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Abstract—In recent years there has been an increased interest
in Artificial Intelligence for IT Operations (AIOps). This field
utilizes monitoring data from IT systems, big data platforms,
and machine learning to automate various operations and
maintenance (O&M) tasks for distributed systems. The major
contributions have been materialized in the form of novel
algorithms. Typically, researchers took the challenge of exploring
one specific type of observability data sources, such as application
logs, metrics, and distributed traces, to create new algorithms.
Nonetheless, due to the low signal-to-noise ratio of monitoring
data, there is a consensus that only the analysis of multi-
source monitoring data will enable the development of useful
algorithms that have better performance. Unfortunately, existing
datasets usually contain only a single source of data, often logs
or metrics. This limits the possibilities for greater advances
in AIOps research. Thus, we generated high-quality multi-
source data composed of distributed traces, application logs, and
metrics from a complex distributed system. This paper provides
detailed descriptions of the experiments, statistics of the data, and
identifies how such data can be analyzed to support O&M tasks
such as anomaly detection, root cause analysis, and remediation.
The data is available at https://doi.org/10.5281/zenodo.3484800.

Index Terms—AIOps, dataset, anomaly detection, root-cause
analysis, observability, application logs, metrics, distributed trac-
ing.

I. INTRODUCTION

The term AIOps refers to multi-layered technology plat-
forms that automate and enhance IT operations by using
analytics and machine learning [1].

AIOps was introduced to make O&M tasks of ever-
increasing complex public, private, edge, mobile, and hybrid
cloud environments effective and cost-efficient. The transition
from mainframes, to virtual machines, to containers, and
serverless computing made existing approaches and tools
which rely on simple statistical methods obsolete due to the
increasing complexity and communication patterns between
services. Notable examples include Zabbix, Cacti, and Na-
gios [2], [3].

Monitoring data is a key element of new AIOps tools, but it
is also one of the cornerstones of research. The observability
data generated by distributed IT systems can be classified
into three main categories: metrics, application logs, and
distributed traces [4]. Metrics are numeric values measured
over a period of time. They describe the utilization and status

of the infrastructure, typically regarding CPU, memory, disk,
network throughput, and service call latency. Application logs
enable developers to record what actions were executed at
runtime by software. Service, microservices, and other systems
generate logs which are composed of timestamped records
with a structure and free-form text. Distributed traces record
the workflows of services executed in response to requests,
e.g., HTTP or RPC requests. The records contain information
about the execution graph and performance at a (micro)service
level.

Recently, various approaches – focusing on a wide range of
datasets, O&M tasks, and IT systems – have been proposed.
This includes tasks, such as anomaly detection and root-
cause analysis, which process a specific type of observability
data. For example, anomaly detection has been applied to
metrics [5]–[7], logs [8]–[12], and also to distributed system
traces [13], [14].

The existing research has mainly explored data capturing
only a single data source category. This limits both the
development of new multi-source (or multimodal) methods
and their proper evaluation. The absence of observability data
capturing the three data categories prevents the development
of methods for fault detection, root-cause analysis, and re-
mediation that could give advances in the field as existing
approaches typically produce a large number of false positives.
The benefits of using several data source categories are related
to the concept of triangulation [15] from the field of social
sciences, which refers that the application and combination
of several observers, methods, and empirical materials can
overcome the weaknesses and limitations that come from
single observers and single methods.

In following we summarize the contributions of this work:
• A new data of metrics, logs, and traces generated by a

distributed system based on microservice architecture.
• Description of the approach developed to generate the

multi-source observability data and its statistics.
• Analysis of existing datasets utilized for the evaluation

of AIOps algorithms, highlighting their benefits and their
limitations.

• Applications of the multi-source data to develop new
algorithms to support additional O&M tasks.

https://doi.org/10.5281/zenodo.3484800


II. RELATED WORK

Traces, logs, and metrics are important data sources that are
fundamental to the operation of complex distributed systems.
The metric data is a common way to extract useful information
for describing the state of the system. However, it is not
sufficient for a holistic approach aiming to model the whole
system. The metrics data are obtained from monitoring of the
resources such as CPU, memory, disk and network throughput
and latency. A plethora of available collections of datasets
containing metric data can be found in Stonybrook [16],
where multiple datasets for different tasks related to anomaly
detection can be found. Numenta [17] predominantly contains
datasets from streaming and real-time applications, while Har-
vard [18], ELKI [19], LMU [20] store network intrusion data.
Recently, there are multiple studies which utilize these datasets
for anomaly detection, root-cause analysis, and remediation.
In Subutai et al. [17], a novel anomaly detection method
based on hierarchical temporal memory (HTM) is introduced.
It enables anomaly detection in the streaming setting to tackle
the problems of concept drift and the problem of multiple
streaming sources utilizing metrics data. In Schmidt et al. [5],
an unsupervised anomaly detection framework is developed
and applied to real-time monitoring data in a distributed
environment.

The main challenge that AIOps systems analyzing log
data are facing is the unstructured nature of the logs. This
problem usually requires prior and proper preprocessing and/or
inclusion of domain knowledge. Often, approaches extract log
key identifiers for the logs and are modeling their sequences.
There exist two resources of log data for cluster systems
available. The CFDR resource [21] stores links or 19 log
datasets grouped in 11 data collections. The datasets cover
both hardware and software logs. The second resource is the
loghub data resource [22]. It consists of 16 datasets describing
systems spanning across distributed systems, supercomputers,
operating systems, mobile systems, server applications and
standalone software. The datasets cover a different time from
a few days until a few months. From the perspective of the
system description, these data have weakness in providing
just a single aspect of the system. In Meng et al. [23]
the LogAnomlay system for detection of anomalies from
logs is introduced. It utilizes a novel template2vec technique
to encode the logs. Further, it extracts quantitative patterns
from the logs. It uses LSTMs to detect the sequential and
quantitative anomalies in the logs. In Zheng et al. [10] the
DeepLog system is introduced. It tries to model the logs as
natural language sequences. It allows to update the model by
the operator and provides an automatic reconstruction of the
workflows to enable root cause analysis.

In microservice architectures, traces are graph-like struc-
tures composed of events or spans [24]. The traces represent
the system execution workflow, hence detailed information
for individual services and the causal relationship to other
related services can be inferred. Nedelkoski et al. [13], [14]
introduce novel anomaly detection methods for distributed

tracing data. They proposed a multimodal neural network
with long short-term memory (LSTM) to enable the learning
from the sequential nature in the tracing data. They describe
how the data is obtained, but the datasets are not publicly
available. Azure Public dataset composes of two datasets
representing two representative traces of the virtual machine
of Microsoft Azure [25]. It is mostly utilized to improve
resource management in large cloud platforms. Alibaba’s
cluster data is a collection of two datasets from real-world
production [26]–[28]. In Zhen et al. [26] a novel system which
automatically diagnoses stragglers for jobs is introduced. It
utilizes unsupervised clustering methods to group the tasks
based on their execution time. Then a supervised learning
method is used to diagnose rules for diagnosing the stragglers
and their adequate resource assignment data. Li et al. [27]
propose a deep reinforcement learning approach towards the
job scheduling task. It can automatically obtain a fitness
calculation method that optimizes the throughput of a set
of jobs from experience. Google’s collection of two tracing
datasets originates from parts of Google cluster management
software and systems [29]. In Elsayed et al. [30] effective
predictors of job and task terminations are identified. The
knowledge of job config parameters known at launch time
is discovered to be sufficient to predict whether a job is
going to be killed. Furthermore, various methods for mitigating
failures in clusters are proposed, including limiting the number
of retries, increasing frequency of checkpoints, scheduling
redundant tasks, adjusting scheduling priority or allocated
resources and turning on additional monitoring.

Limitation for all the above-mentioned datasets is the ab-
sence of multi-view data describing a single system. The lack
of data from all observability components from one system
does not allow the development of holistic systems for fault
detection, root-cause analysis and remediation that consider
multiple sources of data simultaneously. Our collection of data,
describing the same system from the 3 perspectives of logs,
metricise and traces, to the best of our knowledge, is the
first of its kind. This enables building models with diverse
complementary information, hence making AIOps systems to
perform better [13].

III. DATASET GENERATOR

In this section, we describe the infrastructure, experiments,
workload, and the injected faults as part of the data generation.

A. Infrastructure

For the generation of the data, we deployed an Open-
Stack [31] testbed based on a microservice architecture
that is running in a dockerized environment called Kolla-
Ansible [32]. OpenStack is a cloud operating system that
controls large pools of computing, storage, and networking re-
sources throughout a data-centre, all managed and provisioned
through APIs with common authentication mechanisms.

The testbed setup is shown in Figure 1 and consists of one
control node named wally-113 and four compute nodes:
wally-122, wally-123, wally-124, and wally-117.



It was deployed on bare-metal nodes of a cluster where each
node has RAM 16GB, 3x 1TB of disks, and 2x 1Gbit Ethernet
NIC. Three hard disks were combined to a software RAID 5
for data redundancy.

B. Workloads and faults injected

To generate workloads and inject faults into the infras-
tructure we used Rally [33]. It automates and unifies multi-
node OpenStack deployment, cloud verification, testing and
profiling. Rally does it generically, making it possible to
check whether OpenStack is going to work well on various
configurations and installations under high workloads.

Rally docker image was used to create the load and inject
os-faults [34] appropriately. We selected a list of workloads
and faults that are close representatives to real production
faults. The listed workloads and faults in following cover user
request that is served by the main Openstack projects.

• Create and delete server. Creates and deletes a server us-
ing the Rally task (NovaServers.boot and delete server).
Nova project is mostly affected and present in the data.
We injected a compute fault which is restarting the api
container that run on the compute nodes.

• Create and delete image. Rally task (GlanceIm-
ages.create and delete image) for images accepts the
image-location locally/ over the internet , format of the
output image once created. It creates and deletes an im-
age. The glance project of Openstack provides a service
where users can upload and discover data assets that are
meant to be used with other services. Here we inject the
fault in the glance-api running on the controller node.

• Create and delete network. Rally provides task
(NeutronNetworks.create and delete networks) the
format from creating and deletion of networks for
various configurations such as multiple users and
tenants. Neutron is an OpenStack project to provide
networking as a service between interface devices
(e.g., vNICs) managed by other Openstack services
(e.g., nova, heat etc). There are various components
that we focus on while injecting faults such as
disrupting the below-mentioned services running in
docker containers: neutron_metadata_agent,
neutron_l3_agent, neutron_dhcp_agent,
neutron_openvswitch_agent and
neutron_server.

We performed two different experiments. In the first ex-
periment, the user actions as a workload were executed in a
sequential way, when one finishes then the next is started. This
experiment was performed for 750, 1000, and 1000 iterations
(create and delete server, create and delete image, create
and delete network), where faults were injected every 250
iterations respectively. The fault was injected in only one
iteration, however, we noticed that some of the faults take
time and propagate the errors to other iterations as well. In
the second experiment, the rally workloads were concurrently
executed. This experiment was performed for 2000, 3000, and
6000 iterations for create and delete server, create and delete

image and create and delete network, respectively. The faults
were injected at different rates, 250 for create and delete
server and create and delete image and 500 iterations for
create and delete network. The number of the iterations for
each action was chosen so that all workloads approximatelly
finish in the same time. The data from the second experiment
is slightly more suited for multi-source methods utilizing dis-
tributed log data, as it was generated with that as a goal. Also,
HTML reports were collected which correlates all the events
of creations, failures and which injections were made. This
report serves as ground truth for the normal and anomalous
state of the system.

C. Data collection

In following we describe the technologies and the methods
used to collect the generated data.

1) Metrics: For the metrics collection across the physical
nodes in the infrastructure, we utilize Glances [35], a cross-
platform monitoring tool which aims to present a maximum
of information into a minimal space through curses or Web-
based interface. Glances is written in Python and uses the
psutil library to get information from a system. It can
adapt dynamically the displayed information depending on
the terminal size. It can also work in client/server mode, also
remote monitoring could be done via terminal, Web interface
or API (XMLRPC and RESTful). Glances was used to gather
information such as CPU, MEM and load of the machine
(either controller or the compute nodes) with a frequency of
0.1 seconds. These metrics were saved into a CSV file via the
glances-cli.

2) Logs: OpenStack services use standard logging levels.
For aggregating logs from all services running across the
physical nodes, was used ELK (Elasticsearch, Logstash, and
Kibana). Elasticsearch is a search and analytics engine which
resolves the search requests. Logstash is a serverside data
processing pipeline that ingests data from multiple sources si-
multaneously, transforms it, and then sends it to Elasticsearch.
For this Fluentd, which is an open-source data collector for
the unified logging layer, was utilized. It allows unifying data
collection and consumption for better use and understanding
of data. Kibana is a dashboard that gives the ability to the
users to visualize data with charts and graphs using data that
is collected by Elasticsearch. Finally, for exporting data from
Elasticsearch into CSV a CLI tool, es2csv [36] was utilized.
The benefit we obtain from this tool is that it can query
bulk docs in multiple indices and get only selected fields,
this reduces query execution time and enhances the speed of
aggregating these logs that are existing on various physical
nodes. We provide both, the aggregated logs as well as the raw
logs to cover possible development of methods that process
raw logs, such as log parsing.

3) Traces: OpenStack consists of multiple projects, where
each project is composed of multiple services. To process
user requests, e.g., creating a virtual machine, OpenStack
uses multiple services from different projects. To support
troubleshooting, OpenStack introduces a small but powerful
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Fig. 1. Illustration of the infrastructure from where the data was generated.

library called osprofiler that is used by all OpenStack
projects and their Python clients [37] to generate traces. It
generates one trace per request, that goes through all involved
services, and builds a tree of calls which captures a workflow
of service invocations. To identify workflows, we monitor the
following call types:

• HTTP. Captures HTTP requests, the latency of service,
and projects involved.

• RPC. Represent the duration of parts of request related
to different services in one project.

• DB API. The time that the request spent in the DB layer.
• Driver. In the case of nova, cinder and others we have

vendor drivers.
The osprofiler library collects these records in a trace

per request and stores them in a database (e.g., Redis). From
Redis, we can query and analyze traces.

IV. DATASET DESCRIPTION

The workloads and faults described in the previous section
were executed on the testbed. As explained, the execution gen-
erated three main categories of observability data: distributed
traces, metrics, and application logs. These data were recorded
in concurrently in order to provide the state of the system from
multiple points of view. In the following two sections, we
describe the main attributes, properties, and statistics of each
data category of the first experiment. Due to page limitations,
we refer the reader to the above link in the abstract for the code
for extracting the data statistics from the second experiment.
All other properties hold for both experiments.

A. Metrics

The metrics data category contains data for the 5 physical
nodes in the infrastructure. The frequency of the recordings is

0.1 seconds for the compute nodes and for the controller node.
The 5 files are named metrics wally N, where N is either the
controller node or one of the compute nodes. Each of these
files has 7 features:

• now. The timestamp of the recording.
• cpu.user. Percent time spent in userspace. The user

CPU time is the time spent on the processor running your
programs code (or code in libraries).

• mem.used. The RAM usage of the physical host.
• load.cpucore. The number of cores of the physical

host.
• load.min1, min5, min15. Linux load averages are

system load averages that show the running tasks demand
on the system as an average number of running plus
waiting threads. This measures demand, which can be
greater than what the system is currently processing.

A small sample of the metrics data for the wally113 is
shown in Table I where we can see part of the metrics data.

B. Logs

The log files are distributed over the infrastructure and they
are grouped in directories by the OpenStack projects (e.g.,
nova, neutron, glance, etc.) at the wally nodes. At each of the
physical nodes, there are different project running. The control
node has more services running and thus has more log files
for the OpenStack projects. Each project on the physical hosts
has its log directory where the logs are stored. Inside each of
the log directories for the projects, there are several log files.
Important to note here is that even the log files are highly
distributed over projects and physical nodes, they all represent
the state of the system. We provide the raw log directories in
this dataset along with the aggregated log file. Using the elastic



TABLE I
METRICS FROM THE CONTROLLER NODE (WALLY 113)

timestamp cpu.user mem.used (B) load.cpucore load.min1 load.min5 load.min15
2019-11-19 16:56:32 11.5 10221035520 8 0.8 1.02 1.18
2019-11-19 16:56:32 10.4 10221117440 8 0.8 1.02 1.18
2019-11-19 16:56:33 11.1 10222948352 8 0.8 1.02 1.18
2019-11-19 16:56:33 14.3 10223144960 8 0.8 1.02 1.18
2019-11-19 16:56:34 10.7 10222866432 8 0.8 1.02 1.18
2019-11-19 16:56:34 10.7 10223480832 8 0.8 1.02 1.18

search and Kibana stack we can aggregate all the logs into a
central database which can serve as a starting point for the
analysis.

The log entries have in total of 23 features. Not all the
features are always present for all the log entries. The features:
id, index, score are added metadata from Kibana. The type

is fluent, the collector which is responsible for sending all the
metrics and logs to Kibana. In the following, we describe the
main features present in the log data.

• hostname. Name of the physical host (e.g., wally113)
• user_id, project_domain, tenant_id,
request_id, user_domain, domain_id. Are
features describing the user request to Openstack.

• timestamp, @timestamp. The time when the
record was created.

• log_level. Describes the level of the log entry. It can
be info, error, warning, etc.

• pid. Process ID.
• Payload. Gives the most important information of the

log i.e., the body of the log entry.
• programname. The OpenStack project that generated

the log entry.
• python_module The module responsible for genera-

tion of the log entry, and the
• logger Tells which project logs the event.
• http_* related fields. Are only present if there

is an HTTP call describing the endpoint, status core,
version, and the method.

For the parsing of the logs, template matching, and analysis
we suggest using the aggregated file described instead of the
directories with raw log files, as all of the information is
preserved and more structured for direct analysis. For multi-
source log anomaly detection, if the aggregated file is utilized,
we suggest splitting by ”logger” in order to obtain entries
which are grouped by their corresponding service.

C. Traces

The traces in the dataset are contained in 3 directories:
boot delete, create delete image, and network create delete.
Each of the directories contains the scripts for running the
workload and the fault injections along with the actual tracing
data. These directories contain JSON files of the traces. This
structure is preserved among all types of workloads (Rally
actions).

Every trace has its features in the JSON entries or events.
These features depend on multiple factors such as the user
request, infrastructure, load balancers, and caching. An event
is a vector of key-value pairs (ki, vi) describing the state,
performance, and further characteristics of service at a given
time ti. In following we describe the main features of the
events in a trace:

• host. Name of the physical host.
• name. Event name (e.g., compute apistop).
• service. Service name (e.g., osapi compute).
• project, Openstack project (e.g., nova).
• timestamp. The time when the event is recorded.
• trace_id. ID of the span (contains two events, e.g.,

compute api-stop and compute api-start).
• parent_id. The parent id gives the ID of the parent

event. This attribute can be used to represent the trace in
a graph.

• base_id. ID of the trace, different events and spans
with same base id belong to one trace.

Two start and stop events (e.g., compute apistart and com-
pute apistop) with the same trace id. The subtraction between
the stop timestamp and the start timestamp gives the duration
of the span. The above features together with the duration
are the most important in describing the structure, preserving
the parent-child causal relationship, and the duration which
represents the response time of the service invoked.

The events also contain other attributes that can be found
for specific types. For example, path, scheme, method for
HTTP calls, where the path and scheme represents the HTTP
endpoint and HTTP scheme and method can be GET or
POST. Further, the db statement in DB calls gives information
about the SQL query, while the function, name, args, kwargs
in RPC calls tell which function was invoked with the its
corresponding arguments.

D. Ground Truth Labels

The workloads described along with the faults injected are
both recorded in Rally HTML and JSON reports which are
located at each of the directories containing trace data. These
reports provide pseudo ground truth labels for the traces,
metrics, and logs. They contain information for the times
when the faults were injected and the resulting high level
error messages. Taking the period when the anomaly was
injected and merging it with the timestamps of the data files
can give us true labels for the evaluation. We suggest to use



the ground truth labels to evaluate algorithms and methods
which are based on unsupervised learning, as in production
systems injection of anomalies and access to labeled data is
restricted.

V. DATASET STATISTICS

This section provides a descriptive statistic of the datasets
generated. It quantitatively describes the properties of the
trace, metrics, and log datasets. In following we discuss the
statistics for the first experiment only, due to page limitations.
The code for extracting the statistics for the second experiment
is provided in the data repository.

A. Metrics

The number of recordings of the utilization of the resources,
more specifically the CPU, memory and the load, per node
varies in the range of (108900, 298251). The average number
of recordings is 239127. The total number of the metric
recordings is 1195637. All of the nodes have 8 CPU cores. It
is important to note that the metrics data cover a time span
larger than the period of execution of the experiments.

In general, the wally113 experience the greatest CPU
and memory load as observed by the distribution of these
two features. Furthermore, the correlation analysis of the
load.min1, load.min5 and load.min15 show that they exhibit
high correlation given their relatedness through time. The
correlation analysis also shows quite distinct behaviour for
the load.min5, load.min10, load.min15 correlations between
the control node and the remaining nodes. Regarding the
dependence between the cpu.user, memory.used and load.min
features, no significant correlation can be identified. Roughly
3 groups of features emerge - the load.CPU, mem.used and
the load.min group.
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Fig. 2. Distribution of the values of the metrics feature for the node wally113.

B. Logs

Since the logs are semi-structured data, first we try to
organize them and observe the range of interesting features
that can appear in them. There are 139799 log messages
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Fig. 3. Distribution of the values of the metrics feature for the node wally117.

appearing in the sequential execution of the operations. We
used Kibana to identify the different features describing them.
Each log has its unique identifier referenced by the label
_id. The Timestamp feature has 8 missing values. However,
the timestamps provided by Kibana, stored in @timestamp
contain the relevant information for the moment where the
logging happened.

There are a total of 6 services recording their logs in the
OpenStack logger: nova, neutron, keystone, glances, placement
and cinder. Nova and neutron are services with the greatest
number of logs appearing. The logs contain 3 levels of
logging (INFO, WARNING and ERROR). There are 5 opera-
tion host nodes - Hostname (wally113, wally117, wally122,
wally123, wally124). Most of the logs originate from the
control node wally113. The python_module contains the
name of the 61 modules that are logging their information
into the logs with wsgi related modules being the most fre-
quent ones (neutron wsgi, nova.osapi wsgi and server wsgi).
The programname refers to the program which operations
are being executed. There are a total of 127654 different
Payloads happened in the system and the most frequent
is related to the GET operation.

For the realized HTTP calls there is information for the
http status with 6 different code values, http_method
with 4 possible values (GET, POST, DELETE and PUT),
http_urls with a total of 3655 values and the ver-
sion of the http protocol stored ins http_version.
There are columns such as_domain_id, user_domain,
tenant_id, request_id, user_id, _score, _type,
project_domain, Pid and domain_id that have either
very large or very small variance in the number of unique
values per feature. They represent start and end point in form
of IP address or a result from a hash function.

C. Traces

Table II represents the total number of services for each of
the traces for the three sequential operations being executed. It



TABLE II
TRACES: COUNTS OF SERVICES PER RALLY ACTION

wsgi db comp. api nova image neutron api neutron db rpc

image create delete 11436 81321 0 0 0 0 0
network create delete 4692 14101 0 0 0 125321 855
boot delete 46591 125975 21572 752 313744 46642 36560

TABLE III
TRACES INFORMATION: MEDIAN TIME OF A SERVICE PER ITERATION

wsgi db comp. api nova image neutron api neutron db rpc

image create delete 0.046 0.001 0 0 0 0 0
network create delete 0.285 0.001 0 0 0 0.001 0.001
boot delete 0.0410 0.001 0.039 0.035 0.001 0.002 0.009

is given as a total sum over all the repetition of the experiment.
One can be observe that there are different service invoked per
operation. For example, for the image_create_delete
operation the open stack service involved is completely on
the controller node, hence the compute nodes are contacted
and there is no operation related to them. The most frequently
occurring invocation is split between db and wsgi. Second the
operations are ordered by complexity and it can be seen that
the boot_delete_task involves all of the 7 services.

Table III represents the median time of execution for each
of the invoked services. The median is chosen since the
distributions are skewed and the mean is not representative
of the sample distribution. As it can be observed, the wsgi
services are slower than the db calls since wsgi relays on http
communication. It is interesting to observe that for the network
create delete operation the rpc is quite small. One explanation
for this is the small rate of rpc call per individual execution.
This means that not all executions of this operation involve
rpc calls. Since multiple workloads involve invoking different
number of individual operation the times should be compared
with caution.

VI. APPLICATIONS OF MULTI-SOURCE AIOPS

While previous work has been generally done on single-
source data, we believe that to develop robust, holistic ap-
proaches for anomaly detection, root-cause analysis, self-
healing, resource optimization, and performance analysis a
multi-source data is highly desirable.

One of the first proposals to use more than one category of
observability data in a single model is made in Nedelkoski et
al. [13], [14]. A new research direction for anomaly detection
is explored. Besides the response time, a second category of
data: the tracing data collected during the execution of system
operations is analyzed. The results of this new approach are
encouraging and provide a direction of development of models
that combine and explore additional data categories.

In this section, we shortly describe possible AIOps ap-
proaches that can exploit the benefits of processing multi-
source observability data.

Multi-source Anomaly Detection. The distributed logs over
projects and physical hosts enable multimodal end-to-end
learning and more robust log anomaly detection. Of course,
this adds complexity for data integration and fusion, as the
distributed logs are produced with different timestamps. To-
gether, the distributed logs and metrics can again be combined
into more complex model or network of models. Lastly, the
graph-like structures of the tracing data can be incorporated
to complete the robust anomaly detection where all available
observability data is considered.

Root-cause Analysis. The integration of multi-source ob-
servability data can be exploited by using some kind of
Fishbone diagrams [38] to find the root-cause of problems. A
method can start with simple metric-only anomaly detection,
which typically provides little information about the root-
causes of problems, and drill down to more complex data
structures which are richer in explaining anomalies. For ex-
ample, one can start by analyzing the latency of microservices
endpoints. If anomalies are detected after processing metrics,
one can use the timeframe when the anomaly occurred to
select and analyze structural changes in traces. Traces can
provide information about which servers are possibly faulty.
Afterwards, application logs can be accessed to find the root-
cause of problems.

Precision Increase. Ensemble learning [39] can be used to
machine learning algorithm results by combining several mod-
els applied to the three correlated data sources categories. Such
an approach would allow the production of algorithms with
better predictive accuracy when compared to the algorithms
which process single-data sources.

Feature Extension. Many machine learning algorithms rely
on features, which for AIOps are individual measurable char-
acteristics of the behaviour of IT distributed systems at a given
time. By using multi-source data, the spectrum of available
features to an algorithm is dramatically increased. Thus, we
expect the quality of algorithms and their results to increase
in the future.



VII. CONCLUSION

AIOps systems rely on suitable observability data. We re-
leased a multi-source data containing distributed metrics, logs,
and tracing data obtained from a complex distributed system
based on microservice architecture. We describe in details the
infrastructure, experiments performed, and the fault injection.
Furthermore, we provided descriptive statistical properties of
the data.

Furthermore, we motivated possible applications of this data
for improvements in anomaly detection, root-cause analysis,
remediation, and feature extension. We hope that this dataset
will foster advances in the research of AIOps, which has been
limited mainly to explored data capturing only a single data
source category.
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