
Master’s Degree in Informatics Engineering
Final Dissertation

Observing and Controlling Performance
in Microservices

Author:
André Pascoal Bento

Supervisor:
Prof. Filipe João Boavida Mendonça Machado Araújo

Co-Supervisor:
Prof. António Jorge Silva Cardoso

July 2019

This page is intentionally left blank.

Abstract

Microservice based software architecture are growing in us-
age and one type of data generated to keep history of the work
performed by this kind of systems is called tracing data. Trac-
ing can be used to help Development and Operations (DevOps)
perceive problems such as latency and request work-flow in
their systems. Diving into this data is difficult due to its com-
plexity, plethora of information and lack of tools. Hence, it
gets hard for DevOps to analyse the system behaviour in order
to find faulty services using tracing data. The most common
and general tools existing nowadays for this kind of data, are
aiming only for a more human-readable data visualisation to
relieve the effort of the DevOps when searching for issues in
their systems. However, these tools do not provide good ways
to filter this kind of data neither perform any kind of tracing
data analysis and therefore, they do not automate the task of
searching for any issue presented in the system, which stands
for a big problem because they rely in the system adminis-
trators to do it manually. In this thesis is present a possible
solution for this problem, capable of use tracing data to extract
metrics of the services dependency graph, namely the number
of incoming and outgoing calls in each service and their corre-
sponding average response time, with the purpose of detecting
any faulty service presented in the system and identifying them
in a specific time-frame. Also, a possible solution for quality
tracing analysis is covered checking for quality of tracing struc-
ture against OpenTracing specification and checking time cov-
erage of tracing for specific services. Regarding the approach
to solve the presented problem, we have relied in the imple-
mentation of some prototype tools to process tracing data and
performed experiments using the metrics extracted from trac-
ing data provided by Huawei. With this proposed solution, we
expect that solutions for tracing data analysis start to appear
and be integrated in tools that exist nowadays for distributed
tracing systems.

Keywords

Microservices, Cloud Computing, Observability, Monitor-
ing, Tracing.

i

This page is intentionally left blank.

Resumo

A arquitetura de software baseada em micro-serviços está
a crescer em uso e um dos tipos de dados gerados para manter
o histórico do trabalho executado por este tipo de sistemas é
denominado de tracing. Mergulhar nestes dados é díficil de-
vido à sua complexidade, abundância e falta de ferramentas.
Consequentemente, é díficil para os DevOps de analisarem o
comportamento dos sistemas e encontrar serviços defeituosos
usando tracing. Hoje em dia, as ferramentas mais gerais e co-
muns que existem para processar este tipo de dados, visam
apenas apresentar a informação de uma forma mais clara, ali-
viando assim o esforço dos DevOps ao pesquisar por proble-
mas existentes nos sistemas. No entanto, estas ferramentas não
fornecem bons filtros para este tipo de dados, nem formas de
executar análises dos dados e, assim sendo, não automatizam o
processo de procura por problemas presentes no sistema, o que
gera um grande problema porque recaem nos utilizadores para
o fazer manualmente. Nesta tese é apresentada uma possivel
solução para este problema, capaz de utilizar dados de tracing
para extrair metricas do grafo de dependências dos serviços,
nomeadamente o número de chamadas de entrada e saída em
cada serviço e os tempos de resposta coorepondentes, com o
propósito de detectar qualquer serviço defeituoso presente no
sistema e identificar as falhas em espaços temporais especificos.
Além disto, é apresentada também uma possivel solução para
uma análise da qualidade do tracing com foco em verificar a
qualidade da estrutura do tracing face à especificação do Open-
Tracing e a cobertura do tracing a nível temporal para serviços
especificos. A abordagem que seguimos para resolver o prob-
lema apresentado foi implementar ferramentas protótipo para
processar dados de tracing de modo a executar experiências
com as métricas extraidas do tracing fornecido pela Huawei.
Com esta proposta de solução, esperamos que soluções para
processar e analisar tracing comecem a surgir e a serem in-
tegradas em ferramentas de sistemas distribuidos.

Palavras-Chave

Micro-serviços, Computação na nuvem, Observabilidade,
Monitorização, Tracing.

iii

This page is intentionally left blank.

Acknowledgements

This work would not be possible to be accomplished without
effort, help and support from my family, fellows and colleagues.
Thus, in this section I would like to give my sincere thanks to
all of them.

Starting by giving thanks to my mother and to my whole
family, who have supported me through this entire and long
journey, and who always gave and will always give me some
of the most important and beautiful things in life, love and
friendship.

In second place, I would like to thank all people that were
involved directly in this project. To my supervisor, Professor
Filipe Araújo, who contributed with his vast wisdom and ex-
perience, to my co-supervisor, Professor Jorge Cardoso, who
contributed with is vision and guidance about the main road
we should take and to Engineer Jaime Correia, who “breathes”
these kind of topics through him and helped a lot with is enor-
mous knowledge and enthusiasm.

In third place, I would like to thank Department of Infor-
matics Engineering and the Centre for Informatics and Sys-
tems, both from the University of Coimbra, for allowing and
provide the resources and facilities to to be carried out this
project.

In fourth place, to the Foundation for Science and Tech-
nology (FCT), for financing this project facilitating its accom-
plishment, to Huawei, for providing tracing data, core for this
whole research, and to Portugal National Distributed Com-
puting Infrastructure (INCD) for providing hardware to run
experiments.

And finally, my sincere thanks to everyone that I have not
mentioned and contributed to everything that I am today.

v

This page is intentionally left blank.

Contents

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Goals . 2
1.4 Work Plan . 3
1.5 Research Contributions . 7
1.6 Document Structure . 7

2 State of the Art 9
2.1 Concepts . 9

2.1.1 Microservices . 9
2.1.2 Observability and Controlling Performance 11
2.1.3 Distributed Tracing . 11
2.1.4 Graphs . 14
2.1.5 Time-Series . 15

2.2 Technologies . 17
2.2.1 Distributed Tracing Tools . 17
2.2.2 Graph Manipulation and Processing Tools 18
2.2.3 Graph Database Tools . 20
2.2.4 Time-Series Database Tools . 22

2.3 Related Work . 24
2.3.1 Mastering AIOps . 24
2.3.2 Anomaly Detection using Zipkin Tracing Data 24
2.3.3 Analysing distributed trace data . 25
2.3.4 Research possible directions . 26

3 Research Objectives and Approach 27
3.1 Research Objectives . 27
3.2 Research Questions . 28

4 Proposed Solution 33
4.1 Functional Requirements . 34
4.2 Quality Attributes . 35
4.3 Technical Restrictions . 36
4.4 Architecture . 36

4.4.1 Context Diagram . 36
4.4.2 Container Diagram . 37
4.4.3 Component Diagram . 39

5 Implementation Process 41
5.1 Huawei Tracing Data Set . 41
5.2 OpenTracing Processor Component . 45

vii

Chapter 0

5.3 Data Analysis Component . 51

6 Results, Analysis and Limitations 57
6.1 Anomaly Detection . 57
6.2 Trace Quality Analysis . 61
6.3 Limitations of OpenTracing Data . 63

7 Conclusion and Future Work 65

viii

Acronyms

API Application Programming Interface. 9, 10, 22, 39, 49, 64, 67

CPU Central Processing Unit. 1, 2, 11, 16, 19

CSV Comma-separated values. 47, 54, 55, 56, 57, 60

DEI Department of Informatics Engineering. 1

DevOps Development and Operations. i, iii, 1, 2, 11, 17, 29, 64, 66

GDB Graph Database. 20, 21, 22, 39, 50

HTTP Hypertext Transfer Protocol. 12, 13, 23, 30, 39, 42, 43, 45, 47, 48

JSON JavaScript Object Notation. 41, 46, 55

OTP OpenTracing processor. 8, 37, 41, 43, 45, 47, 48, 50, 51, 54, 56, 57, 60, 61, 65

QA Quality Attribute. xi, 35, 36, 39

RPC Remote Procedure Call. 12, 30, 42, 43

TSDB Time Series Database. 22, 23, 39, 47, 48, 49, 54, 56

ix

This page is intentionally left blank.

List of Figures

1.1 Proposed work plan for first and second semesters. 5
1.2 Real work plan for first semester. 5
1.3 Real and expected work plans for second semester. 6

2.1 Monolithic and Microservices architectural styles [10]. 10
2.2 Sample trace over time. 12
2.3 Span Tree example. 13
2.4 Graphs types. 14
2.5 Service dependency graph. 15
2.6 time-series: Annual mean sunspot numbers for 1760-1965 [25]. 16
2.7 Anomaly detection in Time-Series [27]. 16
2.8 Graph tools: Scalability vs. Algorithm implementation [35]. 20

4.1 Proposed approach. 33
4.2 Quality Attribute (QA) utility tree. 35
4.3 Context diagram. 37
4.4 Container diagram. 38
4.5 Component diagram. 40

5.1 Trace file count for 2018-06-28. 43
5.2 Trace file count for 2018-06-29. 44
5.3 Service calls samples. 49
5.4 Service dependency variation samples. 49
5.5 Service average response time samples. 50
5.6 Service status code ratio samples. 50
5.7 Methods to handle missing data [67]. 53
5.8 Trend and seasonality results. 53
5.9 Isolation Forests and OneClassSVM methods comparison [69]. 54
5.10 Trace time coverage example. 55

6.1 Sample of detection, using multiple feature, of “Anomalous” and “Non-
Anomalous” time-frame regions for a service. 58

6.2 Comparison between “Anomalous” and “Non-Anomalous” service time-frame
regions. 59

6.3 Comparison between “Anomalous” and “Non-Anomalous” service work-flow
types. 60

6.4 Services coverability analysis. 62

xi

This page is intentionally left blank.

List of Tables

2.1 Distributed tracing tools comparison. 18
2.2 Graph manipulation and processing tools comparison. 19
2.3 Graph databases comparison. 21
2.4 Time-series databases comparison. 23

3.1 Final state questions groups. 31

4.1 Functional requirements specification. 34
4.2 Technical restrictions specification. 36

5.1 Huawei tracing data set provided for this research. 41
5.2 Span structure definition. 42
5.3 Relations between final research questions, functional requirements and

metrics. 48

xiii

This page is intentionally left blank.

Chapter 1

Introduction

This document presents the Master Thesis in Informatics Engineering of the student
André Pascoal Bento’s during the school year of 2018/2019, taking place in the Department
of Informatics Engineering (DEI), Faculty of Sciences and Technology of the University
of Coimbra.

1.1 Context

Software systems are becoming larger and more distributed than ever, thus requiring
new solutions and new development patterns. One approach that emerged in recent years
is to decouple large monolithic components into interconnected “small pieces” that encap-
sulate and provide specific functions. These components are known as “Microservices” and
have become mainstream in the enterprise software development industry [1], [2]. Besides
their impact on latency, fine-grained distributed systems, including microservices, increase
system complexity, thus turning anomaly detecting into a more challenging task [3].

To tackle this problem, Development and Operations (DevOps) resort to techniques like
monitoring [4], logging [5], and end-to-end tracing [6], to observe and maintain records of
the work performed in a microservices system. Monitoring consists of measuring aspects
like Central Processing Unit (CPU) and hard drive usage, network latency and other
infrastructure metrics around the system and components. Logging provides an overview
to a discrete, event-triggered log. Tracing is similar to logging, but focuses on registering
the flow of execution of the program, as requests travel through several system modules
and boundaries. Distributed tracing can also preserve causality relationships when state
is partitioned over multiple threads, processes, machines and even geographical locations.
Subsection 2.1.3 - Distributed Tracing.

The main problem with this is that there are not many implemented tools for process-
ing tracing data and none for performing analysis of this type of data. For monitoring it
tend to be easier, because data is represented in charts and diagrams, however for logging
and tracing it gets harder to manually analyse the data due to multiple factors like its
complexity, plethora and increasing quantity of information. There are some visualisation
tools for the DevOps to use, like the ones presented in Subsection 2.2.1 - Distributed Trac-
ing Tools, however none of them gets to the point of analysing the system using tracing,
has they tend to be developed only for visualisation and display of tracing data in a more
human readable way. Distributed tracing data can be used by DevOps because it is partic-
ularly well-suited to debugging and monitoring modern distributed software architectures,

1

Chapter 1

such as microservices. This kind of data contains critical information about request paths,
response time and status, services presented in the system and their relationship and, for
this reason, can be further analysed to detect anomalous behaviours in requests, response
times and services in these systems. Nevertheless, this is critical information about the
system behaviour, and thus there is the need for performing automatic tracing analysis.

1.2 Motivation

Exploring and develop ways to perform tracing analysis in microservice based systems
lay down the motivation behind this work. The analysis of this kind of systems tend to
be very complex and hard to perform due to their properties and characteristics, as it
is explained in Subsection 2.1.1 - Microservices, and to the type of data to be analysed,
presented in Subsection 2.1.3 - Distributed Tracing.

DevOps teams have lots of problems when they need to identify and understand prob-
lems with distributed systems. They usually detect the problems when a client complains
about the quality of service, and after that, DevOps dive in monitoring metrics like, e.g,
CPU usage, usage, hard drive usage and network latency. Later on, they use distributed
tracing data visualisations and logs to find some explanation to what is causing the re-
ported problem. This involves a very hard and tedious work of look-up through lots of
data that represents the history of work performed by the system and, in most cases, this
tedious work reveals like a big “find a needle in the haystack” problem. For this reason,
DevOps have hard time finding problems in services and end up “killing” and reboot-
ing services, which can be bad for the whole system. However, due to lack of time and
difficulty in identifying anomalous services precisely this is the best approach to perform.

Problems regarding the system operation are more common in distributed systems
and their identification must be simplified. This need of simplification comes from the
exponential increase in the amount of data needed to retain information and the increas-
ing difficulty in manually managing distributed infrastructures. The work presented in
this thesis, aims to perform a research around these needs and focus on presenting some
solutions and methods to perform tracing analysis.

1.3 Goals

The main goals for this thesis consist on the main points exposed bellow:

1. Search for existing technology and methodologies used to help DevOps teams in their
current daily work, with the objective of gathering the best practices about handling
tracing data. Also, we aim to understand how these systems are used, what are their
advantages and disadvantages to better know how we can use them to design and
produce a possible solution capable of performing tracing analysis. From this we
expect to learn the state of the field for this research, covering the core concepts
related work and technologies, presented in Chapter 2 - State of the Art.

2. Perform a research about the main needs of DevOps teams, to better understand
what are their biggest concerns that lead to their approaches when performing pin-
pointing of microservices based systems problems. Relate these approaches with
related work in the area, with the objective of understanding what other compa-
nies and groups have done in the field of automatic tracing analysis. The processes

2

Introduction

used to tackle this type of data, their main difficulties and conclusions provide a
better insight about the problem. From this we expected to have our research objec-
tives clearly defined and a compilation of questions to be evaluated and answered,
presented in Chapter 3 - Research Objectives and Approach.

3. Reason about all the information gathered to design and produce a possible solution
that provides a different approach to perform tracing analysis. From this we expect
first to propose a possible solution, presented in Chapter 4. Then we implemented it
using state of the art technologies, feed it with tracing data provided by Huawei and
collect results, presented in Chapters 5 - Implementation Process and 6 - Results,
Analysis and Limitations. Finally, we provide conclusions to this research work in
Chapter 7 - Conclusion and Future Work.

1.4 Work Plan

This work represents an investigation and was mainly an exploratory work, therefore,
no development methodology was adopted. Meetings were scheduled to happen every
two weeks. We gathered with the objective of discussing the work carried out and define
new courses of research. The main focus in the first semester were topics like published
papers, state of the art, analysis of related work and a proposition of solution. In the
second semester, two more colleagues joined the project (DataScience4NP) and started
participating in meetings, which contributed with wider discussions of ideas. In these
meeting, the main topics covered were: implementation of the proposed solution, research
for algorithms and methods for trace processing and analysis of gathered data. In the end,
these meetings were more than enough to keep the productivity and good work.

Total time spent in each semester, by week, were sixteen (16) hours for the first semester
and forty (40) hours for the second. In the end, it was spent a total of three-hundred and
four (304) hours for the first semester, starting in 11.09.2018 and ending in 21.01.2019
(19 weeks ∗ 16 hours per week). For the second semester, eight-hundred and forty (840)
hours were spent, starting in 04.02.2019 and ending in 28.06.2019 (21 weeks ∗ 40 hours
per week).

As we can see in Figures 1.1 and 1.2, the proposed work for the first semester has
suffered changes, when comparing it to the real work plan. Task 1 - Study the state of
the art (Fig. 1.1), was branched in two, 1 - Project Contextualisation and Background
and 2 - State of the Art, however, these last ones tocked more time to accomplish due to
lack of work in the field of trace processing and trace analysis, core topics for this thesis.
Task 2 - Integrate the existing work (Fig. 1.1) was replaced by task 3 - Prototyping and
Technologies Hand-On (Fig. 1.2) due to redirections in the work course. This redirection
was done due to interest increase in testing state of the art technologies, allowing us to
get a better visualisation of the data provided by Huawei and enhancing our investigation
work. The remaining tasks took almost the predicted time to accomplish.

For the second semester, an “expected” work plan was defined with respect to the
proposed work, presented in Figure 1.1, and the state of the research at the time. The
expected work plan can be visualized in Figure 1.3. This Figure contains the expected
(Grey) and real (Blue) work for the second semester.

Three main changes were made over time in the work plan. The first one involved a
reduction in task 1 - Metrics collector tool. When the solution was being implemented and
the prototype was capable to extract a set of metrics, we decided to stop the implementa-

3

Chapter 1

tion process to analyse the research questions. Second, this analysis lead to an emergence
of ideas, “2 - Restructuring research questions’,’ and thus a project redirection. Tests
were removed from planning and the project followed with the objective of producing the
data analyser, “3 - Data Analyser tool”, and with it, answer two main questions regarding
anomalous services and quality of tracing. Third, the introduction of a new task, “4 -
Write paper to NCA 2019”, covering the work presented in this thesis.

4

Introduction

Name Begin date End date

1 - Study the state of the art 9/11/18 11/5/18

2 - Integrate the existing work 11/6/18 12/3/18

3 - Define requirements of the monitoring tool 12/4/18 12/31/18

4 - Write intermediate report 1/1/19 1/21/19

5 - Implement the monitoring tool 2/4/19 3/29/19

6 - Test and evaluate the results 4/1/19 5/24/19

7 - Write final report 5/27/19 6/28/19

2018 2019

September October November December January February March April May June July

Figure 1.1: Proposed work plan for first and second semesters.

Name Begin date End date

1 - Project Contextualization and Background 9/11/18 9/24/18

2 - State of the Art 9/25/18 11/19/18

2.1 - Concepts 9/25/18 10/15/18

2.2 - Technologies 10/16/18 11/19/18

3 - Prototyping and Technologies Hands-On 11/20/18 12/3/18

4 - Solution Specification 12/4/18 12/24/18

4.1 - Gathering Requirements 12/4/18 12/17/18

4.2 - Building Architecture 12/18/18 12/24/18

5 - Writing of Intermediary Report 12/25/18 1/21/19

2018 2019

September October November December January February

Figure 1.2: Real work plan for first semester.

5

C
hapter

1

Name Begin date End date

1.a - Metrics collector tool (Expected) 2/4/19 5/3/19

1.1 - Setup project (Expected) 2/4/19 2/6/19

1.2 - Implement Controller (Expected) 2/7/19 2/18/19

1.3 - Implement Comunication (Expected) 2/19/19 2/22/19

1.4 - Implement File IO (Expected) 2/25/19 2/27/19

1.5 - Setup databases (Expected) 2/28/19 3/4/19

1.6 - Implement database repositories (Expected) 3/5/19 3/11/19

1.7 - Implement Graph Processor (Expected) 3/12/19 3/21/19

1.8 - Implement Logging Component (Expected) 3/22/19 3/26/19

1.9 - Research apropriate analysis algorithms (Expected) 3/27/19 4/11/19

1.10 - Implement Data Analyser (Expected) 4/12/19 4/23/19

1.11 - Define tests to be performed (Expected) 4/24/19 4/26/19

1.12 - Implement Testing Component (Expected) 4/29/19 5/3/19

1.b - Metrics collector tool 2/4/19 3/15/19

1.1 - Setup project (Real) 2/4/19 2/6/19

1.2 - Implement Logging Component (Real) 2/7/19 2/7/19

1.3 - Setup Docker Containers (Real) 2/8/19 2/8/19

1.4 - Implement Controller (Real) 2/11/19 2/20/19

1.5 - Implement File IO (Real) 2/21/19 2/25/19

1.6 - Implement Processors (Real) 2/26/19 3/4/19

1.7 - Setup databases (Real) 3/5/19 3/7/19

1.8 - Implement database repositories (Real) 3/8/19 3/12/19

1.9 - Implement metrics storage (Real) 3/13/19 3/15/19

2.a - Test and evaluate results (Expected) 5/6/19 5/27/19

2.1 - Run tests (Expected) 5/6/19 5/15/19

2.2 - Write analysis results (Expected) 5/16/19 5/27/19

2.b - Restructure research questions (Real) 3/18/19 3/27/19

2.1 - Write question analysis report (Real) 3/18/19 3/22/19

2.2 - Report review (Real) 3/25/19 3/27/19

3.a - Write final report (Expected) 5/28/19 6/28/19

3.b - Data analysis tool (Real) 3/28/19 5/17/19

3.1 - Quality of tracing analysis (Real) 3/28/19 4/3/19

3.1.1 - Time coverability testing (Real) 3/28/19 4/1/19

3.1.2 - Structure testing (Real) 4/2/19 4/3/19

3.2 - Research apropriate analysis algorithms (Real) 4/4/19 4/19/19

3.3 - Setup Jupyter notebooks (Real) 4/22/19 4/24/19

3.4 - Implement proposed solution and gather results (Real) 4/25/19 5/17/19

3.4.1 - Is there any anomalous service? (Real) 4/25/19 5/10/19

3.4.2 - Results gathering (Real) 5/13/19 5/17/19

4 - Write paper for NCA 2019 (Real) 5/20/19 5/29/19

5 - Write final report (Real) 5/30/19 6/28/19

2019

February March April May June Jul

Figure 1.3: Real and expected work plans for second semester.

6

Introduction

1.5 Research Contributions

From the work presented on this thesis, the following research contribution were made:

• Andre Bento, Jaime Correia, Ricardo Filipe, Filipe Araujo and Jorge Cardoso. On
the Limits of Automated Analysis of OpenTracing. International Symposium on
Network Computing and Applications (IEEE NCA 2019).

1.6 Document Structure

This section presents the document structure in this report, with a brief explanation of
the contents in every section. This document contains a total of eight chapters, including
this one, Chapter 1 - Introduction. The remaining six are presented as follows:

• In Chapter 2 - State of the Art the current state of the field for this kind of problem is
presented. This chapter is divided in three sections. The first one, Section 2.1 - Con-
cepts introduces the reader to the core concepts to know as a requirement for a full
understanding of the topics discussed in this thesis. The second, Section 2.2 - Tech-
nologies presents the result of a research for current technologies, that are able to
help solving this problem and produce a proposed solution to be implemented. Fi-
nally, Section 2.3 - Related Work presents the reader to related researches produced
in the field of distributed tracing data handling.

• In Chapter 3 - Research Objectives and Approach the problem is approached in
detail and the objectives of this research are presented. This chapter is divided in
two sections. First, Section 3.1 - Research Objectives, provides a concrete defini-
tion of the problem, how we tackled it, the main difficulties that were found and
the objectives involved in order to propose a solution. Second, Section 3.2 - Re-
search Questions, a compilation of questions are presented and evaluated with some
reasoning about possible ways to answer them.

• In Chapter 4 - Proposed Solution a possible solution for the presented problem is
exposed and explained in detail. This chapter is divided in four sections. The
first one, Section 4.1 - Functional Requirements, expose the functional requirements
with their corresponding priority levels and a brief explanation to every single one
of them. The second one, Section 4.2 - Quality Attributes, contains the gathered
non-functional requirements that were used to build the solution architecture. The
third one, Section 4.3 - Technical Restrictions, presents the defined technical restric-
tions for this project. The last one, Section 4.4 - Architecture, presents the possible
solution architecture using some representational diagrams, and ends with an anal-
ysis and validation to check if the presented architecture meets up the restrictions
involved in the architectural drivers.

• In Chapter 5 - Implementation Process, the implementation process of the possible
solution is presented with detail. This chapter is divided in three main sections cov-
ering the whole implementation process, from the input data set through the pair of
components presented in the previous chapter. The first one, Section 5.1 - Huawei
Tracing Data Set, the tracing data set provided by Huawei to be used as the core data
for research is exposed with some detail. Second, in Section 5.2 - OpenTracing Pro-
cessor Component we present the possible solution for the first component, namely

7

Chapter 1

“Graphy OpenTracing processor (OTP)”, that processes and extracts metrics from
tracing data. The final Section 5.3 - Data Analysis Component presents the possi-
ble solution for the second component, namely “Data Analyser”, that handles data
produced by the first component and produces the analysis reports. Also, in the last
two sections presented, the used algorithms and methods in the implementations are
properly detailed and explained.

• In Chapter 6 - Research Objectives and Approach, the gathered results, correspond-
ing analysis and limitations of tracing data are presented. This chapter is divided
in three main sections. The first one, Section 6.1 - Anomaly Detection, the results
regarding the gathered observations on the extracted metrics of anomalous service
detection are presented and explained. Second, in Section 6.2 - Trace Quality Analy-
sis the results obtained from the quality analysis methods applied to the tracing data
set are presented and explained. The final Section 6.3 - Limitations of OpenTracing
Data we present the limitations felted when designing a solution to process tracing
data, more precisely OpenTracing data.

• Last, in Chapter 7 - Conclusion and Future Work, the main conclusions for this
research work are presented. To present this chapter, a reflection about the imple-
mented tools, methods produced and the open paths from this research are exposed.
Also a reflection of the main difficulties felted with this research regarding the han-
dling of tracing data are presented. After this, the future work that can be addressed,
considering this work, is properly explained.

Next, Chapter 2 - State of the Art, the state of the field is covered with core concepts,
technologies and related work.

8

Chapter 2

State of the Art

In this Chapter, we discuss the core concepts regarding the project, the most modern
technology for the purpose today and related work in the area. All the information pre-
sented results from work of research through published articles, knowledge exchange and
web searching.

First, the main purpose of Section 2.1 - Concepts is to introduce and provide a brief
explanation about the core concepts to the reader. Second, Section 2.2 - Technologies, all
the relevant technologies are analysed and discussed. In the final Section 2.3 - Related
Work, published articles and posts of related work are presented and possible research
directions are discussed.

2.1 Concepts

The following concepts represents the baseline to understand the work related to this
research project. First an explanation of higher level of concepts that composes the title
of this thesis are presented in Subsections 2.1.1 and 2.1.2. The following Subsections 2.1.3
to 2.1.5, aim to cover topics related to previous concepts: Distributed Tracing, Graphs
and Time-Series.

2.1.1 Microservices

The term “micro web services” was first used by Dr. Peter Rogers during a conference
on cloud computing in 2005, and evolved later on to “Microservices” at an event for
software architects in 2011, where the term was used to describe a style of architecture
that many attendees were experimenting with at the time. Netflix and Amazon were
among the early pioneers of microservices [7].

Microservices is “an architectural style that structures an application as a collection
of loosely coupled services, which implement business capabilities” [1], [2].

This style of software development has a very long history and has being introduced
and evolving due to software engineering achievements in the later years regarding cloud
distributed computing infrastructures, Application Programming Interface (API) improve-
ments, agile development methodologies and the emergence of the recent phenomenon of
containerized applications. “A container is a standard unit of software that packages
up code and all its dependencies so the application runs quickly and reliably from one

9

Chapter 2

computing environment to another, communicating with others through an API” [8].

In Microservices, services are small, specifically calibrated to perform a single func-
tion, also each service is designed to be autonomous, resilient, minimal and composable.
This framework brings a culture of rapid iteration, automation, testing, and continuous
deployment, enabling teams to create products and deploy code exponentially faster than
ever before [9].

Until the rising of Microservices based architecture, the Monolithic architectural style
was the most used. This style has a the particularity of produce software composed all
in one piece. All features are bundled, packaged and deployed in a single tier application
using a single code base.

Figure 2.1 aims to give a comparison between both architectural styles, Monolithic
and Microservices, and provide an insight about the differences between them.

Figure 2.1: Monolithic and Microservices architectural styles [10].

Both styles presented have their own advantages and disadvantages. To briefly present
some of them, two examples are provided, one for each architectural style. First example:
if one team needs to develop a single process system, e.g., e-Commerce application, that
authorizes customer, takes an order, check products inventory, authorize payment and
ships ordered products. The best alternative is to use Monolithic architecture, because
they can develop every feature in a single software package due to the application sim-
plicity, however, if the client starts to demand hard changes and additional features in
the solution, the code base may tend to increase into “out of control”, leading to more
challenging and time consuming changes. Second example, if one team needs to develop
a complex and huge service that needs to scale, e.g., Video streaming service, the best
alternative is to use Microservices architecture, because they can tackle the problem of
complexity by decomposing the application into a set of manageable small services which
are much faster to develop and test by individual organized teams, and thus, it will be
easier to maintain the code base due to decoupling, however, it will be harder to monitor

10

State of the Art

and manage the entire platform due to additional complexity associated with distributed
systems.

Taking into consideration this increasing difficulty in monitoring and managing large
Microservice based platforms, one must be aware and observe system behaviour to be able
to control it. Therefore, in the next Subsection 2.1.2, the core concept of Observability
and Controlling Performance is explained.

2.1.2 Observability and Controlling Performance

This Subsection aims to provide an introduction to some theory concepts about Ob-
servability and Performance Controlling, regarding distributed software systems.

Observability is a meaningfully extension of the word observing. Observing is “to be
or become aware of, especially through careful and directed attention; to notice’ ’[11]. The
term Observability comes from the world of engineering and control theory. Observability
is not a new term in the industry, however it has gain more focus in the last years due to
Development and Operations (DevOps) raising. It means by definition “to measure of how
well internal states of a system can be inferred from knowledge of its external outputs” [12].
Therefore, if our good old software systems and applications do not adequately externalize
their state, then even the best monitoring can fall short.

Controlling in control systems is “to manage the behaviour of a certain system” [13].
Controlling and Observability are dual aspects of the same problem [12], as we need to
have information to infer state and be able take action. E.g., When observing an expo-
nential increase in the Central Processing Unit (CPU) load, the system scales horizontally
invoking more machines and spreading the work between them to easy handle the work.
This is a clear and simple example that conjugates the terms presented, we have: values
that are observed “Observability” and action that leads to system control “Controlling
Performance”.

When we want to understand the working and behaviour of a system, we need to
watch it very closely and pay special attention to all details and information it provides.
Microservice based systems produce multiple types of information if instrumented. These
type of information are the ones mentioned in Chapter 1: Monitoring, Tracing and Log-
ging. In this thesis, the goal is to use tracing data thus, this type of produced information
is the one to focus.

In the next Subsection 2.1.3 - Distributed Tracing, the type of data mentioned before
is presented and explained in detail.

2.1.3 Distributed Tracing

Distributed tracing [14] is a method that comes from traditional tracing, but applied to
a distributed system at the work-flow level. It profiles and monitor applications, especially
those built using microservice architectures and, in the end, it can be used to help DevOps
teams pinpoint where failures occur and why.

A number of tools and standards emerged from this concept. For example, the Open-
Tracing standard [15] follows the model proposed by Fonseca et al. [16], which defines
traces as a tree of spans representing scopes or units of work (i.e., thread, function, ser-
vice). These traces enable following such units of work through the system.

11

Chapter 2

OpenTracing uses dynamic, fixed-width metadata to propagate causality between spans,
meaning that each span has a trace identifier common to all spans of the same trace, as
well as a span identifier and parent identifier representing parent/child relationships be-
tween spans [17]. The standard defines the format for spans and the semantic [18], [19]
conventions for their content/annotations.

Figure 2.2 provides a clear insight about how spans are related to time and with each
other.

Span A

Span B

Span C

Span D

Span E

Time

Figure 2.2: Sample trace over time.

In Figure 2.2 there are a group of five spans spread through time that represents a
trace. A trace is a group of spans that share the same TraceID. A trace is a representation
of a data/execution path in the system. A span represents the logical unit of work in the
system. A trace can also be a span, if there is only one span presented in the trace. One
span can cause another.

Causality relationship between spans can be observed in Figure 2.2, where “Span A”
causes “Span B” and “Span E”, moreover, “Span B” causes “Span C” and “Span D”. From
this we say that “Span A” is parent of “Span B” and “Span E”. Likewise, “Span B” and
“Span E” are children of “Span A”. In this case, “Span A” does not have a parent, it
is an “orphan span” and therefore, is the root span and the origin of this whole trace.
Spans carry with them metadata like e.g., SpanID and ParentID, that allows to infer this
relationships.

Disposition of spans over time is another clear fact that can be observed from the
representation in Figure 2.2. Spans have a begin and an end in time. This causes them to
have a duration. Spans are spread through time, however they usually stay inside parent
boundaries, this means that the duration of a parent span always covers durations of their
children. Considering a parent and a child spans, if they are related, the parent span
always start before child span, also, the parent span always end after child span. Note
that nothing prevents multiple spans to start in the same exact moment. Span also carry
with them metadata like e.g., Timestamp and Duration, that allows to infer their position
in time and when they end.

An example of a span can be an Hypertext Transfer Protocol (HTTP) call or a Remote
Procedure Call (RPC) call. We may think of the following cases to define each operation

12

State of the Art

inherent to each box presented in Figure 2.2: A - “Get user info”, B - “Fetch user data
from database”, C - “Connect to MySQL server”, D - “Can’t connect to MySQL server”
and E - “Send error result to client”.

In the data model specification, the creators of OpenTracing say that: “with a couple
of spans, we might be able to generate a span tree and model a directed graph of a portion
of the system” [15]. This is due to the causal relationships they represent. Apart from the
root span every other span must have a parent. Figure 2.3 provides an example of a span
tree.

Span A Root Span

Span B Span E

Span C Span D

Figure 2.3: Span Tree example.

Figure 2.3 contains a span tree representation with a trace containing five spans. Apart
from the root span every other span must have a parent. With this causal relationship,
a path through the system can be retrieved. For example, if every span processes in a
different endpoint represented by letters presented in the span tree, one may generate the
request path: A → B → D. This means that our hypothetical request passed through
machine A, B and D, or if it were services, the request passed from service A, to B and
finally to D. From this, we can generate the dependency graph of the system (explained
in the Subsection 2.1.4 - Graphs).

This type of data is extracted as trace files or streamed over transfer protocols like
e.g., HTTP, from technologies like Kubernetes [20], OpenStack [21], and other cloud or
distributed management system technologies that implements some kind of system or
code instrumentation using, for example, OpenTracing [22] or OpenCensus [23]. Tracing
contains some vital system details as they are the result of system instrumentation and
therefore, this data can be used as a resource to provide observability over the distributed
system.

As said before, from the causality relationship between spans we can generate a de-
pendency graph of the system. The next Subsection 2.1.4 - Graphs aims to provide a clear
understand of this concept and how they relate with distributed tracing.

13

Chapter 2

2.1.4 Graphs

From distributed tracing we can be able to extract the system dependency graph
from a representative set of traces. To introduce the concept of Graph, “A Graph is a
set of vertices and a collection of directed edges that each connects an ordered pair of
vertices” [24].

Taking the very common sense of the term and to provide notation, a graph, G, is an
ordered pair G = (V,E), where V are the vertices/nodes and E are the edges.

Graphs are defined by:

• Node: Are the entities in the graph. They can hold any number of attributes (key-
value pairs) called properties. Nodes can be tagged with labels, representing their
different roles in a domain. Node labels may also serve to attach metadata (such as
index or constraint information) to certain nodes;

• Edge (or Relationships): provide directed, named, semantically-relevant connections
between two node entities;

• Property: can be any kind of metadata attached to a certain Node or a certain Edge.

Also, there are multiple types of graphs, they can be:

1. Undirected-Graph: the set of edges without orientation between a pair of nodes;

2. Directed-Graph: the set of edges have one and only one direction between a pair of
nodes;

3. Multi-Directed-Graph: multiple edges have more than one connection between a
pair of nodes that represents the same relationship.

Figure 2.4 gives us a simple visual representation of what a graph really is for a more
clear understanding.

G

R

A

P

H G

R

A

P

H G

R

3

A

10
P

H

Figure 2.4: Graphs types.

In Figure 2.4 three identical graphs are presented and each one is composed by five
nodes, however, they are not equal because each one has it own type. They belong respec-
tively to each type enumerated above. From left to right, the first graph is a Undirected-
Graph, the second one is a Directed-Graph and the last one is a Multi-Directed-Graph.

14

State of the Art

The last graph has some numbers in some edges. Every graph can have this anno-
tations. These can provide some information about the connection between the pair of
nodes. For example, in distributed systems context, if this graph represents our system
dependency graph, and nodes H and P hypothetical services, the edge between them
could represent calls between these two service and the notation number the number of
calls with respect to the edge direction. Therefore, in this case, we would have 10 requests
from incoming from P to H.

Figure 2.5 provides a clear insight about service dependency graphs.

190

220

Front-End 240

Users API

Auth API

110

Users Database

Figure 2.5: Service dependency graph.

In Figure 2.5, a representation of a service dependency graph is provided. Service
dependency graphs are graphs of type Multi-Directed-Graph, because they have multiple
edges with more than one direction between a pair of services(Nodes). In this represen-
tation, there are multiple services involved, each inside a box. The edges between boxes
(Nodes), indicate the number of calls that each pair of services invoked, e.g., “Users API”
called “Users Database” 240 times. These dependency graphs gives the state of the system
in a given time interval. This can be useful to study the changes in the morphology of
the system, e.g., a service disappeared and a set of new ones appeared. Other interesting
study could be the variation in the amount of call between services.

Graphs are a way to model and extract information from tracing data. Another in-
teresting approach could be to extract metrics in time from tracing because traces and
spans are spread in time, and they have information about the state of the system at a
given instant. The next Subsection 2.1.5 - Time-Series provides an introduction to a data
representation model.

2.1.5 Time-Series

Time-Series are a way of representing data as a time-indexed series of values. This kind
of data is often arise when monitoring systems, industrial processes, tracking corporate
business metrics or sensor measurements. Figure 2.6 provides a visual example of this way
of data representation.

15

Chapter 2

Figure 2.6: time-series: Annual mean sunspot numbers for 1760-1965 [25].

In Figure 2.6, Brillinger D. [25] presents a visual representation of a time-series as a
collection of values in time. These values are measurements of sunspot means gathered
from 1960-1965. In this case, measurements come from natural origin, however, one can
perform observations of e.g., CPU load, system uptime / downtime and network latency.

As these processes are not random, autocorrelation can be exploited to extract insight
from the data, such as predict patterns or detect anomalies. Therefore, time-series data
can be analysed to detect anomalies present in the system. One way to do this is to
look for outliers [26] in the multidimensional feature set. Anomaly detection in time-
series data is a data mining process used to determine types of anomalies found in a data
set and to determine details about their occurrences. Anomaly detection methods are
particularly interesting for our data set since it would be impossible to manually tag the
set of interesting anomalous points. Figure 2.7 provides a simple visual representation of
anomaly detection in time-series data.

Figure 2.7: Anomaly detection in Time-Series [27].

In Figure 2.7, there is a clear spike in values from this time-series measurements.
This can be declared an outlier because it is a strange value considering the range of
remaining measurements and therefore, it is considered an anomaly. In this example,
anomaly detection is easy to perform by a Human, however, in mostly cases nowadays,
due to great variation of values and plethora of information that can be gathered, perform
this detection manually is impracticable, thus automatic anomaly detection using Machine
Learning techniques are used nowadays.

Anomaly detection in time-series data is a data mining process used to determine
types of anomalies found in a data set and to determine details about their occurrences.
This auto anomaly detection method has lots of usage due to the impossible work of tag

16

State of the Art

manually the interesting set of anomalous points. Auto anomaly detection has a wide
range of applications such as fraud detection, system health monitoring, fault detection,
event detection systems in sensor networks, and so on.

After explaining the core concepts, foundations for the work presented in this thesis,
to the reader, technologies capable of handling this types of information are presented and
discussed in next Section 2.2 - Technologies.

2.2 Technologies

In this section are presented technologies and tools capable of handling the types of
information discussed in the previous Section 2.1 - Concepts.

The main tools covered are: 2.2.1 - Distributed Tracing Tools, for distributed trac-
ing data handling, 2.2.2 - Graph Manipulation and Processing Tools and 2.2.3 - Graph
Database Tools, for graph processing and storage, and 2.2.4 - Time-Series Database Tools,
for time-series value storage.

2.2.1 Distributed Tracing Tools

This Subsection presents the most used and known distributed tracing tools. These
tools are mainly oriented for tracing distributed systems like microservices-based applica-
tions. What they do is to fetch or receive trace data from this kind of complex systems,
treat the information, and then present it to the user using charts and diagrams in order
to explore the data in a more human-readable way. One of the best features presented
in this tools, is the possibility to perform queries on the tracing (e.g., by trace id and by
time-frame). Table 2.1 presents the most well-known open source tracing tools.

In Table 2.1, we can see that these two tools are very similar. Both are open source
projects, allow docker containerization and provide a browser ui to simplify user interac-
tion. Jaeger was created by Uber and the design was based on Zipkin, however, it does
not provide much more features. The best feature that was released for Jaeger in the past
year was the capability of perform trace comparison, where the user can select a pair of
traces and compare them in terms of structure. This is a good effort in additional features,
but it is short in versatility because we can only compare a pair of traces in a “sea” of
thousands, or even millions.

These tools aim to collect trace information and provide a user interface with some
query capabilities for DevOps to use. However they are always focused on span and trace
lookup and presentation, and do not provide a more interesting analysis of the system,
for example to determine if there is any problem related to some microservice presented
in the system. This kind of work falls into the user, DevOps, as they need to perform the
tedious work of investigation and analyse the tracing with the objective of find anything
wrong with them.

This kind of tools can be a good starting point for the problem that we face, because
they already do some work for us like grouping the data generated by the system and
provide a good representation for them.

In next Subsection 2.2.2, graph manipulation and processing tools are presented and
discussed.

17

Chapter 2

Table 2.1: Distributed tracing tools comparison.

Jaeger [28] Zipkin [29]
Brief description Released as open source by

Uber Technologies. Used for
monitoring and troubleshoot-
ing microservices-based dis-
tributed systems. Was inspired
by Zipkin.

Helps gathering timing data
needed to troubleshoot latency
problems in microservice appli-
cations. It manages both the
collection and lookup of this
data. Zipkin’s design is based
on the Google Dapper paper.

Pros Open source;
Docker-ready;
Collector interface is compati-
ble with Zipkin protocol;
Dynamic sampling rate;
Browser user interface.

Open source;
Docker-ready;
Allows multiple span transport
technologies (HTTP, Kafka,
Scribe, AMQP);
Browser user interface.

Cons Only supports two span trans-
port ways (Thrift and HTTP).

Fixed sampling rate.

Analysis Dependency graph view;
Trace comparison (End 2018).

Dependency graph view.

Used by Red Hat;
Symantec;
Uber.

AirBnb;
IBM;
Lightstep.

2.2.2 Graph Manipulation and Processing Tools

Distributed tracing is a type of data produced by Microservice based architectures.
This type of data is composed by traces and spans. With a set of related spans, a service
dependency graph can be produced. This dependency graph is a Multi-Directed-Graph,
as presented in Subsection 2.1.4. Therefore, with this data at our disposal, there is the
need of a graph manipulation and processing tool.

In this Subsection, the state of the art about graph manipulation and processing tools
is presented. Graphs are non-linear data structure representations consisting of nodes
and edges. Nodes are sometimes also referred to as vertices and edges are lines or arcs
that connect any pair of nodes in the graph. This data structure takes some particular
approaches when handling their contents, because there are some special attributes related.
For example, perform the calculation of the degree of some node – degree of a node is the
number of edges that connect to the node itself; Calculate how many nodes entered and
exited the graph by comparing it to another one; Know the difference in edges between
two distinct graphs [30].

Taking into consideration this data structure, the particularities involved and the need
to use graphs to manipulate service dependencies, frameworks with features capable of
handling and retrieving graphs are a need. Therefore, Table 2.2 presents a comparison of
the main tools available at the time for graph manipulation and processing.

18

State of the Art

Table 2.2: Graph manipulation and processing tools comparison.

Apache Giraph [31] Ligra [32] NetworkX [33]
Description An iterative graph

processing system
built for high scala-
bility. Currently used
at Facebook to anal-
yse the social graph
formed by users and
their relationships.

A library collection
for graph creation,
analysis and manipu-
lation of networks.

A Python package for
the creation, manipu-
lation, and study of
structure, dynamics,
and functions of com-
plex networks.

Licence [34] Free Apache 2. MIT. BSD - New License.
Supported
languages

Java and Scala. C and C++. Python.

Pros Distributed and very
scalable;
Excellent perfor-
mance – Process one
trillion edges using
200 modest machines
in 4 minutes.

Handles very large
graphs;
Exploit large memory
and multi-core CPU –
Vertically scalable.

Good support and
very easy to install
with Python;
Lots of graph al-
gorithms already
implemented and
tested.

Cons Uses “Think-Like-a-
Vertex” programming
model that often
forces into using sub-
optimal algorithms,
thus is quite limited
and sacrifices perfor-
mance for scaling out;
Unable to perform
many complex graph
analysis tasks because
it primarily supports
Bulk synchronous
parallel.

Lack of documenta-
tion and therefore,
very hard to use;
Does not have many
usage in the commu-
nity.

Not scalable (single-
machine);
High learning curve
due to the maturity of
the project;
Begins to slow down
when processing high
amount of data –
400.000+ nodes.

Table 2.2 presents some key points to consider when choosing a graph manipulation
and processing tool.

First, one aspect to be considered when comparing them is the scalability and perfor-
mance that each provide. Apache Giraph is the best tool in this field, since it is imple-
mented with distributed and parallel computation, which allows it to scale to multiple-
machines, sharing the load between them, and processing data large quantities of data
in less time than the remaining presented tools. On the opposite side, NetworkX, only
works in a single-machine environment which does not allow it scale to multiple-machines.
Ligra, like the previous tool, works in a single-machine environment, however it benefits
from vertical scale on a single-machine, which allows to exploit multi-core CPU and large
memory. NetworkX and Ligra are tools that can present a bottleneck in a system where
the main focus is to handle large amounts of data in short times.

19

Chapter 2

Secondly, another aspect to be considered is the support and quantity of implemented
graph algorithms available on the frameworks. NetworkX have advantages in this aspect,
because it contains implementation of the majority graph algorithms defined and studied in
graph and networking theory. Also, due to project maturity, it has a good documentation
support from the community who keeps all the information updated. Ligra framework has
lack of documentation, which causes tremendous difficulty for developers to use and know
what are the implemented features. Apache Giraph, does not support a large set of graph
processing algorithms due to implementation constraints.

Figure 2.8 gives a clear insight when comparing these tools from two features – scala-
bility / performance against implementation of graph algorithms.

Figure 2.8: Graph tools: Scalability vs. Algorithm implementation [35].

In Figure 2.8 we can observe tools disposition regarding the two aspect key points
explained before. This figure contains all tools presented over two featured axis: one
for scalability and the other for implementation of graph algorithms. Tools placement
in this chart proves and reinforces the comparison presented before. Apache Giraph and
NetworkX are placed in the edges of these features, which means that Apache Giraph
can be found in the upper left region of the chart – highly distributed but minimally in
graph algorithms implementation –, and NetworkX is in the lower right region – minimally
distributed but highly in graph algorithms implementation.

After discussing tools capable of manipulate and process graphs, their storage is a
need for later usage. Graph Database (GDB) storage technologies are presented in next
Subsection 2.2.3 - Graph Database Tools.

2.2.3 Graph Database Tools

Graph databases represent a way of persisting graph information. After having instan-
tiated a Graph, processed it in volatile memory, they can be stored in persistent memory
for later use. To do this one can use a GDB. A GDB is “a database that allows graph data
storing and uses graph structures for semantic queries with nodes, edges and properties
to represent them” [36].

20

State of the Art

Based upon the concept of a mathematical graph, a graph database contains a col-
lection of nodes and edges. A node represents an object, and an edge represents the
connection or relationship between two objects. Each node in a graph database is iden-
tified by a unique identifier that expresses key → value pairs. Additionally, each edge is
defined by a unique identifier that details a starting or ending node, along with a set of
properties. Graph databases are becoming popular due to Machine Learning and Artificial
Intelligence grows, since a number of Machine Learning algorithms are inherently graph
algorithms [37].

Furthermore, in this research service dependency graphs are highly used, thus the need
to use a GDB. Table 2.3 contains the most well-known GDB.

Table 2.3: Graph databases comparison.

ArangoDB [38] Facebook TAO [39] Neo4J [40]
Description A NoSQL database

that uses a proper
query language to ac-
cess the database.

TAO, “The Associa-
tions and Objects”, is
a proprietary graph
database, developed
by Facebook, used to
store the social net-
work.

The most popular
open source graph
database, completely
open to the commu-
nity.

Licence [34] Free Apache 2. Proprietary. GPLv3 CE.
Supported
languages

C++; Go; Java;
JavaScript; Python
and Scala.

Go; Java; JavaScript;
Python and Scala.

Java; JavaScript;
Python and Scala.

Pros Multi data-type sup-
port (key/value, doc-
uments and graphs);
Allows combination of
different data access
patterns in a single
query;
Supports cluster de-
ployment.

Low latency
(= 100ms);
Accepts millions of
calls per second;
Distributed database.

Supports
ACID(Atomicity,
Consistency, Isola-
tion, Durability) [41];
Most popular
open source graph
database.

Cons High learning curve
due to AQL (Arango
Query Language);
Has paid version with
high price tag.

Not accessible to use. Not able to scale hor-
izontally.

From Table 2.3 we can notice that the state of the art for GDB is not very pleasant.
Interest for this type of databases has began in the later years due to artificial intelligence
and machine learning trends, therefore, the offer presented in the field are limited.

Back in time, when social network tendency emerged, the development of this type of
databases raised, and the most powerful technologies for graph storage where developed in
closed source. One example is Facebook TAO database presented in Table 2.3, a database
developed by the company to support the entire social network, storing users in nodes and
their relationships in edges. This database is described by having very low latency, which
stands for high response time, however, very few information regarding this tool can be
found – just some scientific papers [42], [43].

21

Chapter 2

The remaining tools presented are available for usage. ArangoDB has multi data-type
support, which means that a wider type of data structures are supported for storing in
nodes and edges metadata. Also, it supports scalability through cluster deployment, how-
ever, this feature is only available in paid versions – Arango SmartGraphs storage improves
the writing of graph in distributed systems environment [44]. The biggest disadvantage of
this database is the high learning curve associated with the usage of AQL (Arango Query
Language), however, this disadvantage can be surpassed by using provided API clients
with the trade-off of loosing some control.

Neo4J is the most accepted GDB by the open source community. This GDB has
increased in popularity in the past years due to simplicity and easy support [45]. Trade-
offs from this database consists in lack of support for scalability, which means that this
database can only run on a single-machine environment, however, there are some users
reporting that they were able to perform implementations and surpass the lack of support
for horizontal scaling, but this is not tested [46].

Choosing a graph database can be hard because these tools are growing and the ten-
dency for changes in features and tooling support is very high, however, the decision falls
on the question of easy of usage and horizontal scalability. This means that ArangoDB is
a database more advised for big projects, where the size of graphs to store may surpass the
limit of a single-machine, and Neo4J for simpler projects, where the focus are functionality
testing and prototyping, and graph storage represents a side concern.

Next Subsection 2.2.4 - Time-Series Database Tools covers the state of the art for
tooling capable of storage values based in time.

2.2.4 Time-Series Database Tools

In this Subsection, tools for storing time-indexed series of values are presented. This
type of data is a need for this research due to the tight relation between distributed tracing
and time, as explained in Subsections 2.1.3 and 2.1.5. Also, service dependency graphs,
as a representation of the system at a given time, can contain valuable information for
monitoring Microservice systems. For this purpose, Time Series Database (TSDB) are
databases capable of storing time-series based values.

A TSDB is “A database optimised for time-stamped or time-series data like arrays of
numbers indexed by time (a date time or a date time range)” [47]. These databases are
natively implemented using specialised time-series theory algorithms to enhance their per-
formance and efficiency, due to widely variance of access possible. The way this databases
use to work on efficiency is to treat time as a discrete quantity rather than as a continu-
ous mathematical dimension. Usually a TSDB allows operations like create, enumerate,
update, organise and destroy various time-series entries in short access times.

This type of database is growing in usage and popularity because of Internet of Things
(IoT) trend. Discussions in this area have increased over the past few years, and is expected
that it keeps increasing, due to Ubiquitous Computing – Raise of omnipresent and universal
technologies. At the same time, TSDB grows with this IoT tendency, because data mining
from sensor spread geographically and sensors gather information through measurements
in specific points in time. This information are usually stored in TSDB [48].

22

State of the Art

Table 2.4 presents a comparison between two TSDB: InfluxDb and OpenTSDB.

Table 2.4: Time-series databases comparison.

InfluxDB [49] OpenTSDB [50]
Description An open-source time-series

database written in Go and op-
timised for fast, high-availability
storage and retrieval of time-
series data in fields such as
operations monitoring, applica-
tion metrics, Internet of Things
sensor data, and real-time
analytics’s.

A distributed and scalable TSDB
written on top of HBase;
OpenTSDB was written to ad-
dress a common need: store, in-
dex and serve metrics collected
from computer systems (network
gear, operating systems and ap-
plications) at a large scale, there-
fore, making this data easily ac-
cessible and displayed.

Licence [34] MIT. GPL.
Supported
languages

Erlang, Go, Java, JavaScript,
Lisp, Python, R and Scala.

Erlang, Go, Java, Python, R and
Ruby.

Pros Scalable in the enterprise ver-
sion;
Outstanding high performance;
Accepts data from HTTP, TCP,
and UDP protocols;
SQL like query language;
Allows real-time analytics’s.

Massively scalable;
Great for large amounts of time-
based events or logs;
Accepts data from HTTP and
TCP protocols;
Good platform for future analyt-
ical research into particular ag-
gregations on event / log data;
Does not have paid version.

Cons Enterprise high price tag;
Clustering support only available
in the enterprise version.

Hard to set up;
Not a good choice for general-
purpose application data.

From Table 2.4, we can notice some similarities between these two TSDB databases.
Both TSDB are capable scalable and accept HTTP and TCP transfer protocols for com-
munication. InfluxDB and OpenTSDB are two open source time-series databases, how-
ever, the first one, InfluxDB, is not completely free, as it has an enterprise paid version,
which is not very visible in the offer. This enterprise version offers, clustering support,
high availability and scalability [51], features that OpenTSDB offer for free. In terms
of performance, InfluxDB surpasses and outperforms OpenTSDB in almost every bench-
marks [52]. OpenTSDB has the benefits of being completely free and support the most
relevant features, however it is very hard to set up and to develop for this database.

In the end, both TSDB are bundled with good features, and the decision falls into how
much performance is needed when choosing one. If the need is performance and access to
the database in short amounts of time, with low latency responses, InfluxDB is the way
to go, by other way, if there no restriction about the performance needed to query the
database and money is a concern, the choice should be OpenTSDB.

Tooling for this project is presented. We have covered the most used technologies and
core concepts in related to the field of tracing Microservices. Next Section 2.3 - Related
Work, will cover the related work performed in this area. Some ideas, approaches and
developed solutions will be discussed.

23

Chapter 2

2.3 Related Work

This section aims to present the related work in the field of distributed tracing data
handling and analysis. It is divided in three Subsections: first, 2.3.1 - Mastering AIOps,
which covers a work carried out by Huawei, that uses machine learning – deep learning
– methods to analyse data from distributed traces. Secondly, 2.3.2 - Anomaly Detection
using Zipkin Tracing Data, a work of performed by Salesforce with the objective of analyse
tracing from a distributed tracing tool. Finally, 2.3.3 - Analysing distributed trace data,
a work by Pinterest, where the objective is to study latency in tracing data.

2.3.1 Mastering AIOps

Distributed tracing has only started to gain widespread acceptance in the industry
recently, as a result of new architectural and software engineering practices, such as cloud-
native, fine-grained systems and agile methodologies. Additionally, the increase in com-
plexity resulting from the rise of web-scale distributed applications is a recent phenomenon.
As a consequence of its novelty, there has been little research in the field so far.

A recent example, AIOps, an application of Artificial Intelligence to operations [53] was
introduced in 2016 [54]. This trend aims to use Artificial Intelligence for IT Operations
in order to develop new methods to automate the enhance IT Operations. Driving this
“revolution” are the following points:

• First there is the additional difficulty of manually managing distributed infrastruc-
tures and system state;

• Secondly, the amount of data that has to be retained is increasing, creating a plethora
of problems to the operators handling it;

• Third, the infrastructure itself is becoming more distributed across geography and
organizations, as evidenced by trends like cloud-first development and fog computing;

• Finally, due to the overwhelming amount of new technologies and frameworks, it is
an herculean task for operators to keep in pace with the new trends.

The work performed and presented by Huawei, entitled Mastering AIOps with Deep
Learning, Time-Series Analysis and Distributed Tracing [55], aims to use distributed trac-
ing data and aforementioned technologies to detect anomalous tracing. The proposed
method encodes the traces and trains a deep learning neural network to detect significant
differences in tracing. This is a very perceptive approach, taking into account the amounts
of data that is needed to analyse, however is limited to classifying a trace as normal or
abnormal, losing detail and interpretability i.e., no justification for the classification.

2.3.2 Anomaly Detection using Zipkin Tracing Data

Tooling in this field are not taking the expected relevance. Their usage is starting in
industry and production environments involving distributed systems, however, the con-
cerns in are not well aligned with the needs of operators, and this leads to increasing effort
when monitoring large scale and complex architectures, such as Microservices.

24

State of the Art

In a post from Salesforce, a work of research about using tracing data gathered by
Zipkin, to detect some anomalies in a Microservice based system [56]. At Salesforce,
Zipkin is used to perform distributed tracing for Microservices, collecting traces from
their systems and providing performance insights in both production monitoring and pre-
production testing. However, the current Zipkin open source instrumentation and UI offers
only primitive data tracing functionality and does not have in-depth performance analysis
of the span data. The focus on their work was to detect and identify potential network
bottlenecks and microservices performance issues.

The approach carried out was to implement scripts using that used Python AI pack-
ages, with the objective of extracting values from their network of services, namely service
dependency graph, in order to identify high traffic areas in the network. The values that
were extracted were the number of connections from each service, which means, the degree
of the service at specific times. This allows to notice which services are establishing more
connections with other services.

From this approach, it was possible to visualize the high traffic areas within the produc-
tion network topology. Therefore, they have identified services with the most connections.
This finding was an helpful feedback for service networking architects that designed those
microservices. Those services, identified with too many connections, may potentially be-
come choking points in the system design. If one of the services fail, a huge impact on a
large number of depending services occur. Additionally, there could be also potential per-
formance impacts in the system since a large number of services depending on them. Those
are valuable information for system designers and architect to optimize their designs.

The conclusions from Salesforce research identified that, with Zipkin tracing data, it is
possible to identify network congestion, bottlenecks, efficiencies and the heat map in the
production network. However, this tool does not provide analysis of tracing data at this
level. This was the main conclusion and possible working direction from this research:
“features like the ones presented, can be added to Zipkin or other distributed tracing tool
product line, including UI and dashboards. Capabilities like daily metrics or correlation
between microservices load and latency, able to generate alerts if bottleneck or heat map
is identified, should be added” [56].

2.3.3 Analysing distributed trace data

At Pinterest, the focus was to research for latency problems in their Microservices
solution. Pinterest claims to have tens of services and hundreds of network calls per-trace.
One big problem identified at start is the huge difficulty of looking to trace data due to
the overwhelming quantity of information – “thousands of traces logged each minute (let
alone the millions of requests per minute these traces are sampled from)”.

Pinterest felt the problem of monitoring Microservices early due to their service popu-
larity in the past years. With this popularity, systems usage increased significantly. This
lead them to take action and create their closed source distributed tracing analysis tool
called “Pintrace Trace Analyser” [57].

This tool gathers tracing data from Distributed Tracing Tools, more precisely from
Zipkin, and processes a sample of these tracing to detect mainly latency problems in the
service dependency network. Looking at stats from thousands of traces over a longer
period of time not only weeds out the outliers/buggy traces, but provides a holistic view
of performance.

25

Chapter 2

The conclusions from Pinterest, where that there is a great need to develop tooling
for distributed tracing analysis, with the main objective of ease the life of operators. The
following points were considered:

1. Automatically generate reports so engineers can easily check the status of each de-
ployment;

2. Setting up alerts for when latency or number of calls hits a certain threshold.

2.3.4 Research possible directions

One thing to notice from the related work presented is that there is few research
accomplished in the area and trace tooling development, however, these works are from
the past year and the tendency is to increase in the following years. Enlargement and
usage of distributed systems are fuel to feed the need of research in this field and develop
new methodologies and tools to monitor and control operations.

From the first work presented, “Mastering AIOps”, some final results and conclusions
were provided. They point out that the benefits of this approach were: first, very high
accuracy in detection 99, 7%, and secondly, extremely fast detection in O(n) time. How-
ever, some limitations involving requiring very long training times for long traces (with
decent machines) were noted. Also, improvements were pointed: truncate traces, to lower
the quantity of tracing and therefore, summarizing traces.

The second work presented, “Anomaly Detection using Zipkin Tracing Data”, point
down the lack of features in the existing tools. These features include automatic anomaly
detection using distributed tracing data. The main idea consists in extending functionality
presented in this tools, to provide autonomous anomaly detection and alerting based on
information presented in tracing from services.

The third work presented, “Analysing distributed trace data”, crucial points considered
were to represent autonomous generation of reports, allowing operators to check the status
of deployments, and therefore, providing more control over the system regarding detection
of anomalous values in service latency.

Finally, from the multiple related work presented the final assumptions for possible
research directions in this field are:

• Focus on the most important traces, reducing the quantity of tracing;

• Develop new methods that leverage features of existing distributed tracing tools;

• Automate the detection of anomalies presented in distributed systems;

After providing the state of the art for this research to the reader, next Chapter 3 - Re-
search Objectives and Approach will cover the objectives of this research, the approach
used to tackle the problem and the compiled research questions.

26

Chapter 3

Research Objectives and Approach

In this Chapter, the problem is approached in detail and the objectives for this research
are presented. The problem definition, how we tackled it and our main difficulties and
the objectives involved to provide a possible solution are presented in Section 3.1 - Re-
search Objectives. Also, a compilation of research questions are presented and evaluated
with some reasoning about possible ways to answer them, later in Section 3.2 - Research
Questions.

3.1 Research Objectives

Modern distributed services are large, complex, and increasingly built upon other sim-
ilarly complex distributed services. Debugging systems is not an easy task to perform.
It involves the collection, interpretation, and display of information concerning the inter-
actions among concurrently executing processes operating in distributed machines. Dis-
tributed Tracing data helps keeping an history of work performed by these systems.

End-to-end tracing captures the causally-related activity (e.g., work done to process a
request) within and among the components of a distributed system. As distributed systems
grow in scale and complexity, such tracing is becoming a critical tool for management tasks
like diagnosis and resource accounting. However, as systems grow, resulting tracing data
from system execution is growing as well [17].

Tracing data growth raises some problems. This data is used by system operators to
gain insight and observability of the distributed system, however, with this tendency to
increase in quantity and complexity, it is becoming an overwhelming task for operators.

There are some tools that help handling tracing data, such as the ones presented in
Subsection 2.2.1 - Distributed Tracing Tools, however, they only perform the job of col-
lecting tracing data, present this information to the user in more human-readable formats
and provide forms of querying this type of data. For this reason, manually managing
these growing microservice architectures is becoming an outdated approach due to their
incomportability.

To address this issue, there is a great need of improving tracing data processing and
automate the task of tracing analysis. However, at this point, we did not have any tracing
data at our disposal to start working, thus acquire tracing data from a distributed system
was an urgency. Obtain tracing data for study is hard because it represents working
from these systems and contain confidential information about them. However, through a

27

Chapter 3

NDA (Non-Disclosure Agreement) and the help of professor Jorge Cardoso, representing
Huawei, we were able to gain access to confidential tracing data generated by the company.
To ensure confidentiality, in this thesis, direct data fields are presented using fictitious
information.

This tracing data set was the starting point for this research. It is in OpenTracing
format and was provided by Huawei. This data had been gathered from an experimental
OpenStack cluster used by the company for testing purposes, and covered two days of
operation. This data is addressed in detail in Section 5.1 - Huawei Tracing Data Set.

After having access to tracing data, we have developed some prototype tools for data
ingestion and setted up a distributed tracing tool. Zipkin was used as a distributed
tracing tool to ingest tracing data provided by Huawei. The decision to use Zipkin instead
of Jaeger, fell in the fact that it were much simpler due to lesser feature configuration.
This was done with the purpose of gain a clear visualization about the data that were
given. From this we decided to perform several meetings with the objective of defining a
research direction and be able to propose a solution.

In these meetings, the elements of this research project gathered to debate ideas and
define a set of questions to answer, taking into consideration the defined problem. Professor
Jorge Cardoso, representing Huawei, was the client of the designed solution. The approach
taken was to create a shared Kanban Board [58], containing multiple lanes, to perform
the of generation and refinement of prototype questions. This process involved having
prototype question in the first lane, and move them through every lane reaching the last
one, transforming a prototype question into a final research question. These research
questions were built taking into consideration:

1. Main needs felt by operators in normal day-to-day tasks, troubleshooting distributed
systems;

2. Most common issues presented in these systems;

3. Variables involved when these issues appear;

4. Relationship between these variables and the most common issues.

In the next Section 3.2 - Research Questions, the process to generate the research
questions is explained and the research questions, in their final state, are presented.

3.2 Research Questions

In this Section, we start by explaining the process to generate the research questions.
In the end, these questions are defined and a possible approach for each one of them is
discussed.

A Kanban Board was created with five lanes: “Initial Prototype”, “To Refine (1)”,
“Interesting”, “To Refine (2)” and “Final Research Questions”. Throughout these lanes,
questions were improved and filtered before reaching their final state.

Initial prototype questions were generated based on the four points enumerated at the
end of the previous Section 3.1. Therefore, prototype questions where:

28

Research Objectives and Approach

1. What is the neighbourhood of one service?

2. Is there any problem (Which are the associated heuristics)?

3. Is there any faults related to the system design/architecture?

4. What is the root problem, when A, B, C services are slow?

5. How are requests coming from the client?

6. How endpoints orders distributions are done?

7. What is the behaviour of the instances?

8. What is the length of each queue in a service?

All these questions represent needs felt by operators when monitoring and troubleshoot-
ing distributed systems. To generate them, we gathered in meetings and discussed what
are the main needs of Development and Operations (DevOps) based on research, state
of the art tooling, related work developed in the past years and opinions from colleagues
working in the area. However, these initial questions were too general, therefore they were
passed through every lane defined before. This refinement leaded to the generation of final
state questions. Final questions, with their corresponding description (D) and a starting
point for the expected work (W) involved, are defined bellow:

1. Does any service present a significant change in the number of incoming requests?

2. Does any service present a significant change in the number of outgoing requests?

D. The number of requests are the number of calls performed to a service. These
metrics represent a very important measurement for service monitoring, because
it measures the service usage in time.

W. To obtain these metrics, one must generate the service dependency graph
throughout defined time-frames and retrieve the number of connections be-
tween every node presented in the graph.

3. Does any service present a significant change in response time?

D. Response time represents the amount of time needed to respond to a call.
It is considered one of the most important measurements in systems because
represents their performance.

W. Get the response time for every span (difference between end and start time
present in the structure).

4. Is there a problem related to the work-flow of one (or more) requests?

D. Work-flow of one request represents the interaction path triggered throughout
the system.

W. Generate service dependency graph, retrieve work-flow paths presented in the
graph and gather information about the number of unique paths and type
variation.

5. How do requests are being handled by a specific service? (Identify services that are
experiencing unreliability periods)

29

Chapter 3

D. In the end, requests have success or not. This is represented by a status code
in Hypertext Transfer Protocol (HTTP) or an exception in Remote Procedure
Call (RPC). Measure the ratio of these values can help identify unreliability
periods in services.

W. Gather status codes or exceptions from spans and generate a ratio of success
and error.

6. Which services are the most popular in the system? (Number of established connec-
tions)

D. Popularity of a service stands for the number of established connections. This
measurement is important because a failure in a very popular service can com-
promise the entire system.

W. Generate service dependency graph, and calculate the degree of each node.
Services with higher degree are the most popular in the system.

7. Does any service present a significant change in the services it uses to fulfil requests?

D. Services tend to communicate with a set of other services. These services do
not change often, therefore, patterns in service communication can be observed.
If these patterns are violated without service redeployment and networking
changes, one might be facing a possible traffic redirection.

W. Generate service dependency graph, and retrieve the set of services that each
service communicates. Gathering these values in time, lead to a history of com-
munication between services and, therefore, pattern recognition can be applied
to detect strange variations.

8. Is there a problem related to the constitution of the system?

D. Constitution in microservices architecture represent which services are pre-
sented in the system. The study of entries and exits of services in the overall
system network can help identifying problems in system constitution.

W. Generate service dependency graph in consecutive time-frames and retrieve the
entry / exit of services. Variation analysis of this data can lead to detect
constitution problems presented in distributed systems.

9. Do traces follow OpenTracing specification? (Structural quality testing)

D. Structure quality is always an important factor when using some dataset to
analyse a system. This question aims to perform a structural test of spans
presented in tracing against the defined specification.

W. Produce a structural schema based on the proposed open source tracing speci-
fication – OpenTracing –, and check every span.

10. How is time coverage of tracing? (Coverability quality testing)

D. Time coverage is an important aspect in tracing, because this measurement can
pinpoint possible failures in system instrumentation.

W. In tracing, child spans should cover almost the total duration of their parent
span. To perform this test, a span tree for each trace must be assembled and
times ratios of the durations must be extracted.

30

Research Objectives and Approach

After having generated these final state questions, an analysis report was performed
in order to group them in similar fields of end-to-end tracing use cases [17]. Table 3.1
present the defined groups and the associated questions.

Table 3.1: Final state questions groups.

Group Question numbers
1. Anomaly detection 1. Does any service present a significant change in

the number of incoming requests?
2. Does any service present a significant change in
the number of outgoing requests?
3. Does any service present a significant change in
response time?

2. Steady state problems 4. Is there a problem related to the work-flow of
one (or more) requests?
5. How do requests are being handled by a specific
service? (Identify services that are experiencing
unreliability periods)

3. Distributed resource profiling 6. Which services are the most popular in the sys-
tem? (Number of established connections)
7. Does any service present a significant change in
the services it uses to fulfil requests?
8. Is there a problem related to the constitution of
the system?

4. Quality of tracing 9. Do traces follow OpenTracing specification?
(Structural quality testing);
10. How is time coverage of tracing? (Coverability
quality testing).

Table 3.1 presents us with questions grouped in four classes: anomaly detection, steady
state problems, distributed resource profiling and quality of tracing. Questions were grouped
in these four mentioned classes due to their affinity. The first one, Anomaly detection,
is “diagnosis-related case that involves identifying and debugging problems related to
correctness (e.g., component time-outs or connection failures)”, therefore grouped ques-
tions are related with response time and number of calls performed to services. Secondly,
Steady state problems, is “another diagnosis-related, which involves identifying and de-
bugging problems that manifest in work-flows (and so are not anomalies)”, thus questions
are related with work-flow and status of requests. Thirdly, Distributed resource profiling,
is “identify slow components or functions.”, so questions associated with service usage
and system constitution. Finally, Quality of tracing, involve questions related to tracing
quality testing.

The following general questions were composed for each group:

• Group 1 - Is there any anomalous service?

• Group 2 - What is the overall reliability of the service?

• Group 3 - Which service consumes more time when considering the entire set of
requests?

• Group 4 - How can we measure the quality of tracing?

31

Chapter 3

From these general questions, we decided to tackle two groups: 1. Anomaly detection
and 4. Quality of tracing and therefore, the selected general questions were: 1. Is there
any anomalous service? and 4. How can we measure the quality of tracing?. Questions
presented in the remaining groups were not studied further in this research project.

The first question can be reduced to finding anomalies in observations of service or
system behaviour, namely metrics and morphology. In particular, we considered three
metrics: number of incoming service calls, outgoing service calls and average response time.
Our proposed solution in Chapter 4 - Proposed Solution must have this into consideration
– extract and analyse these metrics from tracing data.

For the second question, there are multiple ways to analyse quality in tracing. We
explore two directions, first performing a trace structure testing against the defined Open-
Tracing specification –structural testing –, to determine if the tracing data complies with
all the predefined requirements. Secondly, coverage testing for tracing data to determine
how much of the duration of Span is covered by its children – time coverability testing.
The first kind would be more valuable if the specification was stricter, however, changing
the standard was not an option at the time as the data had external providence – discussed
in Chapter 7 - Conclusion and Future Work.

Next Chapter 4 - Proposed Solution covers our proposed solution, taking into consid-
erations the main problem, the data to process and the research questions to be answered
in this project.

32

Chapter 4

Proposed Solution

In this Chapter, we present and discuss a possible solution to be implemented regarding
the main problem to solve in this research, the data to process and the research questions to
be answered. To present the solution and explain it, we will cover some aspects considered
when defining a software based solution: functional requirements 4.1, quality attributes
(non-functional requirements) 4.2, technical restrictions 4.3 and finally, the architecture 4.4
produced based on all previous topics.

The starting point for our proposed solution is the tracing data provided by Huawei.
Tracing must be ingested by an entry component, capable of extracting metrics from
tracing data. The outcome of this module are metrics and metadata in files to be further
processed by a second component. This second component has the duty of analysing the
output data from the first module, and point out service anomalies.

For a clear insight about our solution, the proposed approach in high level of abstrac-
tion is presented in the Figure 4.1.

 Proposed approach

aaa
MMM

OTP

Metrics gathering from
tracing data.Traces Processed

data

Data Analyser

Performs the analysis of
the stored metrics and
point out service problems.

Figure 4.1: Proposed approach.

Figure 4.1 shows the proposed process order for tracing data. We expect to have
two main components, one for data extraction and another for data analysis. The input
for each are tracing data and processed data from the first component respectively. The
outcome is to answer the research questions defined in Section 3.2 - Research Questions.

Next Section 4.1 - Functional Requirements covers the functional requirements for this
solution.

33

Chapter 4

4.1 Functional Requirements

In software engineering, functional requirements define the intended function of a sys-
tem and its components. To present the functional requirements for our solution propo-
sition, an id, the corresponding name and its priority are provided. The notation used in
priority was based on the urgency that we expected from feature implementation. Three
priority levels were used: High, Medium and Low. Therefore, the functional requirements
for the proposed solution, sorted by priority levels, are presented in Table 4.1.

Table 4.1: Functional requirements specification.

ID Name Priority
FR-1 The system must be able to ingest tracing data from a files

or external distributed tracing tools.
High

FR-2 The system must be able to retrieve service dependency
graphs from distributed tracing tools.

High

FR-3 The system must be able to store service dependency graphs
in a graph database.

High

FR-4 The system must be able to store time-series metrics extracted
from tracing data in a time-series database.

High

FR-5 The system must be able to extract the number of calls per
service (total, incoming and outgoing) from tracing data.

Medium

FR-6 The system must be able to extract the response time per
service from tracing data.

Medium

FR-7 The system must be able to generate request work-flow paths
from tracing data.

Medium

FR-8 The system must be able to calculate request ratio of success
and error, for specific services, from tracing data.

Medium

FR-9 The system must be able to calculate the degree (total, in and
out) of services from service dependency graphs.

Medium

FR-10 The system must be able to retrieve the difference between
two service dependency graphs.

Medium

FR-11 The system must be able to produce a report about spans
structure using a defined OpenTracing structural schema.

Low

FR-12 The system must be able to calculate the time coverage of
traces in a given time-frame.

Low

FR-13 The system must be able to identify regions of outliers pre-
sented in multiple time-series.

Low

Functional requirements defined in Table 4.1 were written based on defined research
questions presented in Section 3.2. These functional requirements can be grouped in three
groups due to their priority levels. The first four (FR-1 to FR-4) are presented with high
level of priority, because they represent the base functionality needed to implement the
remaining requirements. The next eight functional requirements (FR-5 to FR-11), are time
based metric extraction from tracing. The remaining three (FR-12 to FR-14) are related
with trace testing and anomaly detection based in time-series thus the low priority.

The relationship between these functional requirements and questions presented in
previous chapter, Section 3.2, as well has the verification that these requirements are
fulfilled by the solution, is covered in next chapter, Sections 5.2 and 5.3.

34

Proposed Solution

Next Section 4.2 - Quality Attributes covers the proposed approach non-functional
requirements.

4.2 Quality Attributes

Another important consideration, when designing a software system, is to specify all
the quality attributes (also called non-functional requirements). These type of require-
ments are usually Architecturally Significant Requirements and are the ones that require
more from software architect’s attention, as they reflect directly all architecture decisions.
To specify them, a representation called utility tree is often used. In this tree, the Qual-
ity Attribute (QA) are placed by an order of priority considering their impact for the
architecture and for the business. The priority codification for the QA is:

• H. High

• M. Medium

• L. Low

To describe them properly, six important aspects must be included in QA definition:
stimulus source, stimulus, environment, artefact, response and measure of the response.

Figure 4.2 contains all raised QA for this proposed solution exposed in an utility tree
structure, sorted alphabetically by their general QA name, and after by the architectural
impact pair (Architecture and Business).

Utility Tree Interoperability
QA2: The system, when running, must
be able to work without affecting the

normal work of the external systems.
(L, H)

QA1: The system, when running, must
be able to retrieve information for

analysis from an external tracing and/or
monitoring tool. (H, M)

Figure 4.2: QA utility tree.

Figure 4.2 shows us that only two Interoperability QA were defined. An explanation
for both is provided bellow:

QA1 (Interoperability): Since the proposed solution must ingest tracing data. This infor-
mation is usually found in distributed tracing tools already used by operators. To
gather this information, access to an external distributed tracing tool is an important
feature.As this is considered the starting point to obtain our data, we considered a
Medium level for the architecture and a Low for the business.

QA2 (Interoperability): Since the proposed solution will be accessing an external dis-
tributed tracing system or outputs generated by it, all interactions with these sys-
tems must not cause conflicts. This is very important in the business perspective,

35

Chapter 4

because if our solution is not co-habitable with already used systems, it may be
completely rejected. For the architectural perspective it does not represent a big
impact, and therefore a Low level was assigned.

4.3 Technical Restrictions

In this Section, technical restrictions considered in proposed solution are presented.

In software engineering, after specifying functional and non-functional requirements
for a solution, comes the specification of business restrictions, however, in this project
none were raised due to the fact that this work is focused on exploration and research.

To define the technical restrictions, we used an id and its corresponding description.
Table 4.2 presents the technical restrictions considered for the proposed solution.

Table 4.2: Technical restrictions specification.

ID Description
TR-1 Use OpenTSDB as a Time-Series database.

Table 4.2 shows that we have raised only one technical restriction. This technical
restriction was considered because Professor Jorge Cardoso, acting as a client for this
solution demanded it. OpenTSDB is the database that they are currently using in their
projects at Huawei Research Center. This restriction will ease their work to introduce
changes if needed.

4.4 Architecture

In this Section, the architecture is presented based on all previous topics with resource
to the defined Simon Brown’s C4 Model [59]. This approach of defining an architecture
uses four diagrams: 1 - Context Diagram, 2 - Container Diagram, 3 - Component Diagram
and 4 - Code Diagram. To define the architecture for our solution, only the first three
representations were considered. Every representation will be exposed with a explana-
tion of the decisions taken to draw each diagram. After presenting the representations
and the corresponding explanations, we will cycle thought all architectural drivers: QA,
business and technical restrictions, in order to explain where they are reflected and the
considerations taken to produce this architecture.

4.4.1 Context Diagram

In this Subsection the context diagram is presented. This diagram allows us to see
“the big picture” of the overall system as it represents the system as a “big box” and the
corresponding interactions with users and external software systems. Figure 4.3 presents
the context diagram for this solution.

36

Proposed Solution

 Context Diagram

Graphy (OTP)
[Software System]

Extracts and analyses
metrics from tracing.

Uses

 Subtitle:

Person
External Software

System
Software
System

Target System
[Software System]

System that holds
tracing to be analysed.

User
[Person]

DevOps/SysAdmin
and Operators.

Analyses data from

Metrics Visualizer
[Browser]

Allows the user to view
metrics in a more

human readable way.

Provides metrics to

Views metrics from

Figure 4.3: Context diagram.

From Figure 4.3, we can see that our solution, named Graphy OpenTracing processor
(OTP), receives interactions from users, as it need someone to start the whole process.
This piece of software analyses data from an external target system that holds the tracing
information and consequently, provides extracted metrics to an external metrics visualizer
component. Users can view extracted metrics from this last component. Also, reports are
produced and stored within our solution, when it performs tracing analysis.

4.4.2 Container Diagram

The container diagram is presented in this Subsection. This type of diagram allows us
to “zoom-in” in the context diagram, and get a new overview of our solution. Therefore,
in this diagram we are able to see a high-level shape of the software architecture and
how responsibilities are distributed across containers. Figure 4.4 presents the container
diagram for our proposed solution.

37

Chapter 4

 Container Diagram

 Graphy (OTP)

User
[Person]

DevOps/SysAdmin
and Operators.

Uses

Target System
[Software System]

System that holds tracing
to be analysed.

Access Console
[Container: Console]

Allows user to control system
functionalities.

Graphy API
[Container: Core App]

Allows system to receive
instructions, and perform
analysis of tracing data.

Perform requests

Database
[Container: Time-Series

Database]

Store time metrics extracted
from span trees and graphs.

Database
[Container: Graph

Database]

Store graphs extracted from
span trees presented in tracing.

 Subtitle:

Person External Software SystemContainer

Reads from or writes to
[ArangoDB Connector]

Reads from or writes to
[OpenTSDB Connector - HTTP/TCP]

Analyse data from
[JSONL/HTTPS]

Database
Container

Metrics Visualizer
[Browser]

Allows the user to view
metrics in a more human

readable way.

Text

Provides metrics to
[HTTP/TCP]

Views metrics from

Figure 4.4: Container diagram.

38

Proposed Solution

Figure 4.4 contains the main containers involved in our solution. The first one, from
top to bottom, is the Access Console and this container was considered as it is needed for
the user to be able interact with the Graphy Application Programming Interface (API).
This last one controls the entire OpenTracing system, uses a communication protocol to
retrieve tracing information from external target system, and two databases to store the
information resulted from processing tracing data – a Graph Database (GDB) and a Time
Series Database (TSDB). The second database provides metrics to be visualized in an
external metrics visualizer system.

4.4.3 Component Diagram

This Subsection contains the last diagram, the component diagram. This type of
diagram gives a more deeper vision about the system, and therefore, it reveals the main
components. Figure 4.5 presents the component diagram for this solution.

Figure 4.5 provides us with a lower level visualization of Graphy API container com-
posed by eight components. At its core we have Graphy Controller, a component with
the responsibility of receiving requests from the user through Access Console and control
OpenTracing Processor, Tracing Collector and Data Analyser components. The first one
has the objective of mapping tracing data, span trees and service dependency graphs in-
stantiation into memory. The second one collects tracing, the information that feeds this
entire application, from local files or from external systems, e.g., Zipkin. The last one,
Data Analyser, identifies outliers presented in time-series metrics extracted from tracing,
allowing our solution to detect anomalous services presented in distributed systems. Graph
Processor is the component for graphs handling, thus it has the capability of performing
operations over graphs, e.g., subtract one graph from another, extract node degrees and
count connections between nodes. The remaining components, Graphs Repository and
Metrics Repository, are used to map graphs and time-series metrics, respectively, into and
from their corresponding databases.

To check the architecture produced, we will now cycle between both QA and check were
they are reflected in the architecture presented for this solution, explaining the trade-off
involved and what were our considerations about each one.

QA1 and QA2 are satisfied by the fact that the system is able to collect data from
an external system. Using a communication protocol where data is exchanged thought
Hypertext Transfer Protocol (HTTP) and exposed API, allows to externally request little
chucks of data from target systems without interfering with their normal function.

Finally, for the only technical restriction raised, we can see that it is satisfied by the
usage of OpenTSDB as the main TSDB for our solution.

This solution does not have many architectural drivers: quality attributes, business
constraints and technical restrictions, due to being a prototype. The main objective is to
produce a solution capable of explore tracing data allowing us to conduct a research about
what we can do with tracing, therefore it does not have many architectural constraints.
Nevertheless, with the presentation of these four sections, we conclude that our solution
satisfies all the architectural drivers, and therefore, we may claim that the proposed ar-
chitecture fits our needs as a solution.

Next Chapter, 5 - Implementation Process, covers the implementation of the solution
presented in the current chapter. All implemented algorithms and technical decisions are
discussed and explained in detail.

39

Chapter 4

 Component Diagram

 Graphy API

Target System
[Zipkin]

System that holds tracing to be
analysed.

Access Console
[Container: Console]

Allows the user to control the
system functionalities.

Perform requests

Database
[Container: Time-Series

Database]

Store time metrics extracted
from span trees and graphs.

Database
[Container: Graph

Database]

Store graphs extracted from
span trees presented in tracing.

 Subtitle:

External Software
System

Container

Reads from or writes to
[ArangoDB Connector]

Reads from or writes to
[OpenTSDB Connector - HTTP/TCP]

Retrieves data from
[JSONL/HTTPS]

Database ContainerComponent

Uses

Graph Processor
[Component: NetworkX]

Allows the system to handle
graph structures and perform

graph algorithms.

Tracing Processor
[Component: Streaming API]

Allows the system to ingest
tracing data and

extract relevant metrics.

Uses

Graphy Controller
[Component: Python]

Core system controller.

Graphs Repository
[Component: ArangoDB Client]

Handles graph data
retrieval and persistence

operations.

Uses Uses

Uses

Uses

Uses

Metrics Repository
[Component: OpenTSDB Client]

Handles time metrics data
retrieval and persistence

operations.

Metrics Visualizer
[Browser (Grafana)]

Allows the user to view metrics
in a more human readable way.

Provides metrics to
[HTTP/TCP]

Tracing Collector
[Component: Python]

Allows the system to retrieve
tracing data from local files or

from an external system.

Data Analyser
[Component:

NumPy/Pandas and
Scikit-learn]

Identify outliers presented in
metrics extracted from tracing.

Gather metrics

Figure 4.5: Component diagram.

40

Chapter 5

Implementation Process

This Chapter presents the implementation process of the proposed solution explained
in previous Chapter. Three main sections are covered in this Chapter: Firstly, in Sec-
tion 5.1 - Huawei Tracing Data Set, the data provided to perform this research is pre-
sented and analysed. Secondly, in Section 5.2 - OpenTracing Processor Component, the
implementation of (OpenTracing processor (OTP)), our proposed solution to collect and
store metrics from tracing data is explained in detail with intermediate results. Finally,
in Section 5.3 - Data Analysis Component, the approach and methods for analysis of the
stored observations are presented.

5.1 Huawei Tracing Data Set

The starting point for this solution and every method developed within it was a data
set provided by Huawei, represented by professor Jorge Cardoso. To gain access to this
information, a NDA: Non-disclosure agreement was signed by both parts. This data set
contains the results of tracing data gathered from an experimental OpenStack cluster used
by the company for testing purposes, and covers two days of operation. Consequently, two
files were provided, one for each day. These files were generated in 10 of July, 2018 and,
for protection, some fields of the data set were obfuscated during the generation process.
Table 5.1 contains some details about the provided data set.

Table 5.1: Huawei tracing data set provided for this research.

File Date 2018-06-28 2018-06-29
Spans count 190 202 239 693
Traces count 64 394 74 331

From Table 5.1, we can see some detail regarding spans and trace counting for each
day. Both files were written in JSONL format [60]. This file format is an extension to
the lightweight data-interchange standard JavaScript Object Notation (JSON): JavaScript
Object Notation, however, in JSONL format multiple JSON are separated by a new line
character. Each span is presented by a single JSON, therefore, each line contains a span
encoded in JSON format. To count spans a line count in each file was enough. To count
traces, spans must be mapped to span trees, and then the total of trees represent the trace
count. Algorithms to perform this conversion are presented further, in Section 5.2 - Open-
Tracing Processor Component.

41

Chapter 5

Span data format is defined in an open source specification called OpenTracing [61],
however, companies and software developers are not obliged to follow it, thus they can
produce their own span data format, leading to difficulties developing a general purpose
tool for tracing analysis. Therefore, to ease the interpretation of spans presented in the
data set, a file with instructions about the specification was provided. In this file, a
definition was given about possible fields and their corresponding data types. A sample
of the fields and their descriptions are exposed in Table 5.2.

Table 5.2: Span structure definition.

Field Description
traceId Unique id of a trace (128-bit string).
name Human-readable title of the instrumented function.
timestamp UNIX epoch in milliseconds.
id Unique id of the span (64-bit string).
parentId Reference to id of parent span.
duration Span duration in microseconds.
binaryAnnotations protocol - “HTTP” or “function” for RPC calls;

http.url - HTTP endpoint;
http.status_code - Result of the HTTP operation.

annotations value - Describes the position in trace (based on Zipkin
format). Could be one of the following values or other:
“cs” (client send), “cr” (client receive), “ss” (server send)
or “sr” (server receive);
timestamp - UNIX epoch in microseconds;
endpoint - Which endpoint generated a trace event.

Also, the file contained two notes. To point each one, has they are very important, we
present them bellow.

1. Time units are not consistent, some fields are in milliseconds and some are in mi-
croseconds.

2. Trace spans may contain more or less fields, except those mentioned here.

From Table 5.2, we get a notion about the fields that can be found in spans. These
fields are defined by OpenTracing specification, therefore, is important that companies
follows the specification, even if open source.

In this data set, spans are composed by: “traceId”, “name”, “timestamp”, “id”, “par-
entId” and “duration”. These are the main required fields, because they represent the
foundations for tracing data, containing the identification, relation and temporal track of
the span. Also, these fields are fixed, meaning that they are always represented by the
defined field name. The same can not be said from the remaining fields: “binaryAnno-
tations” and “annotations”. These tow fields are always identified by these field names,
however, their values are maps and therefore, have values stored in key - value pairs. This
brings some consistency problems and we might not know clearly what is available in
a span, when working with it. As said in the second point presented in the list above:
“Trace spans may contain more or less fields, except those mentioned here”, and for this
reason, there is a tremendous explosion in possibilities, because there might be keys with
corresponding values for some particular spans and it gets hard to generalise this in a
uniform span structure.

42

Implementation Process

The notion of span data only depends on the quality of communication and documen-
tation of the ones that produce tracing. To be certain that one crafts good tracing data,
there must be an implemented standard for everyone to follow. The formalization and
unification of one tracing specification should be a thing to consider, for the reason that it
is an endeavour to analyse inconstant fields. For example, in the data provided spans can
be of two types: HTTP span or RPC span, and the only field that distinguishes them is a
field named “exec”, which stands for the execution process id, and is not presented in the
HTTP span type. Another example, fields having the same key should have one and only
one measurement unit, because distributed tracing tools (like the ones presented in Subsec-
tion 2.2.1) are not expecting different measurement units for the same field and therefore,
assume wrong values when spans have timestamps declared in milliseconds and others in
microseconds, like in this case. To fix this, we decided to convert all time measurements
to milliseconds.

To provide notion of how traces and spans are spread throughout time, we have used
our tool, Graphy OTP, to generate two charts that represents the counting of traces and
spans for each hour in each day. We decided to generate two split charts due to the simple
fact that we have one file for each day. To count the number of spans in time, in this case
by hour, the tool only needed to group every span by hour and count them, however for
traces, the tool has more work because it needs to merge all spans in their corresponding
span tree (explained in Section 5.2). After having all span trees it just needs to count
them, and the result is the number of traces. Note that if a span or trace starts at a given
time t1 contained in a time-frame, and with its duration d1 surpassing the next time-frame
tf1, (t1+ d1 > tf1), it is considered to be in the first time-frame, or by other words, only
the starting time of the trace or span is considered for the counting. Figures 5.1 and 5.2
presents the data set traces and spans counting throughout time.

Figure 5.1: Trace file count for 2018-06-28.

43

Chapter 5

Figure 5.2: Trace file count for 2018-06-29.

Figure 5.1 presents the counting of traces and spans for the 28th of June, 2018. In this
Figure we can spot a “pit” in quantity from 2AM to 10AM. No explanation for this was
given, however, at this point we assumed that extracting metrics from data in this time
interval would produce less points, thus less resolution. This is visible in metrics presented
in Figure 5.3, reproduced using Grafana. The quantity of data for the rest of the day is
somehow inconstant, however, there is no lack of data like in the previous day.

Figure 5.2 presents the counting of traces and spans for the 28th of June, 2018. In this
Figure there are no “pits”, and consequently, the quantity of information is more constant
throughout time.

To summarise, this system produces an average of 5000 traces an hour and 15000 spans
an hour. Also, the quantity of information provided in the second day (29th of June) is
more constant, and therefore, better for analysis, than in the first day (28th of June).
Nevertheless, this data set has sufficient information to study tracing data and develop
methods for tracing data, and then, it is a suitable data set for this research project.

Next Chapter, 5.2 - OpenTracing Processor Component, covers the explanation and
algorithms used over this data set for tracing metrics extraction and quality analysis. Also,
some visualizations of metrics extracted from tracing data are provided.

44

Implementation Process

5.2 OpenTracing Processor Component

In this Chapter, the implementation for the first component of the proposed solution,
OTP, is presented and explained, hence, functional requirements defined in Table 4.1, ser-
vice dependency graph handling, span trees generation and methods for metrics extraction
and storing from tracing data will be covered.

Starting by the first two functional requirements (FR-1 to FR-2). These require com-
munication with distributed tracing tools, to obtain tracing data and to retrieve service
dependency graphs. We have decided to use Zipkin, as a distributed tracing tool for
holding our data set, instead of Jaeger only due to simplicity in setup configuration. To
setup this tool a Docker container was instantiated in an external server. Communica-
tion methods are implemented in Tracing Collector component. To feed information to
our solution, one can use two ways: collect tracing data from local files, or export them
to Zipkin and ingest it through HTTP requests. This configurations can be changed by
editing a configuration file provided with the solution. The configurations to edit are file
locations in local machine and Zipkin IP (Internet Protocol) address.

After collecting information from one of the two defined sources by Tracing Collector,
data is passed to Tracing Processor which ingests and maps all the information into in
memory data structures. Data can be either trace data or service dependency graphs. If it
is a graph, it is transferred to Graph Processor for process, graph metrics extraction and
later storage, otherwise, it is processed in Tracing Processor to extract defined metrics
from tracing. The algorithm for metrics extraction from tracing and service dependency
graphs is presented at a high abstraction level in Algorithm 1.

Algorithm 1: Algorithm for metrics extraction from tracing.
Data: Trace files/Trace data.
Result: Trace metrics written in the time-series database.

1 Connect to Time-Series database;
2 Read time_resolution, start_time and end_time from configuration;
3 Read traces from trace files/trace data;
4 Post traces to Zipkin;
5 Get services from Zipkin;
6 Calculate time_intervals using start_time, end_time and time_resolution;
7 while time_interval in time_intervals do
8 Get service_dependencies from Zipkin;
9 Build service_dependency_graph using service_dependencies;

10 Extract graph_metrics from service_dependency_graph;
11 while service in services do
12 Get traces from Zipkin;
13 Map traces in SpanTrees;
14 Extract service_metrics from SpanTrees;
15 Post graph_metrics to Time-Series database;
16 Post service_metrics to Time-Series database;

Algorithm 1 contains some core functionalities implemented in components presented
in OTP solution. This algorithm aims for metrics extraction from tracing data and perform
this procedure using two main data structures: service dependency graphs and tracing data
mapped into SpanTrees.

45

Chapter 5

Service dependency graphs are obtained from Zipkin and parsed directly into a Net-
workX graph structure, presented in component Graph Processor. We decided to chose
NetworkX, a framework for graph processing written in Python, due to tooling versatility
has it contains a large implementation set of the majority graph algorithms. At this point
we preferred this trade-off over processing power and scalability. Zipkin provides service
dependency graphs through an explicit endpoint – /dependencies, and a start and end
timestamps in epoch milliseconds must be passed as parameters. The information comes
in JSON format as presented in Listing 5.1.

1 [
2 {
3 ” parent ” : ” s t r i n g ” ,
4 ” ch i l d ” : ” s t r i n g ” ,
5 ” cal lCount ” : 0 ,
6 ” errorCount ” : 0
7 } ,
8 { /∗ . . . ∗/ }
9]

Listing 5.1: Zipkin dependencies result schema.

Listing 5.1 shows that dependencies come in an array of JSON objects. Each object
contains the information about one relationship between services: parent “from”, child
“to” and the number of calls. Therefore, having this information grant the creation of
service dependency graph using NetworkX. Note that this information assembles a graph
containing the information of system services at a specific time interval defined by provided
parameters to Zipkin /dependencies endpoint. After having this information mapped
into NetworkX graphs in memory, their visual representation are identical to the one
demonstrated in Figure 2.5, presented in Subsection 2.1.4.

SpanTrees are a representation of a trace in a tree format. Method for their creation
from a span list is presented in Algorithm 2.

Algorithm 2: Algorithm for SpanTree mapping from spans.
Data: Span list.
Result: Spans mapped into SpanTrees.

1 Index spans by ids from span list into SpanIndex;
2 while span in span list do
3 Read parentId from span;
4 Index span using parentId into SpanIndex;

Algorithm 2 shows that to transform a list of spans (unordered traces) into SpanTrees,
one must index them by span id an then read every span, indexing the span using their par-
entId. After applying this method, spans will be properly indexed and a list of SpanTrees
are produced. Also, a SpanTree is a representation of a trace and these structures ease
tracing handling due to distinct causal relationships between spans. For example, one can
use span trees to map TraceInfos. This data structure was created to hold relevant infor-
mation from span trees: for example request work-flows. The process involves pinpointing
requests between services, presented in spans throughout their causal relationship, and
then store request paths through services, generating the corresponding request work-
flow. For each span tree, one work-flow is generated, however, from root to leafs, multiple
paths are possible. Note that not always do spans contain information to produce the

46

Implementation Process

path, and therefore, some request paths are dubious, depending only on the completeness
quality of tracing. The method to produce request work-flows is described in Algorithm 3.

Algorithm 3: Work-flow type algorithm.
Data: Trace files/Trace data.
Result: Comma-separated values (CSV) with unique work-flow types, their

corresponding count and times.
1 Read start_time and end_time from configuration;
2 Read SpanList from trace files/trace data within defined time_frame;
3 while have Spans in SpanList do
4 Read Span;
5 Map Span to SpanTrees;
6 while have SpanTree in SpanTrees do
7 Read SpanTree;
8 Map SpanTree to TraceInfos;
9 Read TraceInfo;

10 Read work-flows, work-flow count, times, (others) from TraceInfo;
11 Write fields to CSV files;

The method described in Algorithm 3 aims to use tracing to produce span trees, and
then generate TraceInfos to retrieve request work-flow paths.

These two data structures, service dependency graphs and span trees, are the founda-
tions to extract metrics from tracing data, satisfy the functional requirements presented
in Section 4.1 and answer the final research questions defined in Section 3.2.

The metrics that OTP is able to extract from tracing data, for a defined time interval,
are the following:

1. Number of incoming/outgoing service calls;

2. Average response time by service;

3. Service connection, i.e., other services invoking and being invoked by the system,
i.e., the service dependency graph variation.

4. Service degree (in/out/total);

5. Service HTTP status code ratio. (sum of success or failure count over total status
code count)

These metrics are all related with time and represent observations of values extracted
from tracing data, therefore, as time-series metrics they are stored in a Time Series
Database (TSDB). Explanation of used technology and procedure is provided later on
this Section.

Table 5.3 relates each metric with a functional requirement, and correspondent final
research question. Functional requirements are identified by an id from Table 4.1.

47

Chapter 5

Table 5.3: Relations between final research questions, functional requirements and metrics.

Research
Question

Functional
Requirements

Metrics

1. Is there any
anomalous service?

FR-5;
FR-5;
FR-6.

Number of incoming service calls;
Number of outgoing service calls;
Average response time by service.

2. What is the over-
all reliability of the
service?

FR-7;
FR-8.

No metric extracted;
Service HTTP status code ratio.

3. Which service
consumes more time
when considering
the entire set of
requests?

FR-9;
FR-10.

Service degree;
Service dependency graph variation.

For Table 5.3, only functional requirements from numbers 5 to 10 were considered, due
to being the ones related with metrics extraction. As said before, only question number 1
was considered for metrics extraction. The remaining, defined at grey colour, were imple-
mented and OTP extracts them, however, they were not further analysed in this research.
Almost all functional requirements have one metric associated except one, FR-7. This
functional requirement was implemented, and our solution allows to generate work-flow
paths from tracing data, however, no metric was defined. Nevertheless, the implementation
of this functionality helped us understanding results for the first final research question –
Method for work-flow generation from tracing data is explained Algorithm 3.

Span trees are a representation of causal relationship between spans. Two types of time
based metrics are extracted from span trees: 1. Average response time by service in time;
and 2. Service HTTP status code ratio in time. To extract the first metric type, duration
and annotations/endpoint/serviceName values presented in spans , when defined, are used
to calculate the average response time by service. For each span tree a list of services and
their corresponding average times are obtained. After gathering all values from every span
tree presented in the defined time-frame, the values are merged and posted to the TSDB.
The second metric, is extracted through a calculation of status codes ratio by each service.
For this, binaryAnnotations/http.status_code and annotations/endpoint/serviceName val-
ues are used. Also, equally to the previous metric, values are merged and posted to the
TSDB.

Service dependency graphs are a representation of dependencies of services at a specific
time-frame. Three types of time based metrics are extracted from service dependency
graphs: 1. Number of incoming/outgoing service calls in time; 2. Entry/exit of services
in time (service dependency graph node variation); and 3. Service degree (in/out/total)
in time. To extract the first metric type, the values in between (Edges) services (Nodes)
are retrieved. These values are dispatched for storage with service name, flow indication
(incoming/outgoing), timestamp and number of calls. The second metric type is extracted
having two successive graphs and performing their difference. For example, if GraphA has
nodes A,B,C and GraphB, nodes A,C,D,E, the difference between them will result in
two service entries D,E and one exit. Last metric type, service degree, is extracted
by retrieving the number of connections from each service. For example, consider that
GraphC has a service A connected from itself to services B,C,D. In this graph, service
A has an out degree of three and an in degree of zero. The remaining services have an out
degree of zero and an in degree of one. Methods to extract these metrics are implemented

48

Implementation Process

in Graph Processor and resource to NetworkX to handle graph structures. All these
metrics are then posted to the TSDB.

At this point, our solution is able to retrieve and store time-series metrics from tracing
data. For the TSDB, we have decided to use OpenTSDB, due to technical restrictions
imposed in Section 4.3. There was a client implementation for usage in Python, however,
the support was not good due to lack of updates and clear documentation. For this reason,
we decided to implement our own OpenTSDB client in Python using their Application
Programming Interface (API) specification, – Metrics Repository component. Later, when
all implementation from tracing collection through trace metrics storage in the TSDB, we
used a browser metrics visualizer. To do this, a Docker container with Grafana, a data
visualization tool capable of rendering time-series metrics in charts and present them
in dashboards. The decision to use this tool, was due to easy to setup and integrated
compatibility with our TSDB. We just needed to create a container and, through a url
configuration in Grafana, we established a link to the TSDB.

Figures 5.3, 5.4, 5.5, and 5.6, contain sample representations of extracted time-series
metrics stored in our TSDB.

06-28 00
06-28 04

06-28 08
06-28 12

06-28 16
06-28 20

06-29 00
06-29 04

06-29 08

Time (Month-Day Hour)

0

10

20

30

40

Nu
m

be
r o

f i
nc

om
ing

 ca
lls

Service A Calls [Incoming]

06-28 00
06-28 04

06-28 08
06-28 12

06-28 16
06-28 20

06-29 00
06-29 04

06-29 08

Time (Month-Day Hour)

0

500

1000

1500

To
ta

l v
alu

e

Service A Calls [Total]

06-28 00
06-28 04

06-28 08
06-28 12

06-28 16
06-28 20

06-29 00
06-29 04

06-29 08

Time (Month-Day Hour)

0

500

1000

1500

Ou
t v

alu
e

Service A Calls [Outgoing]

06-28 12
06-28 15

06-28 18
06-28 21

06-29 00
06-29 03

06-29 06
06-29 09

Time (Month-Day Hour)

0

50

100

150

200

Nu
m

be
r o

f i
nc

om
ing

 ca
lls

Service B Calls [Incoming]

06-28 12
06-28 15

06-28 18
06-28 21

06-29 00
06-29 03

06-29 06
06-29 09

Time (Month-Day Hour)

0

50

100

150

200

To
ta

l v
alu

e

Service B Calls [Total]

06-28 12
06-28 15

06-28 18
06-28 21

06-29 00
06-29 03

06-29 06
06-29 09

Time (Month-Day Hour)

0

5

10

15

20

25

Ou
t v

alu
e

Service B Calls [Outgoing]

06-28 00
06-28 04

06-28 08
06-28 12

06-28 16
06-28 20

06-29 00
06-29 04

06-29 08

Time (Month-Day Hour)

0

100

200

300

Nu
m

be
r o

f i
nc

om
ing

 ca
lls

Service C Calls [Incoming]

06-28 00
06-28 04

06-28 08
06-28 12

06-28 16
06-28 20

06-29 00
06-29 04

06-29 08

Time (Month-Day Hour)

0

100

200

300

400

To
ta

l v
alu

e

Service C Calls [Total]

06-28 00
06-28 04

06-28 08
06-28 12

06-28 16
06-28 20

06-29 00
06-29 04

06-29 08

Time (Month-Day Hour)

0

5

10

15

20

25

30

Ou
t v

alu
e

Service C Calls [Outgoing]

Figure 5.3: Service calls samples.

06-28 00
06-28 04

06-28 08
06-28 12

06-28 16
06-28 20

06-29 00
06-29 04

06-29 08

Time (Month-Day Hour)

0

2

4

6

8

10

12

Ga
in

 v
al

ue

Service dependency variation [Gain]

06-28 00
06-28 04

06-28 08
06-28 12

06-28 16
06-28 20

06-29 00
06-29 04

06-29 08

Time (Month-Day Hour)

2

0

2

4

6

8

10

12

To
ta

l v
al

ue

Service dependency variation [Total]

06-28 00
06-28 04

06-28 08
06-28 12

06-28 16
06-28 20

06-29 00
06-29 04

06-29 08

Time (Month-Day Hour)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Lo
ss

 v
al

ue

Service dependency variation [Loss]

Figure 5.4: Service dependency variation samples.

49

Chapter 5

06-28 00

06-28 04

06-28 08

06-28 12

06-28 16

06-28 20

06-29 00

06-29 04

06-29 08

Time (Month-Day Hour)

1

2

3

4

5

R
e
sp

o
n
se

 T
im

e
 (

1
e
5

 m
ill

is
e
co

n
d

s)
Service A Average Response Time

06-28 12

06-28 15

06-28 18

06-28 21

06-29 00

06-29 03

06-29 06

06-29 09

Time (Month-Day Hour)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
e
sp

o
n
se

 T
im

e
 (

1
e
6

 m
ill

is
e
co

n
d

s)

Service B Average Response Time

06-28 00

06-28 04

06-28 08

06-28 12

06-28 16

06-28 20

06-29 00

06-29 04

06-29 08

Time (Month-Day Hour)

0

1

2

3

4

5

R
e
sp

o
n
se

 T
im

e
 (

1
e
6

 m
ill

is
e
co

n
d

s)

Service C Average Response Time

Figure 5.5: Service average response time samples.

06-28 00
06-28 04

06-28 08
06-28 12

06-28 16
06-28 20

06-29 00
06-29 04

06-29 08

Time (Month-Day Hour)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Service A Request Status code ratios
2XX
4XX
5XX

06-28 12
06-28 15

06-28 18
06-28 21

06-29 00
06-29 03

06-29 06
06-29 09

Time (Month-Day Hour)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Service B Request Status code ratios

2XX
4XX

06-28 00
06-28 04

06-28 08
06-28 12

06-28 16
06-28 20

06-29 00
06-29 04

06-29 08

Time (Month-Day Hour)

0.0

0.2

0.4

0.6

0.8

1.0

Ra
tio

Service C Request Status code ratios

2XX
4XX
5XX

Figure 5.6: Service status code ratio samples.

Figure 5.3 represent samples about the number of service request calls metric. In
this Figure, we have 9 plots, three in each row, representing three variations (incoming,
outgoing and total) of this metric for one service. In this metric we can clearly see the
lack of information presented in tracing for the beginning of the first day.

Figure 5.4 contain samples about service dependency variation, one for each metric
(gain, loss and total). Total are the result of gain− loss. Gain stands for the number of
new service entries in system, and loss, represent the number of service exits in system.

Last Figure, 5.6, shows the gathering of status code ratio samples for three distinct
services. The ratio varies from 0.0 to 1.0, and represent the proportion of status code
groups (2xx – Success, 4xx – Client error and 5xx – Other errors).

Also, service dependency graphs are stored for further access after being processed by
Graph Processor component. We have decided to use ArangoDB as our Graph Database
(GDB). This decision was based in the “Multi data-type support” provided by this database,
allowing us to extend our graph structures to whatever we wanted, enhancing our graph
storage possibilities and relieving the implementation from parsing data-types. This
database has a Python client, pyArango [62], which revealed lack of features, leading
to propositions for functionality creation and issue declarations in GitHub. However, the
answers were not pleasant due to lack of support and people to maintain the project [63].
This have lead to some difficulties when implementing Graphs Repository component in
OTP. Difficulties from storing graphs with custom names to custom graph retrieval were
felted. The solution was to fork the project, perform changes and use our custom pyArango
client. This changes were committed for review to the original project. We could not mit-
igate these problems in advance because they were only perceived when using the client.

After presenting the first component, OTP, from our proposed solution, next Sec-
tion 5.3 - Data Analysis Component covers the implementation of the second component
presented in our solution.

50

Implementation Process

5.3 Data Analysis Component

In this Section, the implementation of the second component presented in our pro-
posed solution, “Data Analysis” component, is presented and expected outcomes from
each analysis are discussed.

“Data Analysis” component has the main objective of detecting anomalies, presented
in services, using time-series metrics extracted from tracing data using the component
presented in previous Section and perform tracing quality analysis.

In our implementation, this component is detached from the remaining components,
however, in architectural terms we have decided to place it has being part of the overall
solution. This is because there is nothing preventing total integration with other compo-
nents presented in the solution. The reason to implement these methods detached from
the remaining, was to ease our research path and increase flexibility. This means that,
to ease our data exploration, implement these methods in Notebooks detached from the
overall components, allowed us to change code effortlessly and conceded focus on methods
development. Jupyter Notebook [64] was the notebook chosen for method implementation,
hence, one server was created to hold our implementations in notebooks.

In this case, extracted time-series data belong to unlabelled data group. Data can
belong to unlabelled or labelled groups. Unlabelled data are information sampled from of
natural, or human-created artefacts, that one can obtain from observing and record values.
In this group, there is no “explanation” for each piece of data, as it just contains the data,
and nothing else. Labelled data typically takes a set of unlabelled data and augments
each piece of data with some sort of meaningful “tag”, “label”, or “class” that is somehow
informative or desirable to know. For example, for this solution, having labelled data
would help in identifying anomalies presented in our data set. However, only unlabelled
data was provided, and therefore, we needed to work with unlabelled data and perform
anomaly detection with it [65].

So, the approach was to use processed data produced from OTP, and perform the
analysis using “Data Analysis” component to point out service problems and perform
tracing quality analysis, as defined in Figure 4.1, to answer questions defined in Chapter 3:

1. Is there any anomalous behaviour in the system? (If yes, where?);

2. How can we measure the quality of tracing?

To answer the first question, using our proposed solution, one must use metrics ex-
tracted from tracing data, namely the number of incoming / outgoing requests and the
average response time for each service. These metrics are time-series metrics, and there-
fore, anomaly detection using unsupervised learning algorithms are the way to do it [25].
Metrics were obtained using methods defined in our OpenTSDB client, implemented in
Metrics Repository component.

After extracting these metrics, they are allocated in a data structure called dataframe
from Pandas, an open source library that provides high-performance, easy-to-use data
structures and data analysis tools. This library was chosen due to being one of the most
used and popular for this purpose [66] – data science and data analysis. A Dataframe is
a two-dimensional size-mutable, potentially heterogeneous tabular data structure with
labelled axes (rows and columns). In these data structures, values from time-series
metrics were stored in columns: timestamp (index), datetime, number_of_incoming_re-

51

Chapter 5

quests, number_of_outgoing_requests and average_response_time. In the end, a list of
dataframes are created, one dataframe for each service.

Before performing an analysis to detect if there are outliers presented in our data, the
information must be checked and tested to verify if data have missing values. This is done
because metrics are extracted from multiple sources and thus generates missing values.
For example, we may have missing information for one of the three features in a row of
one dataframe. Missing values are a pain in data analysis and are represented by NaN in
dataframes, and for this reason,one can not apply anomaly detection algorithms over data
with missing values. To fulfil missing information there are two approaches:

1. Remove rows with missing values, which degrades the overall data and may result
in insufficient data;

2. Impute missing values, however, it may be dangerous because it introduces ”wrong”
observations.

We decided to impute missing values because there were too keep information quantity.
However, there are multiple ways for imputation of missing values into time-series data,
depending on factors of trend and seasonality. Trending is the increasing or decreasing
value in the series, and seasonality is the repeating short-term cycle in the series [25].
Figure 5.7 shows the path to chose the correct method to fulfil information in time-series
data.

So, before applying the method, our component tests the data to chose the correct
method to fulfil data. Figure 5.8 contains trend and seasonality sample tests performed
over our data.

Figure 5.8 shows that there are clearly trends in our data, however, no seasonality was
detected. For this reason, the selected method to fulfil data presented in dataframes is
Linear Interpolation – Figure 5.7.

These dataframes are then processed by an unsupervised learning algorithm to detect
if there are outliers. For the unsupervised learning algorithm there were: Isolation Forests
and OneClassSVM [68]. The first one uses binary decision trees to isolate data points and
identify outliers presented in the data set, the second one, generates density areas using
max-margin methods, i.e. they do not model a probability distribution, hence the idea
is to find a function that is positive for regions with high density of points, and negative
for small densities, identifying outliers presented in data. Figure 5.9 displays the error
comparison of these two methods.

52

Implementation Process

Figure 5.7: Methods to handle missing data [67].

0

1x10e6

T
re

n
d

Time

Trend and seasonality for time-series metric B

0

2000

T
re

n
d

0.05

0.00

0.05

S
e
a
so

n
a
l

Time

Trend and seasonality for time-series metric A

0.05

0.00

0.05

S
e
a
so

n
a
l

Figure 5.8: Trend and seasonality results.

53

Chapter 5

Figure 5.9: Isolation Forests and OneClassSVM methods comparison [69].

From Figure 5.9, isolation forests prove to be a better method for outlier detection
because, from this test, it resulted in fewer errors as it did not construct a parametric
representation of the search space. For this reason, we decided to use Isolation Forests, to
detect and identify outliers presented in time-series metrics extracted from tracing data.
To implement Isolation Forests method we used Scikit-Learn, a library full of simple and
efficient tools for data mining, data analysis and machine learning. All configurations
used from this library to implement Isolation Forests were setted to default. Therefore,
Algorithm 4 presents the whole process to identify anomalous services presented in the
system.

Algorithm 4: Anomalous service detection algorithm.
Data: Processed data from tracing using OTP.
Result: Report, in CSV file, containing identified anomalous services and

correspondent times.
1 Read start_timestamp, end_timestamp, db_settings from configuration;
2 Connect to TSDB;
3 Retrieve metrics from TSDB using database connection, start_timestamp and

end_timestamp;
4 Create dataframes with metrics data;
5 Perform data imputation over dataframes;
6 Feed Isolation Forests with metric columns from dataframes;
7 Fire Isolation Forests method (Adds new column “anomaly” with -1 “Anomalous”

or 1 “Non-anomalous”);
8 Filter “anomaly” column with -1 values from dataframes into

anomalous_dataframes;
9 Write report with anomalous service names and times from

anomalous_dataframes data;

Algorithm 4 contains all the process explained above. The final outcome from this
algorithm is a report containing all anomalous services and correspondent times identified.
Also, later we decided to study further the pattern observed in anomalous regions. For
this, the approach was to use the algorithm defined in 3 to analyse what happens to
work-flows in “anomalous” and “non-anomalous” regions.

To answer the second question, it requires to perform a structural and time coverage
analysis. For the first analysis, the approach is to define a specification schema based on
OpenTracing open source specification. This schema aims to test span structures in order
to detect structural problems present in spans, e.g., missed fields, wrong data types, typos
presented in structure. The method implemented is presented in Algorithm 5.

54

Implementation Process

Algorithm 5: Span structure analysis algorithm.
Data: Trace files/Trace data.
Result: CSV file reporting span structure analysis.

1 Read specification from open_tracing_specification_schema.json;
2 while not end of tracing do
3 Read Span;
4 Check Span against specification;
5 Write results from “Check” to CSV file;

As we can see in Algorithm 5, our method aims to produce a report containing the
results of span structural analysis. To do this, first it needs to read the OpenTracing
specification schema. This schema is written in a JSON file, where the fields are annotated
with tags: required, data-type: <string, int, other> and others. JSON Schema [70] was
the library used to verify if each span complies with the specification. For the second
analysis, the approach is to use spans presented in trace data to analyse the coverage of
each trace. Figure 5.10 presents an example for time coverage in a trace.

Span A
(duration 100ms)

Span B
(duration 50ms)

Span C
(duration 10 ms)

Time

Figure 5.10: Trace time coverage example.

Figure 5.10 gives us an example in which we have a trace with a root span of 100
milliseconds of duration, and this root span has two children spans, one with 50ms, the
other one with 10ms, the entire trace has a coverage of (50+10)/100 = 60%. This method
is applied to every trace, and the results are the stored in a CSV file to be plotted for
visualisation. In this case we apply it and split the results by service, with the objective
of perceive the time coverability of tracing in each service. The method is presented in
Algorithm 6.

Algorithm 6: Trace coverability analysis algorithm.
Data: Trace files/Trace data.
Result: CSV file for each service reporting the coverability analysis.

1 Read start_time and end_time from configuration;
2 Get services from Zipkin;
3 while service in services do
4 Get traces from Zipkin using service, start_time and end_time;
5 Map traces in SpanTrees;
6 Calculate trace_coverability using SpanTrees;
7 Write trace_coverability to CSV file;

Algorithm 6 uses SpanTrees to calculate trace_coverability, this is due to causal re-
lationships presented in these trees. As explained above, through Figure 5.10, one must
have a trace mounted in span relationships (span trees), to know when a span is child

55

Chapter 5

of another, and be able to calculate the coverability presented in a trace. This method
performs this calculation for every service and, in the end, stores information about trace
coverability into a CSV file. This file is later used to produce plots about the service trace
coverability. What is expected from this method is that we achieve a plotting, where every
service has a counting of traces that cover a certain amount of time.

To summarise, this tools gathers processed data and time-series data from our TSDB,
extracted using OTP from original trace information. Then it perform data imputation
to solve missing values problems, analyses resulting data using Isolation Forests, an un-
supervised multiple feature machine learning algorithm, to identify outliers presented in
our extracted metrics, and therefore, detect anomalies presented in services, identifying
their occurrences in time. Also, this tools uses tracing to perform an analysis about the
structure of spans presented in tracing, and uses processed data from OTP, to perform an
analysis of time coverage provided by tracing data.

Next Chapter 6, we will cover results obtained by this component, discuss these results
and present OpenTracing data limitations.

56

Chapter 6

Results, Analysis and Limitations

In this Chapter we present the final results gathered from the “Data Analysis” com-
ponent presented in Chapter 4 - Proposed Solution, to answer the questions defined in
Section 3.2. Results for both questions, “1. Is there any anomalous service?” and “2. How
can we measure the quality of tracing?”, are presented as well as a brief discussion regard-
ing both results in Sections 6.1 and 6.2 respectively. Later, in the end of this Chapter, in
Section 6.3, we explore some limitations regarding the OpenTracing data.

6.1 Anomaly Detection

For the first question, the approach was to use the OpenTracing processor (OTP)
tool to extract metrics from tracing data to further analyse it using the unsupervised
learning algorithm. The implemented algorithm used for metrics extraction is presented
in Algorithm 1.

After extract metrics, a tool for metrics visualisation (e.g., Grafana) was used to visu-
alise metrics from OpenTSDB database. Samples from these visualizations were presented
in Figures 5.3, 5.4, 5.5 and 5.6. Therefore, the method explained in Algorithm 4 was ap-
plied to metrics extracted from tracing data. From this algorithm, a Comma-separated
values (CSV) file is generated containing candidates to “possible anomalous regions” for
each service presented in the system. Figure 6.1 shows a sample of the result of outliers
identified in time-series data for a given hypothetical service.

57

Chapter 6

0
10

00
30

00
0

10
00

20
00

0
10

00
00

0

1530140000 1530160000 1530180000 1530200000 1530220000

0
5

10

In
co

m
in

g
R

eq
ue

st
s

O
ut

go
in

g
R

eq
ue

st
s

R
es

po
ns

e
T

im
e

(m
s)

G
ra

ph
 C

ha
ng

es

Time Stamp

Figure 6.1: Sample of detection, using multiple feature, of “Anomalous” and
“Non-Anomalous” time-frame regions for a service.

58

Results, Analysis and Limitations

Figure 6.1 contains a set of vertical red lines representing the points of identified
anomalies in time, involving the three distinct time-series metrics. From this outlier
detection, using Isolation Forests, plots containing candidates to “possible anomalous
regions” were generated. The outcome expected from these plots, were a clustering of
values in normal (“non-anomalous”) time-frame regions against clustering of values with
outliers scattered in distant regions (“anomalous”).

Figure 6.2 provides a representation of two time-frame samples, one for the “anoma-
lous” region, and the other for the “non-anomalous” region considering the same service.
In these samples we retrieved data to analyse and give answers to the first question. For
this, we considered three features (as shown in the samples bellow): the number of incom-
ing requests, the number of outgoing requests and the average response time. The sample
resolution for the time-frame is 10 minutes centred in a given timestamp.

Figure 6.2: Comparison between “Anomalous” and “Non-Anomalous” service time-frame
regions.

As we can see in Figure 6.2, there is a clear difference between anomalous and non-
anomalous regions. There is a drastic change in the range of values between the anomalous
and non-anomalous regions, where the maximum for each feature changes greatly and
therefore, outliers are visible and evident in the observations. In the anomalous samples,
it is possible to notice a clear crowding of points near the origin point of the chart and
some outliers in the upper-left and down-right regions of the chart. On the other side, in
the non-anomalous samples, all that is possible to notice is the crowding of points near
the origin point of the chart. The crowding of points is what is expected to be the normal
behaviour for services, which means that is expected that the service can handle the load
with good response times. Furthermore, after this observations, what is expected is to
investigate what these points represent and what is causing this unexpected increment in
the number of incoming/outgoing requests and the average response time.

59

Chapter 6

There are two anomalous situations observed:

1. Services are increasing the response time when there are few incoming/outgoing
requests.

2. Services are receiving more incoming/outgoing requests, however it is having a good
response time.

The first situation is much worse than the second one. The expectation is that services
can handle more requests and keep the average response time, however, this system is
being used for testing purposes, and it has been target of several load and fault injection
tests. Furthermore, we do not have access to information regarding this tests, thus we
can not be certain if the detected outliers can be considered real “anomalies” presented in
services, however, they are interesting points to care about due to their unusual values.
The worst case scenario would be to find points in the upper-right section of the charts,
however this was not observed in this tracing data which leads to the assumption that this
system is able to scale their workload well and therefore, it is capable of keeping response
time low with large amounts of requests.

To study both situations, and further our anomaly detection presented in services, an
analysis of trace request work-flow types was performed. The objective of this analysis is
to perceive if there is some strange occurrences in request work-flow paths. To be able
to perform this process, the OTP must be able to get the tracing data and map each
unique trace work-flow for the given time-frame. We have used the method presented in
Algorithm 3 to retrieve this information.

As presented in algorithm 3, parameters from TraceInfo are written to CSV files. These
files are then processed in the “Data Analyser” component and, afterwards, a grouping
of work-flow types from “Anomalous” and “Non-Anomalous” regions are retrieved for
plotting. Results from this method are presented in Figure 6.3.

Figure 6.3: Comparison between “Anomalous” and “Non-Anomalous” service work-flow
types.

Figure 3 shows a clear difference between work-flow types presented in “anomalous” and
“non-anomalous” regions. One interesting thing to notice and that gives more evidence to
prove anomalies presented in these regions is that, in the anomalous regions, more quantity
and more types of request work-flow types were observed. The next step was to check what
was causing this by retrieving the most “called” work-flows, however, the results were not

60

Results, Analysis and Limitations

good because of the completeness of the tracing data. The flows were not relevant to
further our analysis because they were just calls from point A to point B, or represented
a not so interesting request path due to involved services. Also, in some of these requests
work-flow path, high values of response time were observed and therefore, they tocked
longer to execute, however, like for the previous explanation, their path was not relevant
to study. For these reasons, there were no possibility to extend our analysis and identify
the root cause for these abnormal observed behaviours. Therefore, at this point and for
this question, it is possible to say that this data set was exhaustively analysed, and an
improvement of the tracing data, or the gathering of other types of data, e.g., monitoring
and logging, should be a path to take. One point to note for future work is to test this
method with other tracing data, to evaluate them and understand if this approach can
lead to identification of the root cause of anomalous behaviour presented in services. For
this reason, the data provided and thus, the OpenTracing in general has some limitations.
These limitations are covered and explained further in Section 6.3.

6.2 Trace Quality Analysis

For the second question, the main approach was the same as in for the previous ques-
tion, we need to use the OTP to process the tracing data and gather the results to be
further analysed in the “Data Analysis” component. However, in this case, the results
obtained by the first component were directly used by the second one.

In this question the analysis is divided in two procedures as explained in Chapter 4.
The first procedure aims to check if the spans comply with the OpenTracing specification.
This method is rather simple and is presented in Algorithm 5.

The results obtained by the application of this method were that every span structure
complies with the specification. This is not a very good test because the specification of
the OpenTracing is not very strict and therefore, the created method for testing does not
provide a very accurate kind of results. To better explain this topic, we give two examples
with some solutions for each one. First example, the units for timestamps are not uniform,
one can use milliseconds and in other field of a span presented in the same trace, other
can use microseconds. This leads to problems in time measurements and is not covered by
this test. The solution for this problem can be the standardization of values and use only
one measurement unit. Second example, there are multiple declarations for fields with
key → value pairs, and thus, this brings inconsistency and uncertainty with the possible
values that can appear. One solution for this is to redefine the semantic specification and
terminology for programmers to adopt in their implementations. The limitations of this
specifications and the redefinition of the OpenTracing specification is discussed later in
Section 6.

The second procedure aims to check if tracing covers the entire time of the root spans.
For a simple example, if we have a trace with a root span of 100 milliseconds of duration,
and this root span has two children spans, one with 50ms, the other one with 10ms, the
entire trace has a coverage of (50 + 10)/100 = 60%. This method is applied to every
trace, and the results are plotted for visualisation. In this case we apply it and split the
results by service, with the objective of perceive the time coverability of tracing in each
service. The method is presented in Algorithm 6 and the corresponding results, regarding
two different services, are presented in Figure 6.4.

61

Chapter 6

Figure 6.4: Services coverability analysis.

Figure 6.4 allows the user to visualise the tracing coverability, in terms of how many
the overall tracing covers their entire execution duration. The most important thing to
notice for this tracing data is the presence of higher bar values in 60% − 100% regions.
This means that coverability for this tracing could be better, but in overall is good. What
is expected by the result of this kind of analysis is that the coverability of tracing remains
closer to the last interval (90%−100%), which means that our service is fully/almost fully
covered by this kind of data and therefore, the analysis of this data is worthy and the
results provided by the usage of this it are trusty. From this data set, the results for the
remaining services where close to the ones presented and shown by Figure 6.4.

After checking these results, one can use them to see which services developers can
analyse in order to improve the coverage of tracing. To improve this coverage, changes
in code instrumentation must be performed. Later on, after performing changes in code
instrumentation and gather new trace information, the method for coverability test must
be executed over the new tracing data to see if results have changed. What is expected
is that trace coverability raises, which means that, for example, for service B presented in
this figure, after developers changed the implementation, the trace counting for coverage
must shift into higher intervals, and for this reason, one must observe lower values for
1% − 70% and higher values for 71% − 100%. From this analysis, one thing to improve
is to develop a method to analyse the gathered results in order to detect traces that do

62

Results, Analysis and Limitations

not cover their duration with respect to a predefined threshold. For example, the method
could be applied to newer services after some time (to gather sufficient trace information),
and then report or notify the developer if the service does not comply with the predefined
coverage threshold. This would allow developers to improve their tracing coverage.

6.3 Limitations of OpenTracing Data

In this Section, we explore limitations felted when using and only using OpenTracing
data in this research and therefore, give some solutions to improve this work and present
a brand new project that emerged in the end of this research.

Limitations of OpenTracing were exposed in previous topics, Sections 6.1 and 6.2.
These limitations are presented bellow:

1. There is no definition in the specification for which measurement units can be used
when defining numeric values in spans, neither an exclusive field or in-field to indicate
them;

2. Spans do not contain any field to indicate causally-related spans from different traces;

3. Specification does not provide a set of possible values for keys in key → value fields
presented in spans;

4. Spans do not contain any field to identify correlated logs;

5. There are no defined way to record raw measurements or metrics with predefined
aggregation and set of labels from tracing.

The first limitation brings problems regarding the definition of time units in spans.
Without the clear indication of units used in these metrics, one may confuse the mea-
surement and make the mistake of inferring misleading values, resulting in wrong spread
of spans throughout time. This scenario occurred when posting our tracing data to dis-
tributed tracing tools, and to solve this, we needed to check the measurement unit defined
by the tool. For this reason, this is a big problem, and therefore, this should be defined
in the specification.

Second limitation causes the inability of knowing which spans are related with other
ones when they are presented in different traces. Not having this information leads to lack
of understanding of causally relationships between operations performed by distributed
components. Therefore, to solve this issue, an additional field of causally-related spans or
traces should be added to the span structure.

Third limitation consists in having fields of key → value pairs, when there is no defini-
tion of which keys can appear. This can be solved by creating a predefined schema where
all possible key values must be indicated. It looks easy to fix this issue, however, to change
the specification, there must be consensus in a unified structure and create new tools to
process this new tracing data.

Fourth limitation, tracing contains relevant information about system work and can
be used to map the flow of execution throughout the system, however, it could be much
more complete if it contained a correlation between spans and logs. This could be solved
if the span structure contained a field to declare related logs. Furthermore, the explicit

63

Chapter 6

declarations of logs would ease Development and Operations (DevOps) work because they
retrieve logs manually by time intervals after searching in tracing for e.g., longer spans.

Last limitation says that tracing specification does not have a defined way to record raw
measurements or metrics. This can be solved if specification and OpenTracing provided
an Application Programming Interface (API) with defined metrics that could be exploited
from tracing to be further analysed. This limitation was surpassed by creating a metrics
extractor from tracing data in our proposed solution.

These limitations are generated by some issues presented in the specification of Open-
Tracing. Provide changes was not the focus of this research, however, these limitations
carried out barriers for our own research because they bring difficulty when processing this
type of data. For this reason, revise and perform adjustments to the whole specification
is a job that must be done to ease tracing handling and analysis.

Near the end of this research, a project started with the support of big companies such
as Google, Lightstep and Uber. This project, named as OpenTelemetry [71], is backed by
CNCF: Cloud Native Computing Foundation and for this reason is open source. Started
in April 2019 and has a defined roadmap to November 2019 with the main objective of
merging OpenCensus and OpenTracing. The last one was the main focus of the research
presented in this thesis because we only had access to tracing data. OpenCensus is a set
of libraries for various languages that allows to collect application metrics, furthermore,
this data can be analysed by developers and administrators to understand the health of
the applications and debug problems [23].

The creation of OpenTelemetry and the interest from all these companies proves and
emphasizes the whole work carried out during this research. All starting points for the
creation of OpenTelemetry solution, stands in the problems and limitations of OpenTracing
felted during this work and presented above. Furthermore, in June 2019, a revision of
tracing specification was planned and worked out with the objective of introducing new
standard tags, log fields, and change span context reference types [72]. Also, in this
project, creators are planning to develop a metrics API, however, at time of writing, the
only decision that was made is to use time-series to handle this kind of data but there is
no specification created so far.

The usage of metrics, logs and other information come from the main objective of this
project, merge OpenCensus and OpenTracing. Though the various components will be
loosely coupled and consumed separately, the scope of the merged project includes data
sources beyond distributed transaction traces. After all, instrumentation and observability
involve other data sources, too. So the surface area of merged project API will incorporate
a variety of signals, like metrics, traces and logs providing higher observability.

Observability stems from the discipline of control theory and refers to how well a
system can be understood on the basis of the telemetry that it produces. From distributed
systems, three major vertical data types are generated: Tracing, Metrics and Logging,
and therefore, because they are tightly interconnected, one should use all of them to fully
achieve observability of these systems. For this reason, Metrics can be used to pinpoint,
for example, a subset of misbehaving traces. Logs associated with those traces could help
to find the root cause of this behaviour. And then new metrics can be configured, based
on this discovery, to catch this issue earlier next time. Furthermore, OpenTelemetry is an
effort to combine all three verticals into a single set of system components and language-
specific telemetry libraries and, in the end, replace both the OpenTracing project, which
focused exclusively on tracing, and the OpenCensus project, which focused on tracing and
metrics.

64

Chapter 7

Conclusion and Future Work

This Chapter covers three main topics: a summary of what we did and the main
conclusions we reached from this research; followed by brief reflections regarding this
whole research topic; and ending with the future work and research paths that seem to be
promising for the future.

After this whole research, we are able to state that tracing data is useful and required
to find anomalies related to service morphology. However, this type of data is hard to
handle and one must use it if some issue was detected in metrics easier to analyse, e.g.
monitoring. For this type of data to be easier to analyse, a discussion is provided about
this difficulty bellow. So, in the end our perception is that, there are issues that we can
only perceive using tracing data, but it is very expensive to analyse this data directly.

From tracing quality analysis, both tests are very interesting but, due to lack of required
and strict specification, the tests and results of the “structural quality analysis” using
spans are not very useful however, one can state that this is all we can do taking into
consideration the OpenTracing specification.

In the end, our analysis of the provided tracing data generated by OpenStack – Huawei
Cluster, took us to the following conclusions about OpenTracing:

1. OpenTracing suffers from a lack of tools for data processing and visualisation.

2. The OpenTracing specification is ambiguous.

3. The lack of tools to control instrumentation quality jeopardizes the tracing effort.

Firstly, we found it difficult to find appropriate tools for tracing data processing and
visualisation. Only Zipkin and Jaegger, presented in the Subsection 2.2.1, are useful, as
they allow distributed tracing visualisation in a human readable way. Unfortunately, they
do not present any kind of tracing analysis. The need for additional open-source tools
that can perform tracing analysis and visualisation is therefore quite real.

Secondly, one of the main difficulties in implementing the OpenTracing processor
(OTP) and Data Analysis tools we mentioned in this thesis is the ambiguity in tracing
data. The specification includes many fields that are not strictly defined. As mentioned
in Section 6.2, one of the problems is the lack of standardization of measurement units,
which led to different ones being used in the data provided. Other problem resides in some
fields that contain very important information about the path of the request. These fields
are defined as key-value pairs, where the keys vary freely according to the programmer’s

65

Chapter 7

needs. This raises a major challenge for tools, which must infer the units, or assume that
some data is unsuitable for analysis. A simple solution could be to redefine the speci-
fication and reduce this kind of fields, transforming the specification into a more strict
schema. This would allow the implementation of more general trace processing tools.

Therefore, from this work, the following research paths are considered for future work:

1. Improve and develop new tools for OpenTracing processing.

2. Perform a research to redefine the OpenTracing specification.

3. Explore and analyse the remaining extracted tracing metrics.

4. Use tracing data from other systems.

5. Develop a simulated system with the capability of fault-injection to prove the analysis
observations.

6. Conciliate the results from tracing data with other kinds of data like monitoring and
logging.

7. Follow closely the development and the community of OpenTelemetry project, and
contribute with ideas generated by this research.

First, today there are not many tools for processing and handling OpenTracing data.
This increased difficulty is felt when we needed to process this kind of data in a different
way, because we always ended up developing everything from scratch.

Second, there must be a way to eliminate or reduce the ambiguity and uncertainty
of data presented in tracing generated by non-strict fields. If the specification can not
be changed, a new way to transform tracing data to ease the analysis is very welcome.
However, this is a topic that should be covered by the development of OpenTelemetry
project, as mentioned in Section 6.3.

Third, these developed tools extract many more metrics. The majority of them were
not explored due to lack of time, and therefore, here resides the opportunity to do it. The
path starts by defining new research questions or analyse the remaining ones, presented
in Section 3.2, that use these metrics and develop ways to analyse them.

Fourth, just one data set of tracing data was used in this research. Test the tools and
methods with other tracing data could be an interesting path.

Fifth, the system were the data was gathered was a company testing system. One good
future approach was to have a microservice based simulated system, were the developers
could inject faults like request flow redirection, latency issues, and others, point them out
and test the developed tools and methods.

Sixth, only tracing data was used in this research, one interesting path to follow is to
have more kinds of data like monitoring and logging from the target system. This could
help the analysis of the system, due to more knowing about it.

Seventh, after developed, OpenTelemetry solution could cover points 2 and 5 mentioned
here. Also, expectation of success is high in the community, and commitment is visible in
the project pulse. For these reasons, this project is a must watch in the following months.

We started with only tracing data provided by Huawei, and walked a path were we
defined research questions based in Development and Operations (DevOps) needs and

66

Conclusion and Future Work

in OpenTracing characteristics. Later on, we designed a proposed solution capable of
processing tracing data and extract metrics from this type of data. Then we implemented
this solution and used it to retrieve results. These results proved some issues presented in
OpenTracing specification and the difficulty that is to analyse a distributed system only
using tracing information.

OpenTelemetry was created and started near the end of the research work presented in
this thesis, with the core objective of merging OpenCensus and OpenTracing into a single
Application Programming Interface (API), and consequently, review both specifications
in order to modify and improve them. This projects emphasizes the work performed in
this research, because the raised problems in this thesis are covered by it.

In the end, given the imposed limitations, one may conclude that this work was a
success because the research directions are in the vanguard of the state of the art, re-
lated work and general community of tracing usage and analysis. Also, tools for tracing
processing and analysis were developed and the created methods and conclusions were
used to produce a scientific paper submitted to the International Symposium on Network
Computing and Applications (IEEE NCA 2019).

67

This page is intentionally left blank.

References

[1] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R. Mustafin, and
L. Safina, “Microservices: Yesterday, today, and tomorrow”, in Present and Ulterior
Software Engineering, Cham: Springer International Publishing, 2017, pp. 195–216,
isbn: 9783319674254. doi: 10.1007/978-3-319-67425-4_12. [Online]. Available:
https://hal.inria.fr/hal-01631455.

[2] C. Richardson, Microservices Definition. [Online]. Available: https://microservices.
io/ (visited on 10/17/2018).

[3] P. D. Francesco, I. Malavolta, and P. Lago, “Research on Architecting Microservices:
Trends, Focus, and Potential for Industrial Adoption”, in 2017 IEEE International
Conference on Software Architecture (ICSA), IEEE, 2017, pp. 21–30, isbn: 978-1-
5090-5729-0. doi: 10.1109/ICSA.2017.24.

[4] I. O’Reilly Media, Monitoring Distributed Systems, 2017. [Online]. Available: https:
//landing.google.com/sre/sre-book/chapters/monitoring-distributed-
systems/.

[5] S. P. R. Janapati, Distributed Logging Architecture for Microservices, 2017. [Online].
Available: https://dzone.com/articles/distributed-logging-architecture-
for-microservices.

[6] OpenTracing.io, What is Distributed Tracing? [Online]. Available: %7Bhttps : / /
opentracing.io/docs/overview/what-is-tracing%7D.

[7] Laura Mauersberger, Microservices: What They Are and Why Use Them. [Online].
Available: https://blog.leanix.net/en/a-brief-history-of-microservices
(visited on 06/05/2019).

[8] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, Cloud Container Technologies: a
State-of-the-Art Review, 2017. doi: 10.1109/TCC.2017.2702586. [Online]. Avail-
able: http://ieeexplore.ieee.org/document/7922500/.

[9] S. Newman, Building Microservices: Designing Fine-Grained Systems. 280, isbn:
978-1-491-95035-7. [Online]. Available: http : / / ce . sharif . edu / courses / 96 -
97/1/ce924-1/resources/root/Books/building-microservices-designing-
fine-grained-systems.pdf.

[10] M. Fowler and J. Lewis, Microservices, a definition of this architectural term, 2014.
[Online]. Available: https://martinfowler.com/articles/microservices.html
(visited on 01/07/2018).

[11] Observing definition. [Online]. Available: https://www.thefreedictionary.com/
observing (visited on 10/13/2018).

[12] Peter Waterhouse, Monitoring and Observability — What’s the Difference and Why
Does It Matter? - The New Stack. [Online]. Available: https://thenewstack.io/
monitoring-and-observability-whats-the-difference-and-why-does-it-
matter/ (visited on 06/06/2019).

69

https://doi.org/10.1007/978-3-319-67425-4_12
https://hal.inria.fr/hal-01631455
https://microservices.io/
https://microservices.io/
https://doi.org/10.1109/ICSA.2017.24
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://landing.google.com/sre/sre-book/chapters/monitoring-distributed-systems/
https://dzone.com/articles/distributed-logging-architecture-for-microservices
https://dzone.com/articles/distributed-logging-architecture-for-microservices
%7Bhttps://opentracing.io/docs/overview/what-is-tracing%7D
%7Bhttps://opentracing.io/docs/overview/what-is-tracing%7D
https://blog.leanix.net/en/a-brief-history-of-microservices
https://doi.org/10.1109/TCC.2017.2702586
http://ieeexplore.ieee.org/document/7922500/
http://ce.sharif.edu/courses/96-97/1/ce924-1/resources/root/Books/building-microservices-designing-fine-grained-systems.pdf
http://ce.sharif.edu/courses/96-97/1/ce924-1/resources/root/Books/building-microservices-designing-fine-grained-systems.pdf
http://ce.sharif.edu/courses/96-97/1/ce924-1/resources/root/Books/building-microservices-designing-fine-grained-systems.pdf
https://martinfowler.com/articles/microservices.html
https://www.thefreedictionary.com/observing
https://www.thefreedictionary.com/observing
https://thenewstack.io/monitoring-and-observability-whats-the-difference-and-why-does-it-matter/
https://thenewstack.io/monitoring-and-observability-whats-the-difference-and-why-does-it-matter/
https://thenewstack.io/monitoring-and-observability-whats-the-difference-and-why-does-it-matter/

Chapter 7

[13] G. M. Brooker, Feedback and Control Systems. 2013, pp. 159–205. doi: 10.1049/
sbcs003e_ch4. [Online]. Available: http://people.disim.univaq.it/~costanzo.
manes/EDU_stuff/Feedback%20and%20Control%20System_DiStefano_Schaum_
Ch01-09.pdf.

[14] R. R. Sambasivan, I. Shafer, J. Mace, B. H. Sigelman, R. Fonseca, and G. R. Ganger,
“Principled workflow-centric tracing of distributed systems”, 2016, pp. 401–414. doi:
10.1145/2987550.2987568. [Online]. Available: https://www.rajasambasivan.
com/wp-content/uploads/2017/07/sambasivan-socc16.pdf.

[15] OpenTracing, OpenTracing Data Model Specification. [Online]. Available: https:
//github.com/opentracing/specification/blob/master/specification.md
(visited on 12/10/2018).

[16] R. Fonseca, G. Porter, R. H. Katz, S. Shenker, and I. Stoica, “X-trace: A pervasive
network tracing framework”, in Proceedings of the 4th USENIX conference on Net-
worked systems design & implementation (NSDI’07), USENIX Association, 2007,
p. 20. doi: 10.1.1.108.2220.

[17] R. R. Sambasivan, R. Fonseca, I. Shafer, and G. R. Ganger, “So, you want to trace
your distributed system? Key design insights from years of practical experience”,
p. 25, 2014. [Online]. Available: http://www.pdl.cmu.edu/PDL-FTP/SelfStar/
CMU-PDL-14-102.pdf.

[18] The OpenTracing Semantic Specification, https://github.com/opentracing/specifi-
cation/blob/master/specification.md.

[19] The OpenTracing Semantic Conventions, https://github.com/opentracing/specifi-
cation/blob/master/semantic_conventions.md.

[20] Cloud Native Computing Foundation, What is Kubernetes? [Online]. Available: https:
//kubernetes.io/docs/concepts/overview/what-is-kubernetes/ (visited on
11/29/2018).

[21] OpenStack, What is OpenStack? [Online]. Available: https://www.openstack.org/
software/ (visited on 11/29/2018).

[22] OpenTracing.io, What is OpenTracing? [Online]. Available: https://opentracing.
io/docs/overview/what-is-tracing/ (visited on 11/29/2018).

[23] Google LLC, What is OpenCensus? [Online]. Available: https://opencensus.io/
(visited on 11/29/2018).

[24] R. Sedgewick and K. Wayne, Algorithms, 4th Edition - Graphs. Addison-Wesley
Professional, 2011. [Online]. Available: https : / / algs4 . cs . princeton . edu /
42digraph/.

[25] D. R. Brillinger, Time Series: Data Analysis and Theory. 4. Society for Industrial
and Applied Mathematics, 2006, vol. 37, p. 869, isbn: 0898715016. doi: 10.2307/
2530198. [Online]. Available: https://books.google.pt/books/about/Time_
Series.html?id=PX5HExMKER0C&redir_esc=y.

[26] H. Liu, S. Shah, and W. Jiang, “On-line outlier detection and data cleaning”, Com-
puters and Chemical Engineering, vol. 28, no. 9, pp. 1635–1647, 2004, issn: 00981354.
doi: 10.1016/j.compchemeng.2004.01.009.

[27] Nikolaj Bomann Mertz, Anomaly Detection in Google Analytics — A New Kind of
Alerting. [Online]. Available: https://medium.com/the-data-dynasty/anomaly-
detection-in-google-analytics-a-new-kind-of-alerting-9c31c13e5237
(visited on 06/06/2019).

70

https://doi.org/10.1049/sbcs003e_ch4
https://doi.org/10.1049/sbcs003e_ch4
http://people.disim.univaq.it/~costanzo.manes/EDU_stuff/Feedback%20and%20Control%20System_DiStefano_Schaum_Ch01-09.pdf
http://people.disim.univaq.it/~costanzo.manes/EDU_stuff/Feedback%20and%20Control%20System_DiStefano_Schaum_Ch01-09.pdf
http://people.disim.univaq.it/~costanzo.manes/EDU_stuff/Feedback%20and%20Control%20System_DiStefano_Schaum_Ch01-09.pdf
https://doi.org/10.1145/2987550.2987568
https://www.rajasambasivan.com/wp-content/uploads/2017/07/sambasivan-socc16.pdf
https://www.rajasambasivan.com/wp-content/uploads/2017/07/sambasivan-socc16.pdf
https://github.com/opentracing/specification/blob/master/specification.md
https://github.com/opentracing/specification/blob/master/specification.md
https://doi.org/10.1.1.108.2220
http://www.pdl.cmu.edu/PDL-FTP/SelfStar/CMU-PDL-14-102.pdf
http://www.pdl.cmu.edu/PDL-FTP/SelfStar/CMU-PDL-14-102.pdf
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/
https://www.openstack.org/software/
https://www.openstack.org/software/
https://opentracing.io/docs/overview/what-is-tracing/
https://opentracing.io/docs/overview/what-is-tracing/
https://opencensus.io/
https://algs4.cs.princeton.edu/42digraph/
https://algs4.cs.princeton.edu/42digraph/
https://doi.org/10.2307/2530198
https://doi.org/10.2307/2530198
https://books.google.pt/books/about/Time_Series.html?id=PX5HExMKER0C&redir_esc=y
https://books.google.pt/books/about/Time_Series.html?id=PX5HExMKER0C&redir_esc=y
https://doi.org/10.1016/j.compchemeng.2004.01.009
https://medium.com/the-data-dynasty/anomaly-detection-in-google-analytics-a-new-kind-of-alerting-9c31c13e5237
https://medium.com/the-data-dynasty/anomaly-detection-in-google-analytics-a-new-kind-of-alerting-9c31c13e5237

References

[28] Jaeger: open source, end-to-end distributed tracing. [Online]. Available: https://
www.jaegertracing.io/ (visited on 06/09/2019).

[29] Apache Zipkin · A distributed tracing system. [Online]. Available: https://zipkin.
apache.org/ (visited on 06/09/2019).

[30] R. J. Trudeau and R. J. Trudeau, Introduction to graph theory. Dover Pub, 1993,
p. 209, isbn: 0486318664. [Online]. Available: https://books.google.pt/books/
about/Introduction_to_Graph_Theory.html?id=eRLEAgAAQBAJ&redir_esc=y.

[31] Apache Software Foundation, Apache Giraph. [Online]. Available: http://giraph.
apache.org/ (visited on 12/03/2018).

[32] J. Shun and G. E. Blelloch, “Ligra: A Lightweight Graph Processing Framework for
Shared Memory”, Pittsburgh, [Online]. Available: https://www.cs.cmu.edu/%7B~%
7Djshun/ligra.pdf.

[33] NetworkX. [Online]. Available: https://networkx.github.io/ (visited on 12/03/2018).
[34] A. Morin, J. Urban, and P. Sliz, “A Quick Guide to Software Licensing for the

Scientist-Programmer”, PLoS Computational Biology, vol. 8, no. 7, F. Lewitter, Ed.,
e1002598, 2012, issn: 1553-7358. doi: 10.1371/journal.pcbi.1002598. [Online].
Available: https://dx.plos.org/10.1371/journal.pcbi.1002598.

[35] A. Deshpande, Surveying the Landscape of Graph Data Management Systems. [On-
line]. Available: https : / / medium . com / @amolumd / graph - data - management -
systems-f679b60dd9e0 (visited on 11/24/2018).

[36] J. Celko, “Graph Databases”, in Joe Celko’s Complete Guide to NoSQL, 2013,
pp. 27–46, isbn: 1449356265. doi: 10.1016/b978-0-12-407192-6.00003-0.

[37] Favio Vázquez, Graph Databases. What’s the Big Deal? – Towards Data Science,
2019. [Online]. Available: https://towardsdatascience.com/graph-databases-
whats-the-big-deal-ec310b1bc0ed (visited on 06/07/2019).

[38] ArangoDB Inc., ArangoDB Documentation. [Online]. Available: https : / / www .
arangodb.com/documentation/ (visited on 10/16/2018).

[39] Amenya, TAO — Facebook’s Distributed database for Social Graph, 2018. [Online].
Available: https : / / medium . com / coinmonks / tao - facebooks - distributed -
database-for-social-graph-c2b45f5346ea (visited on 06/07/2019).

[40] Neo4J Inc., No Title. [Online]. Available: https://neo4j.com/docs/ (visited on
10/16/2018).

[41] B. M. Sasaki, J. Chao, and R. Howard, Graph Databases for Beginners. 2018, p. 45.
[Online]. Available: https://go.neo4j.com/rs/710-RRC-335/images/Graph_
Databases_for_Beginners.pdf?_ga=2.124112970.1994598198.1521285291-
1141717847.1521285291&_gac=1.180373973.1521290471.CjwKCAjw-bLVBRBMEiwAmKSB.

[42] N. Bronson, Z. Amsden, G. Cabrera, P. Chakka, P. Dimov, H. Ding, J. Ferris, A.
Giardullo, S. Kulkarni, H. Li, M. Marchukov, D. Petrov, L. Puzar, Y. J. Song,
and V. Venkataramani, “TAO: Facebook’s Distributed Data Store for the Social
Graph”, [Online]. Available: https://cs.uwaterloo.ca/~brecht/courses/854-
Emerging-2014/readings/data-store/tao-facebook-distributed-datastore-
atc-2013.pdf.

[43] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan, “One Tril-
lion Edges: Graph Processing at Facebook-Scale Avery”, Proceedings of the VLDB
Endowment, vol. 8, no. 12, pp. 1804–1815, 2015, issn: 15782190. doi: 10.1016/
S0001-7310(16)30012-6. [Online]. Available: http://www.vldb.org/pvldb/vol8/
p1804-ching.pdf.

71

https://www.jaegertracing.io/
https://www.jaegertracing.io/
https://zipkin.apache.org/
https://zipkin.apache.org/
https://books.google.pt/books/about/Introduction_to_Graph_Theory.html?id=eRLEAgAAQBAJ&redir_esc=y
https://books.google.pt/books/about/Introduction_to_Graph_Theory.html?id=eRLEAgAAQBAJ&redir_esc=y
http://giraph.apache.org/
http://giraph.apache.org/
https://www.cs.cmu.edu/%7B~%7Djshun/ligra.pdf
https://www.cs.cmu.edu/%7B~%7Djshun/ligra.pdf
https://networkx.github.io/
https://doi.org/10.1371/journal.pcbi.1002598
https://dx.plos.org/10.1371/journal.pcbi.1002598
https://medium.com/@amolumd/graph-data-management-systems-f679b60dd9e0
https://medium.com/@amolumd/graph-data-management-systems-f679b60dd9e0
https://doi.org/10.1016/b978-0-12-407192-6.00003-0
https://towardsdatascience.com/graph-databases-whats-the-big-deal-ec310b1bc0ed
https://towardsdatascience.com/graph-databases-whats-the-big-deal-ec310b1bc0ed
https://www.arangodb.com/documentation/
https://www.arangodb.com/documentation/
https://medium.com/coinmonks/tao-facebooks-distributed-database-for-social-graph-c2b45f5346ea
https://medium.com/coinmonks/tao-facebooks-distributed-database-for-social-graph-c2b45f5346ea
https://neo4j.com/docs/
https://go.neo4j.com/rs/710-RRC-335/images/Graph_Databases_for_Beginners.pdf?_ga=2.124112970.1994598198.1521285291-1141717847.1521285291&_gac=1.180373973.1521290471.CjwKCAjw-bLVBRBMEiwAmKSB
https://go.neo4j.com/rs/710-RRC-335/images/Graph_Databases_for_Beginners.pdf?_ga=2.124112970.1994598198.1521285291-1141717847.1521285291&_gac=1.180373973.1521290471.CjwKCAjw-bLVBRBMEiwAmKSB
https://go.neo4j.com/rs/710-RRC-335/images/Graph_Databases_for_Beginners.pdf?_ga=2.124112970.1994598198.1521285291-1141717847.1521285291&_gac=1.180373973.1521290471.CjwKCAjw-bLVBRBMEiwAmKSB
https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/data-store/tao-facebook-distributed-datastore-atc-2013.pdf
https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/data-store/tao-facebook-distributed-datastore-atc-2013.pdf
https://cs.uwaterloo.ca/~brecht/courses/854-Emerging-2014/readings/data-store/tao-facebook-distributed-datastore-atc-2013.pdf
https://doi.org/10.1016/S0001-7310(16)30012-6
https://doi.org/10.1016/S0001-7310(16)30012-6
http://www.vldb.org/pvldb/vol8/p1804-ching.pdf
http://www.vldb.org/pvldb/vol8/p1804-ching.pdf

Chapter 7

[44] ArangoDB Inc., ArangoDB Enterprise: SmartGraphs. [Online]. Available: https://
www.arangodb.com/why-arangodb/arangodb-enterprise/arangodb-enterprise-
smart-graphs/ (visited on 12/15/2018).

[45] A. Turu, P. Ozge, K. Supervisor, and E. Zimányi, “Université libre de Bruxelles
Graph Databases and Neo4J”, Tech. Rep., 2017. [Online]. Available: https://cs.
ulb.ac.be/public/_media/teaching/neo4jj_2017.pdf.

[46] K. V. Gundy, Infographic: Understanding Scalability with Neo4j. [Online]. Avail-
able: https://neo4j.com/blog/neo4j-scalability-infographic/ (visited on
12/15/2018).

[47] T. Dunning and E. Friedman, Time Series Databases New Ways to Store and Ac-
cess Data. 2015, p. 71, isbn: 9781491917022. [Online]. Available: https://www.
academia.edu/29891282/Time_Series_Databases_New_Ways_to_Store_and_
Access_Data.

[48] Tanay Pant, Ingesting IoT and Sensor Data at Scale – Hacker Noon, 2019. [Online].
Available: https://hackernoon.com/ingesting-iot-and-sensor-data-at-
scale-ee548e0f8b78 (visited on 06/07/2019).

[49] InfluxData, InfluxDB GitHub. [Online]. Available: https://github.com/influxdata/
influxdb (visited on 12/12/2018).

[50] OpenTSDB, OpenTSDB. [Online]. Available: https://github.com/OpenTSDB/
opentsdb (visited on 12/12/2018).

[51] C. Churilo, InfluxDB Markedly Outperforms OpenTSDB in Time Series Data &
Metrics Benchmark. [Online]. Available: https://www.influxdata.com/blog/
influxdb-markedly-outperforms-opentsdb-in-time-series-data-metrics-
benchmark/ (visited on 12/12/2018).

[52] S. Noor, Z. Naqvi, S. Yfantidou, E. Zimányi, and Z. Zimányi, “Time Series Databases
and InfluxDB”, Tech. Rep., 2017. [Online]. Available: %7Bhttps://cs.ulb.ac.be/
public/_media/teaching/influxdb_2017.pdf%7D.

[53] S. Jacob, The Rise of AIOps: How Data, Machine Learning, and AI Will Transform
Performance Monitoring, https://www.appdynamics.com/blog/aiops/aiops-platforms-
transform-performance-monitoring/.

[54] A. Lerner, AIOps Platforms, https://blogs.gartner.com/andrew-lerner/2017/08/09/aiops-
platforms/.

[55] S. Nedelkoski, J. Cardoso, and O. Kao, “Anomaly Detection and Classification using
Distributed Tracing and Deep Learning”, 2018, [Online]. Available: https://pt.
slideshare.net/JorgeCardoso4/mastering-aiops-with-deep-learning.

[56] W. Li, Anomaly Detection in Zipkin Trace Data, 2018. [Online]. Available: https:
//engineering.salesforce.com/anomaly-detection-in-zipkin-trace-data-
87c8a2ded8a1.

[57] B. Herr and N. Abbas, Analyzing distributed trace data, 2017. [Online]. Available:
https : / / medium . com / @Pinterest _ Engineering / analyzing - distributed -
trace-data-6aae58919949.

[58] M. Ikonen, E. Pirinen, F. Fagerholm, P. Kettunen, and P. Abrahamsson, “On the im-
pact of Kanban on software project work: An empirical case study investigation”, in
Proceedings - 2011 16th IEEE International Conference on Engineering of Complex
Computer Systems, ICECCS 2011, IEEE, 2011, pp. 305–314, isbn: 9780769543819.
doi: 10.1109/ICECCS.2011.37. [Online]. Available: http://ieeexplore.ieee.
org/document/5773404/.

72

https://www.arangodb.com/why-arangodb/arangodb-enterprise/arangodb-enterprise-smart-graphs/
https://www.arangodb.com/why-arangodb/arangodb-enterprise/arangodb-enterprise-smart-graphs/
https://www.arangodb.com/why-arangodb/arangodb-enterprise/arangodb-enterprise-smart-graphs/
https://cs.ulb.ac.be/public/_media/teaching/neo4jj_2017.pdf
https://cs.ulb.ac.be/public/_media/teaching/neo4jj_2017.pdf
https://neo4j.com/blog/neo4j-scalability-infographic/
https://www.academia.edu/29891282/Time_Series_Databases_New_Ways_to_Store_and_Access_Data
https://www.academia.edu/29891282/Time_Series_Databases_New_Ways_to_Store_and_Access_Data
https://www.academia.edu/29891282/Time_Series_Databases_New_Ways_to_Store_and_Access_Data
https://hackernoon.com/ingesting-iot-and-sensor-data-at-scale-ee548e0f8b78
https://hackernoon.com/ingesting-iot-and-sensor-data-at-scale-ee548e0f8b78
https://github.com/influxdata/influxdb
https://github.com/influxdata/influxdb
https://github.com/OpenTSDB/opentsdb
https://github.com/OpenTSDB/opentsdb
https://www.influxdata.com/blog/influxdb-markedly-outperforms-opentsdb-in-time-series-data-metrics-benchmark/
https://www.influxdata.com/blog/influxdb-markedly-outperforms-opentsdb-in-time-series-data-metrics-benchmark/
https://www.influxdata.com/blog/influxdb-markedly-outperforms-opentsdb-in-time-series-data-metrics-benchmark/
%7Bhttps://cs.ulb.ac.be/public/_media/teaching/influxdb_2017.pdf%7D
%7Bhttps://cs.ulb.ac.be/public/_media/teaching/influxdb_2017.pdf%7D
https://pt.slideshare.net/JorgeCardoso4/mastering-aiops-with-deep-learning
https://pt.slideshare.net/JorgeCardoso4/mastering-aiops-with-deep-learning
https://engineering.salesforce.com/anomaly-detection-in-zipkin-trace-data-87c8a2ded8a1
https://engineering.salesforce.com/anomaly-detection-in-zipkin-trace-data-87c8a2ded8a1
https://engineering.salesforce.com/anomaly-detection-in-zipkin-trace-data-87c8a2ded8a1
https://medium.com/@Pinterest_Engineering/analyzing-distributed-trace-data-6aae58919949
https://medium.com/@Pinterest_Engineering/analyzing-distributed-trace-data-6aae58919949
https://doi.org/10.1109/ICECCS.2011.37
http://ieeexplore.ieee.org/document/5773404/
http://ieeexplore.ieee.org/document/5773404/

References

[59] S. Brown, The C4 model for software architecture. [Online]. Available: https://
c4model.com/ (visited on 12/12/2018).

[60] I. Ward, JSON Lines. [Online]. Available: http://jsonlines.org/ (visited on
04/18/2018).

[61] OpenTracing.io, The OpenTracing Specification repository. [Online]. Available: https:
//github.com/opentracing/specification.

[62] pyArango: Python Client Driver for ArangoDB. [Online]. Available: https://github.
com/ArangoDB-Community/pyArango (visited on 06/14/2019).

[63] A. Bento and T. Daouda, pyArango Issues, 2019. [Online]. Available: https://
github.com/ArangoDB-Community/pyArango/issues/137.

[64] D. Avila and M. Bussonnier, Jupyter Notebooks. [Online]. Available: https : / /
jupyter.org/.

[65] R. Kothari and V. Jain, “Learning from labeled and unlabeled data”, [Online]. Avail-
able: http://ieeexplore.ieee.org/document/1007592/.

[66] Pandas-dev, Pandas - Flexible and powerfull time-series data analysis. [Online].
Available: https://github.com/pandas-dev/pandas.

[67] A. Swalin, “How to Handle Missing Data”, pp. 1–10, 2019. [Online]. Available:
https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4.

[68] C. Zhou and R. C. Paffenroth, “Anomaly Detection with Robust Deep Autoen-
coders”, in Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining - KDD ’17, New York, New York, USA: ACM
Press, 2017, pp. 665–674, isbn: 9781450348874. doi: 10.1145/3097983.3098052.
[Online]. Available: http://dl.acm.org/citation.cfm?doid=3097983.3098052.

[69] A. C. Bahnsen, Isolation forests for anomaly detection improve fraud detection. 2016.
[Online]. Available: https://blog.easysol.net/using-isolation-forests-
anamoly-detection/ (visited on 06/18/2019).

[70] JSON Schema. [Online]. Available: https://json-schema.org/ (visited on 06/16/2019).
[71] OpenTelemetry. [Online]. Available: https://opentelemetry.io/ (visited on 06/21/2019).
[72] OpenTelemetry Semantic Conventions. [Online]. Available: https://github.com/

open-telemetry/opentelemetry-specification/blob/master/semantic-conventions.
md (visited on 06/22/2019).

73

https://c4model.com/
https://c4model.com/
http://jsonlines.org/
https://github.com/opentracing/specification
https://github.com/opentracing/specification
https://github.com/ArangoDB-Community/pyArango
https://github.com/ArangoDB-Community/pyArango
https://github.com/ArangoDB-Community/pyArango/issues/137
https://github.com/ArangoDB-Community/pyArango/issues/137
https://jupyter.org/
https://jupyter.org/
http://ieeexplore.ieee.org/document/1007592/
https://github.com/pandas-dev/pandas
https://towardsdatascience.com/how-to-handle-missing-data-8646b18db0d4
https://doi.org/10.1145/3097983.3098052
http://dl.acm.org/citation.cfm?doid=3097983.3098052
https://blog.easysol.net/using-isolation-forests-anamoly-detection/
https://blog.easysol.net/using-isolation-forests-anamoly-detection/
https://json-schema.org/
https://opentelemetry.io/
https://github.com/open-telemetry/opentelemetry-specification/blob/master/semantic-conventions.md
https://github.com/open-telemetry/opentelemetry-specification/blob/master/semantic-conventions.md
https://github.com/open-telemetry/opentelemetry-specification/blob/master/semantic-conventions.md

	Introduction
	Context
	Motivation
	Goals
	Work Plan
	Research Contributions
	Document Structure

	State of the Art
	Concepts
	Microservices
	Observability and Controlling Performance
	Distributed Tracing
	Graphs
	Time-Series

	Technologies
	Distributed Tracing Tools
	Graph Manipulation and Processing Tools
	Graph Database Tools
	Time-Series Database Tools

	Related Work
	Mastering AIOps
	Anomaly Detection using Zipkin Tracing Data
	Analysing distributed trace data
	Research possible directions

	Research Objectives and Approach
	Research Objectives
	Research Questions

	Proposed Solution
	Functional Requirements
	Quality Attributes
	Technical Restrictions
	Architecture
	Context Diagram
	Container Diagram
	Component Diagram

	Implementation Process
	Huawei Tracing Data Set
	OpenTracing Processor Component
	Data Analysis Component

	Results, Analysis and Limitations
	Anomaly Detection
	Trace Quality Analysis
	Limitations of OpenTracing Data

	Conclusion and Future Work

