expensive labeling. ADLILog
has strong anomaly detection performance for the two log
datasets with weak and strong sequential dependencies. No-
tably, a significant practical improvement of ADLILog over
the related methods is that it does not require labels from the
target system to learn a model. Therefore, ADLILog achieves
competitive detection performance at a lower practical cost.
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Fig. 2. Quantitative and qualitative evaluation of the ”Abnormal” logs

The acceptance of AI-enabled methods in production set-
tings depends strongly on the necessary effort for creating
training data. Therefore, we examine the quantitative and
qualitative properties of the training data ADLILog needs
to learn a good model. Specifically for the quantitative prop-
erty, we varied the ratio of normal versus anomalous logs in the
training data when finetuning. This experiment examines the
relative ratio between normal target-system and ”abnormal”
logs needed for finetuning. For the qualitative property, we var-
ied the origin of the anomalous class (class 1), i.e., if it comes
from human-provided labels from other software systems



(external system labels) or the ”abnormal” class of the SL data
(GitHub Labels). The external system labels are obtained from
publicly available datasets (e.g., TBIRD and SPIRIT [26] –
two supercomputer datasets with labeled anomalies). Similarly,
as the adoption of the ”abnormal” class in finetuning, the
external-system labels denote anomalous concepts from related
systems (thus eliminating the requirement for labeling), and
can be used for model finetuning (in place of the ”abnormal”
GitHub class). Fig. 2 depicts the experimental results for
quantitative evaluation when incrementally changing the ratio
between the anomalous and normal logs in the training data
for BGL-sin in the ranges {1%, 5%, 10%, 20%}. They show
that with a small ratio of 1 %, ADLILog achieves > 95% of
the optimal performance on the F1 metric. The improvement
is consistent with further increasing the ratio. Concerning
the qualitative evaluation, by varying the two sets of labels,
the results show that the GitHub labels provide robust and
better performance because of the greater semantic variety in
the ”abnormal” events over the external system labels. This
experiment demonstrates that a small number of labels from
the ”abnormal” class of the SL data have significant practical
usage for log anomaly detection.
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Fig. 3. Sensitivity analysis of the influence of batch and model size

Finally, the correct parameter setting influences the needed
effort for fast configuration and the quality of the detection.
To evaluate the impact of the hyperparameters over the
detection performance and efficiency, we examined two
hyperparameters, model and batch sizes, influencing the model
performance and update time. We considered the BGL-sin
dataset. The experimental results when varying the model
size in the range {16, 64, 256} and batch size in the range
{32, 64, 256, 512}, reported in Fig. 3, show that the larger
batch size and smaller model size provide better detection
performances while being faster for updating. The prediction
time per batch size of 512 is 17 ms (∼30000 logs per second).
Together with the small model size, these experiments imply
that ADLILog has desirable practical properties.

V. RELATED WORK

There exist multiple methods for the automation of log-
based anomaly detection [8], [9], [11], [27]. From the perspec-

tive of target-system log labels availability, the methods are
categorized into supervised and unsupervised. The supervised
methods assume the existence of labels from the target system
when learning a model. In one of the earliest applications of
these methods, Bodik et al. [27] applied Logistic Regression
(LR) to successfully detect anomalies in data centres, by
treating the problem as a binary classification. Decision Trees
(DT) [9] were utilized in the detection of anomalous web
requests from access logs. These two methods start by log
parsing to extract events and then use count vectors in a fixed
time interval as input samples. The recent advances in deep
learning resulted in the appearance of several supervised deep-
learning-based methods, e.g., LogRobust [11], and CNN [12].
LogRobust uses the LSTM architecture, augmented with at-
tention. These two are popular deep learning architectures
frequently combined for sequence modeling. LogRobust, as
input, receives a sequence of events, and as output, it predicts
if the observed sequence is anomalous or not. By careful
sequence construction, i.e., by incremental sliding over the log
sequences by one element, it can be used to predict single log
lines [8]. An additional feature of LogRobust is using vector
embeddings from general-purpose languages to represent the
logs. Lu et al. [12] use Convolutions Neural Networks (CNN),
another type of deep learning architecture, to learn normal
and abnormal sequences from template indices. Similar to
LogRobust, CNN can be used to detect anomalies from a sin-
gle log. While having strong detection performance, the large
frequency of the software updates and the large volume of the
produced logs make the labeling process expensive. Therefore,
supervised methods are frequently considered impractical [6].

In contrast, the unsupervised methods do not assume the
existence of labeled data. This has an important practical im-
plication because it eliminates the need for expensive labeling.
Therefore, the unsupervised anomaly detection methods are
easier to adopt. In one of the earliest works on unsupervised
anomaly detection, Xu et al. apply PCA [10] to learn the
normal state of the event counts by projecting them as points
in a vector space. In the test phase, the test sample is
projected in the constructed vector space and reported as
an anomaly if the projection significantly deviates from the
learned normal state. Lin et al. [4] introduce LogCluster which
uses the TFIDF algorithm for sequence representation. It first
constructs a knowledge base of normal/anomalous sequence
clusters by agglomerative clustering and human-based cluster
labeling (normal or anomalous). A test sample is detected as an
anomaly if it is clustered into anomalous clusters. DeepLog [8]
and LogAnomaly [29] are two popular unsupervised deep
learning-based methods. The innovative feature of the two
is the introduction of an auxiliary task called ”next event
prediction” (NEP). NEP is a supervised task that given a
sequence of events, forecasts the most probable next event.
Notably, the labels originate from the input data itself, i.e., no
labeling is performed, which makes the methods unsupervised.
The test sequences with an incorrect prediction for the next
event are considered anomalous. As stated by the authors,
DeepLog can be applied for sequential and single logs given



as inputs. To learn the normal state, an LSTM architecture
is trained on the NEP task. LogAnomaly has two additional
features: 1) it uses log semantics and 2) event counts in joint
training a DeepLog-like model. The empirical results show
that the improvements over DeepLog are not significant [7],
[29]. Unsupervised methods are often criticized for their lower
performance in comparison to the supervised ones [6] leading
to alarm fatigue and discouraging their wide applicability.

In addition, there are other methods for log-based anomaly
detection in both industry and research [13], [14], [30]. How-
ever, those solutions are part of production systems [13] or
have specific implementation challenges while do not provide
public implementations [14], [30], [31]. Due to the inability
of transparent comparison, we do not discuss them in detail.

VI. CONCLUSION

This paper addresses the problem of automating log-based
anomaly detection as a crucial maintenance task in enhancing
the reliability of IT systems. It introduces a novel unsupervised
method for log anomaly detection, named ADLILog. The key
idea of ADLILog is to use the large unstructured information
from the logging instructions of 1000+ GitHub public code
projects to improve the target-system log representations,
which directly improves anomaly detection. We first conducted
a study to examine the language properties of the log in-
structions, and we show that they encode rich anomaly-related
information. ADLILog combines the anomaly-related informa-
tion and the target-system data to learn a deep neural network
model by a sequential two-phase learning procedure. The
extensive experimental results on the two most commonly used
benchmark datasets show that ADLILog outperforms the re-
lated methods: the supervised by 5-24%, and the unsupervised
by 40-63% on the F1 score. Further experiments demonstrate
that ADLILog has desirable practical properties concerning the
time-efficient model updates and small model sizes. This study
signifies the benefit of using large unstructured information
in aiding the automation of IT operations. Regarding future
work, the paper opens additional questions on how to apply
the SL data for automating higher-order IT operational tasks,
like failure identification and root-cause analysis.
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