
TERMINATION OF WORKFLOWS

Glória Cravo, Jorge Cardoso
Departamento de Matemática e Engenharias,

Universidade da Madeira, 9000-390 Funchal, Portugal.
{gcravo, jcardoso}@uma.pt

ABSTRACT

A workflow is a set of activities usually organized using a graph structure that has
one beginning and one end. A workflow includes human participants and software
applications that have the responsibility to carry out activities. A workflow is known
to be the formal definition of the process used to manage business processes (e.g.,
sales order processing, article reviewing, member registration, etc). In this paper
we describe and analyze the behavior of workflows using graph theory to verify an
important property: their termination. It is essential to formally verify if a workflow,
such as a sales order processing, will eventually terminate and be completed. We
verify the termination of workflows using a new approach based on what we call
snapshot-based theory.

1 Introduction

In this paper we describe and analyze the behavior of workflows using graph theory.
A workflow is an abstraction of a business process that consists of one or more ac-
tivities that need to be executed to complete a business process (for example, sales
order processing, article reviewing, member registration, etc). Activities are repre-
sented with vertices and the partial ordering of activities is modeled with arcs, known
as transitions. Each task of a workflow represents a unit of work to be executed by a
computer program or a person. Workflows allow organizations to streamline and au-
tomate business processes, reengineer their structure, as well as, increase efficiency
and reduce costs.

In the last decade, important advancements have been accomplished in the de-
velopment of theoretical foundations to allow workflow modeling, verification, and
analysis. Several formal modeling methods have been proposed to model workflows,
such as graph theory [8], State and Activity Charts [9], Event-Condition-Action rules
[4, 5], Petri Nets [1], Temporal Logic [2], Markov chains [7] and Process and Event
Algebras [6, 10].

Despite the existence of several formal methods to model workflows, a vast num-
ber of widely well-known commercial workflow systems, such as TIBCO Workflow

(www.tibco.com) and METEOR-S [8], have decided to use graphs to model their
workflows.

While important advancements have been accomplished in the development of
theoretical foundations for workflow modeling, verification, and analysis (especially
in the context of Petri Nets [1]) more research is required especially with respect to
the modeling and analysis of workflows using graphs.

Therefore, in this paper we present a formal framework, based on graphs theory,
to check the termination of workflows. Termination is an important property for
workflows because it is indispensable to know if a business process, such as a loan
application or insurance claim, will eventually be completed. In our approach we
model workflows with tri-logic acyclic directed graphs and develop a formalism to
verify the logical termination of workflows. Our formalism uses a snapshot-based
methodology which captures the different behaviors that a workflow may have.

2 Logical Termination

Definition 1 A workflow is a tri-logic acyclic direct graph WG = (T,A), where T =
{t1, t2, . . . , tn} is a finite nonempty set of vertices representing workflow tasks. Each
task ti (i.e., a vertex) has an input logic operator (represented by Â ti) and an
output logic operator (represented by ti ≺). An input/output logic operator can be
the logical AND (•), the OR (⊗), or the XOR - exclusive-or - (⊕). The set A =
{at,au,a1,a2, . . . ,am} is a finite nonempty set of arcs representing workflow transi-
tions. Each transition ai, i ∈ {1, . . . ,m}, is a tuple (tk, tl) where tk, tl ∈ T. The tran-
sition at is a tuple of the form (t, t1) and transition au is a tuple of the form (tn,u).
The symbols t and u represent abstract tasks which indicate the entry and ending
point of the workflow, respectively. We use the symbol ′ to reference the label of a
transition, i.e., a′i references transition ai, ai ∈ A. The elements a′i are called Boolean
terms and form the set A′.

An example of a workflow is presented in Figure 1. For more details and practical
examples see [3].

Definition 2 The incoming transitions for task ti ∈ T are the tuples of the form a j =
(x, ti),x ∈ T,a j ∈ A, and the outgoing transitions for task ti are the tuples of the form
al = (ti,y),y ∈ T,al ∈ A.

Definition 3 The incoming condition for task ti ∈ T is a Boolean expression with
terms a′ ∈ A′, where a is an incoming transition of task ti. The terms a′ are connected
with the logical operator Â ti. If the task has only one incoming transition then the
condition does not have a logical operator.

Figure 1: Example of a tri-logic acyclic direct graph (i.e., a workflow)

Definition 4 The outgoing condition for task ti ∈ T is a Boolean expression with
terms a′ ∈ A′, where a is an outgoing transition of task ti. The terms a′ are connected
with the logical operator ti ≺ . If the task has only one outgoing transition then the
condition does not have a logical operator.

Definition 5 Given a workflow WG = (T,A), an Event-Action (EA) model for a task
ti ∈ T is an implication of the form ti : fE Ã fC, where fE and fC are the incoming
and outgoing conditions of task ti, respectively. For any EA model ti : fE Ã fC, fE

and fC have always the same Boolean value.

Examples of the above definitions can be found in [3].

Definition 6 Let WG be a workflow. The behavior of WG is described by its EA
models, according to the following rules:

(1) The workflow starts its execution by asserting a′t to true.
(2) Let t1 : a′t Ã fC1 . Then fC1 has the Boolean value of a′t, i.e., since the work-

flow starts its execution, fC1 is always true.
(3) The workflow correctly terminates when a′u is asserted to true.

Since the behavior of a workflow is determined by its EA models a natural con-
cern is the exhaustive study of the EA models. We start by defining three different
types of EA models.

Definition 7 An EA model fE Ã fC is said to be simple if fE = a′i and fC = a′j,
i, j ∈ {t,u,1, . . . ,m}, with i 6= j.

Definition 8 An EA model fE Ã fC is said to be complex if fE = a′i and fC =
a′j1ϕa′j2ϕ . . .ϕa′jk , or fE = a′j1ϕa′j2ϕ . . .ϕa′jk and fC = a′i, where ϕ ∈ {⊗,•,⊕}.

Figure 2: Splitting a hybrid EA model into two equivalent complex EA models

Definition 9 An EA model fE Ã fC is said to be hybrid if fE = a′i1ϕa′i2ϕ . . .ϕa′il and
fC = a′j1ψa′j2ψ . . .ψa′jk , where ϕ,ψ ∈ {⊗,•,⊕}.

The study of simple EA models is very easy. Our concern is to study complex
and hybrid EA models. In the following result we establish a connection between
hybrid and complex EA models.

Theorem 10 A hybrid EA model fE Ã fC can be split into two derived equivalent
complex EA models fE Ã a∗i and a∗i Ã fC.

Proof. Suppose that ti : fE Ã fC is a hybrid EA model (Figure 2.a). Then both fE and
fC are Boolean terms with an AND (•), an OR (⊗), or a XOR (⊕). Let us create two
auxiliary tasks t ′i , t ′′i and an auxiliary transition aᵀ

i = (t ′i , t ′′i). Let a∗i be the Boolean
term associated with the auxiliary transition aᵀ

i , such that a∗i has the same Boolean
value of fE . Let t ′i : fE Ã a∗i and t ′′i : a∗i Ã fC be new EA models. Since a∗i has the
same Boolean value of fE and, as a consequence, fC has its Boolean value depending
on the Boolean value of a∗i , when we consider these new EA models instead of the
initial hybrid EA model, the behavior of the workflow is not modified (Figure 2.b).
Clearly the new EA models fE Ã a∗i and a∗i Ã fC are complex and so the result is
satisfied.

Definition 11 A hybrid workflow is a workflow that contains hybrid EA models. A
workflow is said to be non-hybrid if it contains only simple and complex EA models,
i.e., no hybrid EA models exist.

Example 12 The workflow from Figure 1 is non-hybrid.

Definition 13 A hybrid workflow WG is said to be equivalent to a non-hybrid work-
flow WG′ if WG′ is obtained from WG by decomposing all hybrid EA models of WG
into equivalent derived complex EA models.

Theorem 14 A hybrid workflow can be transformed into an equivalent non-hybrid
workflow.

Table 1: EA Models structures
EA model structure EA model name EA model type
tu : a′i1 •a′i2 • · · · •a′ik Ã a′l AND-join Complex
tu : a′i Ã a′j1 •a′j2 • · · · •a′jl AND-split Complex
tu : a′i1 ⊕a′i2 ⊕·· ·⊕a′ik Ã a′l XOR-join Complex
tu : a′i Ã a′j1 ⊕a′j2 ⊕·· ·⊕a′jl XOR-split Complex
tu : a′i1 ⊗a′i2 ⊗·· ·⊗a′ik Ã a′l OR-join Complex
tu : a′i Ã a′j1 ⊗a′j2 ⊗·· ·⊗a′jl OR-split Complex
tu : a′i Ã a′l Sequence Simple

Proof. Follows immediately from Theorem 10 and Definition 13.

Since a hybrid workflow can be transformed into a non-hybrid workflow, in this
paper we will address only the study of non-hybrid workflows. When no ambiguity
can arise we will refer to non-hybrid workflows simply as workflows. As we will
consider only non-hybrid workflows, the behavior of a workflow will depend on its
complex and simple EA models.

A non-hybrid workflow can contain seven different EA model structures: AND-
join, AND-split, XOR-join, XOR-split, OR-join, OR-split and Sequence. Table 1
illustrates the structure of these seven different EA models.

These EA models can be classified as deterministic and non-deterministic. The
AND-join, AND-split, XOR-join, OR-join and Sequence models are deterministic,
while XOR-split and OR-split are non-deterministic.

For any deterministic model tu : fE Ã fC knowing that the Boolean value of the
incoming condition fE is true allows us to infer that all its outgoing transitions will
be set to true. Consequently, in these cases we know which task(s) will be executed
after tu (i.e., connected to tu).

For any non-deterministic model tu : fE Ã fC knowing that the Boolean value
of the only incoming transition of fE is true does not allow us to infer which outgoing
transition(s) will be set to true. Nevertheless, we know that if fE is true then fC is
also true. Let us analyze each case individually.

(1) XOR-split. In this case, if fE is true, we just know that only one of the
outgoing transitions a′jr , r ∈ {1, . . . , l}, is true.

(2) OR-split. In this case, if fE is true, we only know that a nonempty subset of
the outgoing transitions a′jr , r ∈ {1, . . . , l}, are true.

In these two cases, knowing that fE is true does not allow us to infer which task(s)
will be executed after tu (i.e., connected to tu). Therefore, we call these models non-
deterministic.

Definition 15 A non-deterministic task is a task associated with a XOR-split or OR-

split model (see Table 1).

Definition 16 All transitions have a Boolean label a′i that references the transitions
ai (definition 1). Additionally, each outgoing transition of a task associated with a
XOR-split or OR-split models has a snapshot Boolean variable denoted by~ai, which
is related to the non-determinism of the task.

Definition 17 The non-deterministic task behavior (tND(ti)) of a non-deterministic
task ti is the set of all snapshot Boolean variables associated with its outgoing transi-
tions, i.e., tND(ti)= {{~a j1 ,~a j2 , . . . ,~a jl}|ti : fE Ã fC, fE = ai and fC = a j1ϕa j2ϕ...ϕa jl ,
ϕ ∈ {⊗,⊕}}.
Definition 18 The non-deterministic workflow behavior, denoted by wND(WG), of
a workflow WG is the set of all non-deterministic task behaviors of the workflow,
i.e., wND(WG) = {tND(ti1), tND(ti2), . . . , tND(tik)}, where ti1 , ti2 , . . . , tik ∈ T , are the
non-deterministic tasks.

Definition 19 Let ti be a non-deterministic task. Let P
·∪N be a partition of tND(ti)

such that P = {~a ∈ tND(ti)| ~a is a snapshot Boolean variable asserted to true} and
let N = {~a ∈ (tND(ti)\P)|~a is a snapshot Boolean variable asserted to false}. Let

P′
·∪N′ be a partition of tND(ti) such that P′ = {~a ∈ 2tND(ti)\ /0|~a is a snapshot Boolean

variable asserted to true} and let N′ = {~a ∈ (2tND(ti)\ /0\P)|~a is a snapshot Boolean
variable asserted to false}. A snapshot of ti, denoted by tss(ti) is a set of asserted

snapshot Boolean variables such that, if ti is a XOR-split then tss(ti) = P
·∪N; if ti is

an OR-split then tss(ti) = P′
·∪N′.

Remark 20 Clearly P∩N = P′∩N′ = /0. Note that P,P′ and N are always nonempty
sets, but N′ can be empty. When N′ is empty, it means that all the Boolean terms of
the outgoing condition of the task ti are true, i.e., all snapshot Boolean variables are
asserted to true.

Notation 21 We denote by tss(ti) ª tND(ti) to specify that tss(ti) is a snapshot with
all snapshot Boolean variables in tND(ti).

Example 22 The task t2 of the workflow from Figure 1 has the task snapshot tss1(t2)=
P′1

·∪N′
1, where P′1 = {~a2} and N′

1 = {~a3}, i.e., ~a2 is asserted to true and ~a3 is as-

serted to false. It has also the task snapshot tss2(t2) = P′2
·∪N′

2, where P′2 = {~a3} and
N′

2 = {~a2}, i.e., ~a3 is asserted to true and ~a2 is asserted to false.

Definition 23 Workflow snapshot. Let WG be a workflow. Suppose that ND =
{i1, i2, . . . , ik}, i.e., ti1 , ti2 , . . . , tik are the non-deterministic tasks of WG. For every
l ∈ {1, . . . ,k} let tss(til) be a snapshot of til . A snapshot of WG, denoted by wss(WG),
is an element of the form (tss(ti1), tss(ti2), . . . , tss(tik)).

Table 2: Behavioral task models
EA model structure

t : fE Ã fC
Behavioral task model

b(t)/b(t,s)
Task Snapshot

s = tss(t)
t : a′i1 •a′i2 • · · · •a′il Ã a′j a′i1 = a′i2 = · · ·= a′il = a′j —
t : a′i Ã a′j1 •a′j2 • · · · •a′jl a′i = a′j1 = a′j2 = · · ·= a′jl —
t : a′i1 ⊕a′i2 ⊕·· ·⊕a′il Ã a′j a′j = a′i1 ⊕a′i2 ⊕·· ·⊕a′il —
t : a′i Ã a′j1 ⊕a′j2 ⊕·· ·⊕a′jl a′j1 = a′i∧~a j1 , s ª tND(t)

a′j2 = a′i∧~a j2 ,
...
a′jl = a′i∧~a jl

t : a′i1 ⊗a′i2 ⊗·· ·⊗a′il Ã a′j a′j = a′i1 ⊗a′i2 ⊗·· ·⊗a′il —
t : a′i Ã a′j1 ⊗a′j2 ⊗·· ·⊗a′jl a′j1 = a′i∧~a j1 , s ª tND(t)

a′j2 = a′i∧~a j2 ,
...
a′jl = a′i∧~a jl

t : a′i Ã a′j a′i = a′j —

Example 24 The workflow from Figure 1 has several snapshots. As ND = {2,6},
wND(WG) = {tND(t2), tND(t6)}, tND(t2) = {~a2,~a3}, tND(t6) = {~a7,~a8}. Let tss(t2) =
P′

·∪N′, where P′ = {~a2} and N′ = {~a3}, i.e.,~a2 is asserted to true and~a3 is asserted

to false. Let tss(t6) = P
·∪N, where P = {~a7} and N = {~a8}, i.e., ~a7 is asserted to

true and ~a8 is asserted to false. Then one snapshot of WG, is (tss(t2), tss(t6)) =
(P′

·∪N′,P
·∪N), i.e., ~a2 = true,~a3 = f alse,~a7 = true,~a8 = f alse.

Remark 25 If ti is a XOR-split then it has |tND(ti)| snapshots, if ti is an OR-split then
it has |2tND(ti)|−1 snapshots. If the workflow WG does not contain non-deterministic
tasks, ND = /0. Therefore, there are no workflow snapshots.

Definition 26 A behavioral task model of a task t is a behavioral expression denoted
by b(t) when t is a deterministic task; and if t is a non-deterministic task it is denoted
by b(t,s), where s is a task snapshot. The behavioral expressions b(t) and b(t,s) are
expressed in Table 2 and depend on the type the of the EA models associated to them.

Definition 27 Let WG be a workflow. Let t : fE Ã fC be an EA model. If t is a
deterministic task, i.e., t : fE Ã fC is an AND-join, AND-split, XOR-join, OR-join or
Sequence, we say that b(t) is positive when:

(a) If t is an AND-join or AND-split, all its Boolean terms are true,
(b) If t is a XOR-join, OR-join or Sequence, both sides of its equalities are true.

If t is a non-deterministic task, i.e., t : fE Ã fC is a XOR-split or an OR-split, we
say that b(t,s) is positive when:

(a) If t : fE Ã fC is a XOR-split, there is only one of its equalities with both sides
true,

(b) If t : fE Ã fC is an OR-split, there is at least one of its equalities with both
sides true.

If t is any task of T, we say that t is negative if is not positive.

Definition 28 Let WG be a workflow. The behavioral workflow model of WG (denoted
by B(WG,s)) is a system of equalities formed by the behavioral task models of all
tasks ti ∈ T, i.e.,

Case 1. If WG does not contain non-deterministic tasks, then the behavioral

workflow model is
n∧

i=1
b(ti).

Case 2. If WG contain non-deterministic tasks, suppose that ti1 , ti2 , . . . , tik are
the non-deterministic tasks of WG. For any workflow snapshot s = (si1 , si2 , . . . ,
sik) = wss(WG) = (tss(ti1), tss(ti2), . . . , tss(tik)) the behavioral workflow model is

n∧
i=1

b(ti,si), where

b(ti,si) =

{
b(ti), i ∈ {1, . . . ,n}\{i1, i2, . . . , ik},
b(til ,sil), l ∈ {1,2, . . . ,k}.

(1)

Remark 29 If all the tasks ti ∈ T are deterministic and therefore there is no workflow
snapshots, we can denote B(WG,s) simply by B(WG).

Example 30 The workflow from Figure 1 has the following behavioral workflow
model B(WG,s):

a′2 = a′4,a
′
3 = a′5,a

′
7 = a′9,a

′
8 = a′10,

a′t = a′1 = a′6,a
′
11 = a′12 = a′u,

a′7 = a′6∧~a7,a′8 = a′6∧~a8,a′11 = a′9⊕a′10,
a′2 = a′1∧~a2,a′3 = a′1∧~a3,a′12 = a′4⊗a′5.

Definition 31 We say that WG logically terminates if a′u is true whenever a′t is true
and we say that WG never logically terminates if a′u is f alse whenever a′t is true.

Definition 32 Let WG be a workflow and B(WG,s) be its behavioral workflow model.
We say that B(WG,s) is positive if a′u in B(WG,s) is true, whenever a′t is asserted
to true in B(WG,s). We say that B(WG,s) is negative if a′u in B(WG,s) is f alse,
whenever a′t is asserted to true in B(WG,s).

Theorem 33 Let WG be a workflow and let B(WG,s) be its behavioral workflow
model. Then, WG logically terminates if and only if B(WG,s) is positive.

Proof. Case 1. Suppose that WG does not contain non-deterministic tasks, i.e., all the

tasks present in WG are deterministic. Then, B(WG,s) = B(WG) =
n∧

i=1
b(ti). Since

WG is formed by all its EA models, and according to Definition 26, every EA model
ti : fEi Ã fCi is described by its behavioral task model b(ti), consequently the behavior
of the workflow is described by B(WG). Hence, a′u is true when a′t is true in WG if
and only if a′u is true when a′t is true in B(WG), i.e., WG logically terminates if and
only if B(WG) is positive.

Case 2. Suppose that WG contains non-deterministic tasks. Suppose that ND =
{i1, i2, . . . , ik}, i.e., ti1 , ti2 , . . . , tik are the non-deterministic tasks of WG. Let s = (si1 ,
si2 , . . . , sik) = (tss(ti1), tss(ti2), . . . , tss(tik)) be a workflow snapshot of WG. Then

B(WG,s) =
n∧

i=1
b(ti,si), where b(ti,si) is defined by (1).

Bearing in mind that WG is formed by all its EA models, and according to Def-
inition 26, every EA model ti : fEi Ã fCi is described by its behavioral task model
b(ti,si), then the behavior of the workflow is described by B(WG,s). Therefore, a′u is
true when a′t is true in WG if and only if a′u is true when a′t is true in B(WG,s), i.e.,
WG logically terminates if and only if B(WG,s) is positive.

Theorem 34 Let WG be a workflow and let B(WG,s) be its behavioral workflow
model. Then, WG never logically terminates if and only if B(WG,s) is negative.

Proof. Using similar arguments as those from the proof of the previous Theorem, we
can state that a′u is false whenever a′t is true in WG if and only if a′u is false when a′t
is true in B(WG,s). Thus, WG never logically terminates if and only if B(WG,s) is
negative.

3 Conclusions

To guarantee that workflows successfully terminate, it is necessary to verify their
properties at design time. In this paper we present a formal theory, based on graphs,
to check the termination of workflows. In our approach we model workflows with tri-
logic acyclic directed graphs and develop a snapshot-based formalism to investigate
the termination of workflows. The analysis of graphs-based workflows is important
since many of the most well-known and widespread workflow systems use a notation
based on graphs. While it is possible to transform a graph-based workflow into a
Petri net-based workflow and then verify its termination, we believe that it is more
practical for workflow vendors to directly implement into their systems the theory
that we have developed. This solution will allow commercial applications to be less
complex and eliminates the need to implement a software layer to interpret Petri nets.
The contribution of our work will enable the development of a new set of tools that

will support and allow business process analysts to verify the correct design of their
workflows in an early phase of the workflow lifecycle development.

References

[1] W. M. P. van der Aalst. The application of petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

[2] P. Attie, et al. Specifying and enforcing intertask dependencies. In Proc. 19th
Int. Conference on Very Large Data Bases, pp. 134–145, Ireland, 1993.

[3] J. Cardoso and G. Cravo Verifying the logical termination of workflows. In
Proc. 5th Annual Hawaii International Conference on Statistics, Mathematics
and Related Fields, pp. 330–346, ISSN: 1550-3747, 16-18 January, Hawaii,
USA, 2006.

[4] Umeshwar Dayal, et al. Organizing long-running activities with triggers and
transactions. In ACM SIGMOD international conference on Management of
data table of contents, pp. 204–214, 1990.

[5] J. Eder, et al. A workflow system based on active databases. In Proceedings
of CON ’94, Workflow Management: Challenges, Paradigms and Products, pp.
249–265, Austria, 1994.

[6] A.H.M. ter Hofstede and E.R. Nieuwland. Task structure semantics through
process algebra. Software Engineering Journal, 8(1):14–20, 1993.

[7] J. Klingemann, et al. Deriving service models in cross-organizational work-
flows. In Proceedings of RIDE - Information Technology for Virtual Enterprises
(RIDE-VE ’99), pp. 100–107, Sydney, Australia, 1999.

[8] METEOR. Meteor (managing end-to-end operations) project home page, 2004.

[9] P. Muth, et al. Enterprise-wide workflow management based on state and activ-
ity charts. In Proceedings NATO Advanced Study Institute on Workflow Man-
agement Systems and Interoperability. Springer Verlag, 1998.

[10] M.P. Singh. Semantical considerations on workflows: An algebra for inter-
task dependencies. In Fifth International Workshop on Database Programming
Languages, Electronic Workshops in Computing, Italy, 1995.

