
Self-Supervised Anomaly Detection from
Distributed Traces

Jasmin Bogatinovski∗‡, Sasho Nedelkoski∗‡, Jorge Cardoso†§, Odej Kao∗
∗Complex and Distributed IT-Systems Group, TU Berlin, Berlin, Germany

{jasmin.bogatinovski, nedelkoski, odej.kao}@tu-berlin.de
†Huawei Munich Research Center, Munich, Germany

§CISUC, Dept. of Informatics Engineering, University of Coimbra, Portugal
jorge.cardoso@huawei.com

‡Equal contribution

Abstract—Artificial Intelligence for IT Operations (AIOps)
combines big data and machine learning to replace a broad range
of IT Operations tasks including reliability and performance
monitoring of services. By exploiting observability data, AIOps
enable detection of faults and issues of services. The focus of
this work is on detecting anomalies based on distributed tracing
records that contain detailed information of the services of the
distributed system. Timely and accurately detecting trace anoma-
lies is very challenging due to the large number of underlying
microservices and the complex call relationships between them.
We addresses the problem anomaly detection from distributed
traces with a novel self-supervised method and a new learning
task formulation. The method is able to have high performance
even in large traces and capture complex interactions between the
services. The evaluation shows that the approach achieves high
accuracy and solid performance in the experimental testbed.

Index Terms—anomaly detection; distributed traces; dis-
tributed systems; self-supervised learning.

I. INTRODUCTION

Billions of devices and users depend on the availability of

large distributed systems such as the cloud. Many applications

often have service-level agreement (SLA), where uninterrupted

service with low response times guarantees are required.

Therefore, loss of control is not allowed for any system or

infrastructure.

Successful operation of large-scale systems requires de-

ployment of numerous utilities. These utilities include intro-

ducing additional intelligence to the IT-ecosystem, such as

employing network reliability engineers (NRE), site reliability

engineers (SRE), using automated tools for infrastructure mon-

itoring, and developing tools based on artificial intelligence

for load balancing, capacity planning, resource utilization,

storage management, and anomaly detection. The techniques

and methods from the field of Artificial Intelligence for IT Op-

erations (AIOps) become an immutable part of the monitoring

and utility toolboxes to address the challenges imposed by the

previous tools. AIOps uses machine learning, data analytics,

and monitoring data to improve the operation and maintenance

(O&M) of distributed systems.

The first step towards available and reliable systems and

services is that an anomaly must be detected and recognized,

before it leads to a service or a system failure. Timely detection

allows prevention and increasing the opportunity window for

conducting a successful reaction from the operator. This is

especially important if urgent expertise and/or administration

activity is required. These anomalies often develop from

performance problems, component and system failures, or

security indignant and leave some fingerprints within the

monitored data: logs, metrics or distributed traces.

Depending on the origin of the data, the observable system

data, describing the state in distributed IT system, are grouped

into three categories: metrics, application logs, and distributed

traces [1], [2]. The metrics are time-series data representing

the utilization of the available resources and the status of

the infrastructure, typically regarding CPU, memory, disk,

network throughput, and service call latency. Application logs
record which actions were executed at runtime by the software.

The metrics and log data sources are limited on a service or

resource level. They cannot relate the interactions between the

different components within a distributed system. Distributed
traces are a graph-like abstraction built on top of logs that

encode information for the multiple services serving a partic-

ular user request. Traces are composed of events or spans. The

spans contain information about the execution workflow and

performance at a (micro)service level. As such, they preserve

the information for the interaction between the services and

are better suited for tasks such as anomaly detection.

While the anomaly detection using system log and metric

data has been previously investigated [3]–[6], only a few

studies make use of tracing data [7], [8] as it is significantly

more complex to implement, collect, and handle.

There are three important requirements of anomaly detec-

tion from distributed traces; the methods should handle traces

under the assumption of existing of noise, traces can be of

arbitrary length, and the methods should be unsupervised. Due

to the complex nature of the operations within a distributed

environment and large noise, it can happen that although

the observed sequence of events is not present in the set of

observed traces, it still to be normal. Noise occurs because

complex systems rely on software patterns, such as caching

and load balancing, to increase efficiency and reliability. The

existence of noise has a strong implication for trace anomaly

detection since methods need to classify traces which were

342

2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)

978-0-7381-2394-3/20/$31.00 ©2020 IEEE
DOI 10.1109/UCC48980.2020.00054

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on September 06,2021 at 12:04:10 UTC from IEEE Xplore. Restrictions apply.

never seen before as normal. The existing approaches, such

as [9], use finite state machines (FSM) to model the correct

behaviour of systems. These approaches work well when

traces do not contain noise. However, the introduction of noise

scales the number of potential transitions exponentially.

The second challenge is related to the range of lengths

of a trace for different operations. Approaches relying on

LSTMs [7], [8] can only process traces up to a certain length

of k. These approaches are termed autoregressive since they

use previous spans of a trace to predict the following span.

If the prediction is correct, the trace is classified as normal.

Otherwise, it is anomalous. The problem is that as traces

become long, the first spans of traces in a behaviour model

are forgotten.

Lastly, we only consider the option for unsupervised

method, as the labelling by experts or injection of anomalies

directly into the cloud platforms to obtain labeled data do not

meet the requirements of real-word systems.

Contribution. We address these challenges by proposing a

formulation of the problem of next span prediction [8] into

a masked event prediction task. Masked span prediction as

a learning task is concerned with the correct prediction of

a masked event on a random position in the trace utilizing

the remaining, non-masked information from the trace. The

decision for the normality of a trace is done with a threshold

procedure at the top of the masked event prediction procedure.

This allows the following benefits. The method opens the

ability to learn from the fully observed trace structure. It

exploits the information from the context spans in the trace

in order to predict the masked span allowing for arbitrary

dependency between the spans in the trace. The method

does not use labels for learning, hence it is unsupervised.

It exploits the overall information of the trace, meaning it

is not dependent on the length of the trace. The challenge

of noise generated by the underlying distributed system is

addressed first with sparse encoding and second with allowing

for an arbitrary number of span to be mistaken. This allows

for greater flexibility of correctly modeling of unseen normal

traces, which results in improving the performance scores.

With exhaustive empirical evaluation we show that the method

outperforms the previous state of the art on both experimental

testbed.

II. RELATED WORK

Anomaly detection as a data mining task is important due

to its great practical relevance across many diverse areas.

As a learning task is concerned with finding observations

in a corpus of data that differ from the expected behaviour

[10]. Anomalies in large systems such as cloud and high-

performance computing (HPC) platforms can impact critical

applications and a large number of users [11]. Therefore,

a timely and accurate detection is necessary for achieving

reliability, stable operation, and mitigation of losses in a

complex computer system.

A common approach for data-driven anomaly detection

from tracing data is with a one-class classification [12] ap-

proaches. They assume that the available data originate from

the normal operation of the observed system. Thus, the meth-

ods aim to fit a decision boundary around the normal data. The

data points that lie outside of the learned decision boundary

are classified as anomalies. Recently, the anomaly detection

in complex distributed systems (e.g., cloud platforms) using

various monitoring data is gaining a lot of popularity [7]–[9].

One approach to model the normal execution of the traces

per workload is to construct a Finite Discrete Automata (FDA)

to capture the complete trace execution cycle [9]. In this work,

the FDA is built per workload from a specialized distributing

tracing procedure. The generated FDA’s are often complex

due to the large size of the traces. This makes the FDA

highly sensitive on the monitoring tracing procedure when

transiting from one state to another. Since the transition from

a current state to the next one utilizes the information up to

the current span within the trace, the FDAs are not efficient

in the utilization of the whole available information from

the trace. This method does not support publicly available

implementation making it hard for comparison.

The current systems for anomaly detection using tracing

data and deep learning techniques model the normal system

behaviour by utilizing history h of recent log/trace events as

input, and predict the next event key in the sequence [7], [8].

We refer to this task as the next event/span prediction. They

utilize the execution path of the trace and LSTMs [13], [14]

to enable the learning from the sequential nature of the traces.

The anomaly detection is performed by predicting the next

span, if the prediction is successful then the span is normal,

otherwise is considered as anomaly.

In contrast to the above anomaly detection systems, we

reformulate the problem of next event prediction into mask

span prediction. The model opens the ability to learn from the

fully observed trace structure. It exploits the information from

the context spans in the trace to predict the masked event.

III. ATTENTION APPROACH FOR ANOMALY DETECTION IN

DISTRIBUTED TRACES

In this section, first, we discuss the data preprocessing step

for the approaches described in this work. We built an intuition

for the definition of the self-supervised task explaining the

strong aspects of such problem formulation. We describe the

architecture of the main model.

A. Distributed Traces

Distributed traces record the workflows of services executed

in response to user requests. These records inside a trace

are called spans or events and represent information (e.g.

start time, end time, service name, HTTP path, function in

RPC calls etc.) about the operations performed when handling

an external request. Formally, a trace can be written as

Ti = (Si
1, . . . , S

i
m), where i ∈ {1, . . . , N} is a trace from

the dataset, and m is the length of Ti or the number of spans

in the trace.

Depending on the executed workload, the traces have differ-

ent lengths and different events having unique description. The

343

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on September 06,2021 at 12:04:10 UTC from IEEE Xplore. Restrictions apply.

depth of the description of a span depends on multiple factors.

For example, a span referring to a RPC call is described with

a function call (with respective parameters) while, the span

referring to http call can be described with the http method

and the endpoint. So, the different nature of the event being

executed constraints the set of descriptive features.

Due to the great variability of the endpoints within the

distributed system, taking just a raw span description and map-

ping it into a symbol will result in a very large vocabulary [7].

To mitigate this problem one needs to filter out the parts of

the spans that are not relevant. To this end, one can utilize the

fact that the result of the filtering step allows for the traces

to be treated similarly as the payload of log messages. This

opens an opportunity to use a wide toolbox of log-processing

methods. To that end, we utilize Drain [15], as being the

best overall log-parser [16]. The Drain method constructs a

tree based on the frequency counts of the words appearing on

particular positions within the text sequence. The spans with

reduced description are given as input to Drain. Drain as output

generates a set of groups of spans or span templates. Thus the

trace can be represented as a sequence of span templates or

sequence of symbols.

Due to the complexity arising in the distributed systems it

can happen that the traces of successful execution of the same

request multiple times, the traces to be of different length.

To account for the different length of the traces, the traces

are padded up to (max len) number of spans. This parameter

represents the maximum allowed trace length. Additionally,

to conserve the information for the length of the traces, two

special spans ([START] and [STOP]) are introduced. They

are added to the beginning and the end of the trace, prior

to padding. The training dataset is composed just of traces of

normal execution of the workload. This is a strong requirement

since the cost for labeling tracing data is large.

B. Method Design

A common approach for modeling the normal execution of

a trace is utilizes the autoregressive modelling concept [9].

It assumes that each trace has a particular number of spans

m, where each span Si
m ∈ V is part of the set of span

templates V . An autoregressive statistical approach aims to

assign probabilities to sequences of symbols using the chain

rule of probability:

P (S1:T) =

T∏

t=1

P (St|S<t) (1)

where S<t denotes the (potentially empty) sequence of spans

from S1 to St−1. The conditional probabilities on the right-

hand side can be modeled with a recurrent neural network e.g

LSTM [8]. This approach is autoregressive, since it uses just

forward context at time. As such it is limited in the amount

of exposed context during the learning phase e.g backwards

context is not taken care of.

In our approach, the underlying premise suggests that the

appearing of a span on a particular position in a trace is

conditioned not only on the previous spans but also on the

GET / POST /v3/auth/tokens POST /v2.0/networks/ GET /auth/tokens/ DELETE /networks/

GET / [MASK] POST /v2.0/networks/ GET /auth/tokens/ DELETE /networks/

Fig. 1. (Up) An example of a trace as result from network create and
delete trace user request. (Down) an example of the context of the POST
/v3/auth/tokens/ span as given to the input of self-attention mechanism.
POST /v3/auth/tokens/ is called a masked span.

spans appearing afterwards. With other words, each span

within a trace appears within a context of its neighbours.

Thus, the representation of a span directly depends on its

location in the trace and its relation to the neighbouring context

spans. This is a reasonable assumption, as the spans in a

trace have causal relationships describing the inter- and intra-

service calls. In Fig. 1, we show a trace when the user requests

creation and deletion of a network as operation in the cloud.

At the bottom of the image the POST /v3/auth/tokens/ span

is replaced with the [MASK] span. We refer to the POST
/v3/auth/tokens/ as masked span, while all of the other spans

form its context.

To address the problem of the prediction of a masked span

of a trace given its context, we introduce the masked span

prediction (MSP) task. As a learning task, it aims to pinpoint

what is the most likely span to occur on a particular masked

position given its context from the neighbouring spans. A

masked span in a trace can be any randomly chosen span

that during the learning procedure is labeled with a special

[MASK] span from the input. During the learning procedure,

the true value of the masked token is used as a target and it

is predicted by the remaining spans that construct the context

(given as input). In such a way, one allows for the masked span

to ”score” how much the spans from the context are relevant

for its prediction.

S
of

tm
ax

p(s1)

...

p(s2)

p(sn)

[m]

s2

sk-2

sk-1

[stop]

D
ec

od
er

[start]

s1

s2

[m]

sk-1

[start]

[stop]

trace 1 trace 2

... ...

Output:

Input:

E
nc

od
er

MSP task solver

Fig. 2. The neural network architecture used to solve the MSP task. It is an
encoder-decoder architecture with residual connections, layer-normalization
and dropout at each layer applied as regularization.

Fig. 2 depicts the adopted method. It is an encoder-decoder

structure that maps the context of the span in a vector format

344

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on September 06,2021 at 12:04:10 UTC from IEEE Xplore. Restrictions apply.

to a probability distribution over the vocabulary of spans.

The encoder uses a multi-head self-attention neural network

learning mechanism as an encoder [17]. This architecture

allows for selective prediction of the relevant spans from the

context for prediction of the given masked span.

To train the neural network the inputs should be in the

appropriate format. They are formed in a way that for each of

the traces k randomly chosen spans during the learning phase,

are masked. In such a way a single trace is multiple times fed

through the encoder neural network, each time with different

span being masked. As such it is a key feature that allows the

usage of the method for anomaly detection. Additionally, it

gives flexibility of the method to build one single model for

multiple user requests instead of separate models for different

user requests. Encoder neural network implements the self-

attention learning mechanism.

Outputs from the self-attention layer are fed through a one-

layer network with soft-max at the end that serves as a decoder.

The soft-max is used as a function to generate probability

estimates over the whole dictionary of span templates V . These

probabilities suggest how likely is the current masked span to

be associated with a symbol within the vocabulary of symbols

conditioned on the context.

The MSP is a proxy task for anomaly detection. As a

standalone task cannot be used for anomaly detection. To this

end, we introduce additional postprocessing of the predictions

of the MSP model to detect anomalies. The output from MSP

for a particular trace is an ordered list of spans for each

position of the trace. The lists are ordered according to their

relevance to fill up the particular position of the trace. During

the anomaly detection procedure, each of the ordered lists on

the particular position in the trace is examined in the following

way. If the real value on a particular position of the trace is

not in the first top − k elements of the list generated of the

MSP task module for that position, we consider the span as

not being correct. We count the number of errors for each

trace and divide with the trace length forming the ratio of

misclassified examples (span error rate per trace). This span

error rate serves as an anomaly score. It is expected that if a

model makes many mistakes, the anomaly score to be high,

thus the trace is anomalous. Setting a decision threshold on

the anomaly score serves to decide if the trace is normal or

anomalous.

IV. RESULTS AND DISCUSSIONS

In this section, first, details on experimental testbed used

for evaluation of the method and the data are given. Second,

a description of the learning scenarios we adopted to evaluate

the performance of our method and the corresponding com-

parative analysis of the three learning scenarios.Finally, we

investigate how the attention scores differ between the normal

and anomalous traces and how this can be utilized to infer

interesting patterns between the normal and anomalous traces.

A. Experimental data

To test and verify our approach and due to the absence of

publicly available datasets for evaluation, we first deployed an

OpenStack [18] testbed. Fig. 3 depicts the architecture. It is

based on a microservice architecture, running in a dockerized

environment Kolla-Ansible [19]. There are 4 compute and

one control node. Further specifications include deployment

on bare-metal nodes, where each node has RAM 16GB, 3x

1TB of disks, and 2x 1Gbit Ethernet NIC. To automate and

unify the multi-node OpenStack deployment, cloud verifica-

tion, testing, profiling the workload generation and anomaly

injection we used Rally [20].

The normal and anomalous data is generated from the

execution of the three workloads. Create and delete server
uses a task from Rally to create and delete a virtual machine.

The fault is injected in a compute node which restarts the

API container that runs on the compute nodes. This simulates

a failure of a service. Create and delete image uses the

glance project of OpenStack to create and delete an image.

The faults are injected via restarting of the glance-API which

runs on the controller node. Create and delete network is a

an operation that provides network interface. The anomaly is

injected with disturbing of one of the neutron services: (e.g.

neutron metadata agent, neutron server) during the creation of

a network.

To represent a scenario as close to the real-world, the oper-

ations are executed concurrently. Furthermore, the operations

are scheduled to last for an equal period. Since some of

the operations are faster than others (e.g, we need greater

time to boot a machine compared to the time needed to

create a network) the operations are started with different

repetitions. Specifically, 2000, 3000, and 6000 iterations for

create and delete server, create and delete image and create

and delete network were conducted, respectively. The injection

of the faults happens at different rate - 250 for create and
delete server and create and delete image and 500 iterations

for create and delete network. After the execution of the

sequence of workloads, reports for the conducted experiments

are generated. The reports have details for the successful

execution of the workload. They are used to induce the ground

truth label for a particular user-request. This is needed to

separate the normal from anomalous traces to perform the

evaluation.

API Services
API Services

API Services

Trace generation and
collection

MQDB

Lo
ad

 b
al

an
ce

r

Compute nodes
wally x

117, 122, 123, 124

Services

Control node
wally 113

Faults

Kibana

Fluentd

Elastic-search

Metrics
(glances)

Monitorinig and Logging

UI / DashboardsWorkloads and faults

Redis

Logs
Metrics
Traces

Rally
Execution of

workloads
and injection of faults

Fig. 3. Illustration of the infrastructure from where the data was generated.

345

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on September 06,2021 at 12:04:10 UTC from IEEE Xplore. Restrictions apply.

To test and compare the performance and robustness of the

proposed attention method and the state of the art in anomaly

detection from tracing data, we consider three learning sce-

narios. To test our hypothesis of the ability of our method

to preserve the global and local properties within the traces

we grouped our experiments into three groups: short, long,

and combined (short and long) traces. The definition of this

categories is data-driven, meaning that for the short traces are

considered the once that are concentrated around the lower

values of the median (≤ 14), while the remaining fall into the

category of long traces.

Real anomalies (LS1). In this learning scenario, in the

test set, the anomalies as generated by the deployed testbed

were used. The goal of this scenario is to inspect how well

the methods for anomaly detection from tracing data perform

under the presence of anomalies as generated by the system.

We tested both of the methods on 9 different parameter

configurations. We select the best parameter configuration in

this scenario and used it to test its generalizations of both of

the approaches in the remaining of the experiments.

Artificial anomalies (LS2). Observation of the anomalies

as generated by the system, usually result in a shorten trace.

Restarting a service results in interrupting the trace at par-

ticular span. The anomalies can be injected at every span in

the trace since every span represents a service that can be

malfunctioning. To test the generalization and the robustness

of how the methods scale to a different type of anomaly a

set of artificial anomaly test is created. The creation of this

set is done in a way that L traces from the normal test set

are selected at random. The selected traces are truncated at

a random position. These traces are labeled as an anomalous

and are joint with the remaining normal traces to create the

test set.

For the LS2 scenario, the best-selected method from the

optimization procedure as in LS1 is selected. This allows to

directly test the change of the performance of the methods to

novel anomalies.

B. Implementation Details

The anomaly detection methods were implemented in

Python using Pytorch [21]. The experiments were collected

on a personal computer with GPU-NVIDIA GTX 1660. To

obtain the best models the number of training epochs and

the batch sizes were varied in the following range batch

size= 16, 64, 256 and epochs= 10, 25, 50, accordingly. The

number of the layers for the attention model was set to 1 and

the number of recurrent layers to 2. The hidden sizes for both

models were set to 256. In the anomaly detection phase, the

threshold was varied from 0 to 1 with a step of 0.05.

For the parameters of Drain, the values for the similarity and

depth are 0.4 and 4 respectively. For training the model, the

parameter P is set to 70 % of the number of normal traces.

The value for window size parameter for LSTM is set to 3

since it is the maximal number that covers all of the traces

in the training set. For the attention method for the parameter

max len the value of 90 is set since it covers the traces of

all the lengths within the data.

C. Predictive Performance

In the following, the results from the three learning scenar-

ios are presented. We present the precision, recall and F1 score.

For the positive class, we consider the anomalous traces. Thus,

the true positives are defined as a correct prediction of true

anomalies. True negatives are defined as the correct prediction

of normal traces. False positives are predicted anomalies when

the trace is normal, while the false negatives are traces that

are predicted as normal when their ground truth label is an

anomaly.

Fig. 4. Results from the experiments for LS1.

Fig. 5. Results from the experiments for LS2.

Fig. 4 depicts the results of LS1 for the best-selected

models from the optimization procedure. When the long

traces are considered, one can observe high scores for the

attention mechanism compared to the previous state-of-the-art

deep learning approaches, the LSTM approach. The attention

mechanism can put importance on specific spans of the trace

which it learns to be important for a particular workload due

to the sparsity property of the attention. Thus the attention

mechanism exploits the global properties. Opposed to it, the

LSTM-based exploits local properties of a trace due to the

autoregressive assumption. The results that both methods show

for both the short and the combination of short and long traces

346

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on September 06,2021 at 12:04:10 UTC from IEEE Xplore. Restrictions apply.

are comparable. The good comparable performance on the

short traces results from the ability of both of the models to

exploit the locality in the traces, which given the smaller size

of the trace does not distinguish from the global properties of

the trace. Similarly, the attention model can exploit the whole

information existing in the traces. The good performance on

the combination of the long short traces is due to the over-

representation of the short traces in the test dataset.

Fig. 5 depicts the results from the LS2 scenario. It is

interesting to observe that the results in this scenario are

inline with the previously discussed, with a notable decrease

of the recall for both the small and long traces for the LSTM-

based approach. This means that the autoregressive model is

predicting more of the anomalies as normal. This behaviour

can be explained with the fact that the anomalous trace differs

from the normal just in its length. The forward blindness of the

autoregressive approaches prohibits to infer information from

all of the traces implicitly including the information from the

length of the trace. Hence, the LSTM method while is still

good in modeling of the sequence of spans is shortsighted

and it is expected to have worse results especially in scenarios

where the size of the traces is much longer. Long traces are

more common in a real-world distributed system . Executing of

one operation in a micro-service architecture includes invoking

of multiple services not necessarily just HTTP calls for the

communication between the services. Hence the ability to

handle long traces is imperative for a method to be applicable

in a real world tracing data. As observed by the results,

the strongest point of the attention mechanism is that it can

provide good results on long traces since it exploits the

information of the whole trace at once. Furthermore, this

means that the attention mechanism does not suffer from

reduced recall as the LSTM method.

V. CONCLUSION

This paper addresses the problem of anomaly detection in

large-scale distributed systems, as an essential task for their se-

curity and reliability. We addressed the problem by introducing

a new learning task – masked span prediction for the problem

of execution-path anomaly detection from tracing data. The

novel definition of the problem allows to include information

from the entire trace, directly exploiting the existing service

relations. It results in better predictive performance on the

problem of structural anomaly detection, especially for the

long traces when compared to other existing approaches for

tracing data based on LSTM. Empirically, we show that the

proposed approach is more robust to small permutation in the

normal traces, a scenario frequently occurring in practice. The

experiments showed that the method has high performance on

experimental testbed data .

The proposed approach opens a new possibility for anomaly

detection not just from tracing data, but from other sources

that have the notion of a distributed representation of an event

e.g., log data. We believe that the method will motivate further

group of research in the direction of utilizing the full trace

information for anomaly detection.

REFERENCES

[1] J. Kaldor, J. Mace, M. Bejda, E. Gao, W. Kuropatwa, J. O’Neill, K. W.
Ong, B. Schaller, P. Shan, B. Viscomi et al., “Canopy: an end-to-end
performance tracing and analysis system,” in Proceedings of the 26th
Symposium on Operating Systems Principles. ACM, 2017, pp. 34–50.

[2] C. Sridharan, Distributed Systems Observability: A Guide to Building
Robust Systems. O’Reilly Media, 2018.

[3] A. Gulenko, F. Schmidt, A. Acker, M. Wallschläger, O. Kao, and
F. Liu, “Detecting anomalous behavior of black-box services modeled
with distance-based online clustering,” in 2018 IEEE 11th International
Conference on Cloud Computing. San Francisco, CA, USA: IEEE,
2018, pp. 912–915.

[4] M. Du, F. Li, G. Zheng, and V. Srikumar, “Deeplog: Anomaly detection
and diagnosis from system logs through deep learning,” in Proceedings
of the 2017 ACM SIGSAC Conference on Computer and Communi-
cations Security. New York, NY, USA: Association for Computing
Machinery, 2017, p. 1285–1298.

[5] F. Schmidt, S.-P. F., A. Gulenko, M. Wallschläger, A. Acker, and O. Kao,
“Unsupervised anomaly event detection for cloud monitoring using
online arima,” in 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion. Zurich: IEEE, 2018, pp. 71–76.

[6] W. Meng, Y. Liu, Y. Zhu, S. Zhang, D. Pei, Y. Liu, Y. Chen, R. Zhang,
S. Tao, P. Sun, and R. Zhou, “Loganomaly: Unsupervised detection of
sequential and quantitative anomalies in unstructured logs,” in Proceed-
ings of the Twenty-Eighth International Joint Conference on Artificial
Intelligence, IJCAI-19. International Joint Conferences on Artificial
Intelligence Organization, 2019, pp. 4739–4745.

[7] S. Nedelkoski, J. Cardoso, and O. Kao, “Anomaly detection and
classification using distributed tracing and deep learning,” in 2019
19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. Larnaca, Cyprus: IEEE, 2019, pp. 241–250.

[8] ——, “Anomaly detection from system tracing data using multimodal
deep learning,” in 2019 IEEE 12th International Conference on Cloud
Computing. Milan, Italy: IEEE, 2019, pp. 179–186.

[9] Y. Yang, L. Wang, J. Gu, and Y. Li, “Transparently capturing request
execution path for anomaly detection,” 2020.

[10] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,”
ACM computing surveys, vol. 41, 2009.

[11] S. Zhang, Y. Liu, D. Pei, Y. Chen, X. Qu, S. Tao, and Z. Zang, “Rapid
and robust impact assessment of software changes in large internet-based
services,” in Proceedings of the 11th ACM Conference on Emerging
Networking Experiments and Technologies, 2015, pp. 1–13.

[12] M. M. Moya, M. W. Koch, and L. D. Hostetler, “One-class classifier
networks for target recognition applications,” NASA STI/Recon Technical
Report N, vol. 93, 1993.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–1780, 1997.

[14] J. Chung, K. Kastner, L. Dinh, K. Goel, A. C. Courville, and Y. Bengio,
“A recurrent latent variable model for sequential data,” in Advances in
neural information processing systems, 2015, pp. 2980–2988.

[15] P. He, J. Zhu, Z. Zheng, and M. Lyu, “Drain: An online log parsing
approach with fixed depth tree.” IEEE, 06 2017, pp. 33–40.

[16] J. Zhu, S. He, J. Liu, P. He, Q. Xie, Z. Zheng, and M. R. Lyu, “Tools
and benchmarks for automated log parsing,” in 2019 IEEE/ACM 41st
International Conference on Software Engineering: Software Engineer-
ing in Practice (ICSE-SEIP). Quebec, Canada: IEEE Press, 2019, pp.
121–130.

[17] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems. Red Hook, NY, US: Curran
Associates, 2017, pp. 5998–6008.

[18] A. Shrivastwa, S. Sarat, K. Jackson, C. Bunch, E. Sigler, and T. Camp-
bell, OpenStack: Building a Cloud Environment. Packt Publishing,
2016.

[19] (2020) Kolla-ansible’s documentation. [Online]. Available: https:
//docs.openstack.org/kolla-ansible/latest/

[20] (2020) Rally documentation. [Online]. Available: https://rally.
readthedocs.io/en/latest/

[21] A. Paszke, S. Gross, and et. al., “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information
Processing Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035.

347

Authorized licensed use limited to: Technische Universitaet Berlin. Downloaded on September 06,2021 at 12:04:10 UTC from IEEE Xplore. Restrictions apply.

